
Ivan	Giro*o	–	igiro*o@ictp.it	
Informa(on	&		Communica(on	Technology	Sec(on	(ICTS)	

Interna(onal	Centre	for	Theore(cal	Physics	(ICTP)			

Debugging	&	Profiling	

OUTLINE	
•  Debugging	

•  Profiling	
•  Prac(cal	examples				

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 2	Debugging	&	Profiling	

What	is	Debugging	?!		
•  Iden(fying	the	cause	of	an	error	and	correc(ng	it		
•  Once	you	have	iden(fied	defects,	you	need	to:		

–  find	and	understand	the	cause		
–  remove	the	defect	from	your	code	

•  In	a	large	number	of	cases	bug	fixes	are	wrong:		
–  they	remove	the	symptom,	but	not	the	cause		

•  Improve	produc(vity	by	geSng	it	right	the	first	(me		
•  A	lot	of	programmers	don't	know	how	to	debug!		

–  Doesn't	add	func(onality	&	doesn't	improve	the	science	

•  Debugging	needs	prac(ce	and	experience:	
–  understand	the	science	and	the	tools		

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 3	Debugging	&	Profiling	

Errors	are	Opportuni(es		
•  Learn	from	the	program	you're	working	on:		

–  Errors	mean	you	didn't	understand	the	program.	If	you	knew	it	
beBer,	it	wouldn't	have	an	error.	You	would	have	fixed	it	already		

•  Learn	about	the	kinds	of	mistakes	you	make:		
–  If	you	wrote	the	program,	you	inserted	the	error		
–  Once	you	find	a	mistake,	ask	yourself:		

•  Why	did	you	make	it?	
•  How	could	you	have	found	it	more	quickly?		
•  How	could	you	have	prevented	it?	
•  Are	there	other	similar	mistakes	in	the	code?		

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 4	Debugging	&	Profiling	

The	Nature	of	Bugs	
•  Straigh`orward	bug	to	intercept	and	solve	
•  The	program	crashes	unexpectedly	

–  the	problem	can	be	easily	reproduced	(lucky)	
–  bug	whose	causes	are	too	complex	to	be	reliably	reproduced;	it	
thus	defies	repair	

–  bug	disappears	when	debugging	a	problem	(compiling	with	-g	or	
adding	prints)	

•  The	produced	numbers	differ	from	what	we	expected		
–  	bug	generated	by	an	invalid	opera(ons	
–  	bug	disappears	when	debugging	a	problem	(compiling	with	-g	
or	adding	prints)	

	
Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 5	Debugging	&	Profiling	

Main	Reasons	of	Debugging	
•  Floa(ng	Point	Excep(ons	(FPE)	

– Overflow		
–  Invalid	Number	
– Division	by	Zero	

•  Out	of	bound	
•  Segmenta(on	Fault	
•  Not	expected	execu(on	flow	
•  The	Program	Hangs	

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 6	Debugging	&	Profiling	

Purpose	of	a	Debugger		
•  More	informa(on	than	print	statements		
•  Allows	to	stop/start/single	step	execu(on		
•  Look	at	data	and	modify	it	
•  'Post	mortem'	analysis	from	core	dumps		
•  Prove	/	disprove	hypotheses		
•  No	subs(tute	for	good	thinking		
•  But,	some(mes	good	thinking	is	not	a	subs(tute	for	
effec(vely	using	a	debugger!		

•  Easier	to	use	with	modular	code		

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 7	Debugging	&	Profiling	

Approaches	
•  Print	Messages	and	Variables	J	
•  Compiler	Debug	Op(ons	
•  Core	analysis	
•  Run	the	Program	with	a	Debugger	
•  ABach	Debugger	to	a	running	process	
•  Ask	for	help!	

