Timo Heister (Clemson University)
heister@clemson.edu

— J— — - o ——
CLEMSON B v v o
INFRASTRUCTURE

UNIVERSITY 3 for GEODYNAMICS

heister@clemson.edu

Introduction

9000000000

Timo Heister

« Assistant Professor at
Clemson since 2013 in
Mathematical Sciences

PhD from Gottingen,
Germany

L)

Research: Finite
Elements, Software,
Parallelization, Fluid Flow

L

Introduction
0@00000000

« What goes into a successful computational open source library
« Pitfalls, Tricks, etc.
« Why do we do this?
« What worked for us

Warning: lots of opinions!

ﬁ Wolfgang Bangerth and Timo Heister.
What makes computational open source software