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 8	Debugging	&	Profiling	

Using	a	Debugger		
•  When	compiling	use	-g	op(on	to	include	debug	info	in	

object	(.o)	and	executable		
•  1:1	mapping	of	execu(on	and	source	code	only	when	

op(miza(on	is	turned	off	
–  problem	when	op(miza(on	uncovers	bug		

•  GNU	compilers	allow	-g	with	op(miza(on		
–  not	always	correct	line	numbers	
–  variables/code	can	be	'op(mized	away’		
–  progress	confusing	with	loop	unrolling		

•  strip	command	removes	debug	info		

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 9	Debugging	&	Profiling	

Using	gdb	as	a	Debugger	
•  gdb	ex01-c	launches	debugger,	loads	binary,	stops	with	

(gdb)	prompt	wai(ng	for	input:		
•  run	starts	executable,	arguments	are	passed	Running	

program	can	be	interrupted	(ctrl-c)		
•  gdb	./prog	--args	arg1	-flag	passes	all	arguments	to	the	run	

command	inside	gdb		
•  conJnue	con(nues	stopped	program	
•  finish	con(nues	un(l	the	end	of	a	subrou(ne		
•  step	single	steps	through	program	line	by	line		
•  next	single	steps	but	doesn't	step	into	subrou(nes		

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 10	Debugging	&	Profiling	

More	Basic	gdb	Commands		
•  print	displays	contents	of	a	known	data	object		
•  display	is	like	print	but	shows	updates	every	step		
•  where	shows	stack	trace	(of	func(on	calls)		
•  up	down	allows	to	move	up/down	on	the	stack		
•  break	sets	break	point	(uncondi(onal	stop),	loca(on	
indicated	by	file	name+line	no.	or	func(on		

•  watch	sets	a	condi(onal	break	point	(breaks	when	an	
expression	changes,	e.g.	a	variable)		

•  delete	removes	display	or	break	points		

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 11	Debugging	&	Profiling	

Post	Mortem	Analysis	
•  Enable	core	dumps:	ulimit	-c	unlimited		
•  Run	executable	un(l	it	crashes;	will	generate	a	
file	core	or	core.<pid>	with	memory	image		

•  Load	executable	and	core	dump	into	debugger	
gdb	myexe	core.<pid>		

•  Inspect	loca(on	of	crash	through	commands:	
where,	up,	down,	list	

•  Use	directory	to	point	to	loca(on	of	sources		

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 12	Debugging	&	Profiling	

Using	valgrind		
•  Run	valgrind	-v	./exe	to	instrument	and	run		
•  --leak-check=full	--track-origins=yes		
•  Output	will	list	individual	errors	and	summary		
•  With	debug	info	present	can	resolve	problems	to	line	
of	code,	otherwise	to	name	of	func(on		

•  Also	monitors	memory	alloca(on	/	dealloca(on	to	flag	
memory	leaks	(“forgoBen”	alloca(ons)		

•  Instrumenta(on	slows	down	execu(on	
•  Can	produce	“false	posi(ves”	(flag	non-errors)		

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 13	Debugging	&	Profiling	

How	to	NOT	do	Debugging	
•  Find	the	error	by	guessing		
•  Change	things	randomly	un(l	it	works	(again)		
•  Don't	keep	track	of	what	you	changed		
•  Don't	make	a	backup	of	the	original		
•  Fix	the	error	with	the	most	obvious	fix		
•  If	wrong	code	gives	the	correct	result,	
and	changing	it	doesn't	work,	don't	correct	it.		

•  If	the	error	is	gone,	the	problem	is	solved.	
Trying	to	understand	the	problem,	is	a	waste	of	(me		

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 14	Debugging	&	Profiling	

Debugging	Tools		
•  Source	code	comparison	and	management	tools:	diff,	

vimdiff,	emacs/ediff,	cvs/svn/git		
–  Help	you	to	find	differences,	origins	of	changes		

•  Source	code	analysis	tools:	compiler	warnings,	vnchek,	lint		
–  Help	you	to	find	problema(c	code	

•  Always	enable	warnings	when	programming		
•  Always	take	warnings	seriously	(but	not	all)		
•  Always	compile/test	on	mul(ple	pla`orms		

•  Bounds	checking	allows	checking	of	(sta(c)	memory	
alloca(on	viola(ons	(no	malloc)		

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 15	Debugging	&	Profiling	

More	Debugging	Tools	
•  Using different compilers (Intel, GCC, Clang, ...)
•  Debuggers	and	debugger	frontends:	
gdb	(GNU	compilers),	idb	(Intel	compilers),	ddd	(GUI),	
eclipse	(IDE),	and	many	more...		

•  gprof	(profiler)	as	it	can	generate	call	graphs		
•  valgrind,	an	instrumenta(on	framework		

– Memcheck:	detects	memory	management	problems	
–  Cachegrind:	cache	profiler,	detects	cache	misses		
–  Callgrind:	call	graph	crea(on	tool		

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 16	Debugging	&	Profiling	

How	to	Report	a	Bug(?)	to	Others	
•  Research	whether	bug	is	known/fixed	

– web	search,	mailing	list	archive,	bugzilla		
•  Provide	descrip(on	on	how	to	reproduce	the	
problem.	Find	a	minimal	input	to	show	bug.		

•  Always	state	hardware/sovware	you	are	using	
(distribu(on,	compilers,	code	version)		

•  Demonstrate,	that	you	have	invested	effort		
•  Make	it	easy	for	others	to	help	you!		

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 17	Debugging	&	Profiling	

Profiling		
•  Profiling	usually	means:		

–  Instrumenta(on	of	code	(e.g.	during	compila(on)	
–  Automated	collec(on	of	(ming	data	during	execu(on		
–  Analysis	of	collected	data,	breakdown	by	func(on		

•  Example:	gcc	-o	some_exe.x	-pg	some_code.c	
–  ./some_exe.x		
–  gprof	some_exe.x	gmon.out		

•  Profiling	is	oven	incompa(ble	with	code	op(miza(on	
or	can	be	misleading	(inlining)			

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 18	Debugging	&	Profiling	

PERF	–	Hardware	Assisted	Profiling		
•  Modern	x86	CPUs	contain	performance	monitor	
tools	included	in	their	hardware		

•  Linux	kernel	versions	support	this	feature	which	
allows	for	very	low	overhead	profiling	without	
instrumenta(on	of	binaries		

•  perf	stat	./a.out	->	profile	summary		
•  perf	record	./a.out;	perf	report	-i	perf.data		
•  gprof	like	func(on	level	profiling	(with	coverage	
report	and	disassembly,	if	debug	info	present)		

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 19	Debugging	&	Profiling	

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 20	Debugging	&	Profiling	

Profiling	in	Python		
•  individual	func(ons:		

–  import	cProfile		
–  cProfile.run('some_func()',	'profile.tmp')		

•  whole	script:		
–  python	-m	cProfile	[-o	output_file]	[-s	sort_order]	myscript.py		

•  Analyze	profile	file:		
–  import	pstats		
–  p	=	pstats.Stats('profile.tmp')		
–  p.strip_dirs().sort_stats(-1).print_stats()		

•  More	info	at	hBp://docs.python.org/2/library/profile.html		

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 21	Debugging	&	Profiling	

Time	embedded	in	code	

Ivan	GiroBo	-	
igiroBo@ictp.it									
Trieste,	10th	March	
2016	

Debugging	&	Profiling	 22	

To	measure	using	cprofile		

Ivan	GiroBo	-	
igiroBo@ictp.it									
Trieste,	10th	March	
2016	

Debugging	&	Profiling	 23	

Debugging	Python		
•  typically	very	easy	to	do	interac(vely	with	
"print()"	and	"exit()"	statements	in	the	code		

•  More	featureful	debugger	available	in	module	
"pdb",	see:	
–  hBp://docs.python.org/2.7/library/pdb.html	

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 24	Debugging	&	Profiling	

References	
•  PERF	wiki	

Ivan	GiroBo	-	igiroBo@ictp.it									
Trieste,	10th	March	2016	 25	Debugging	&	Profiling	

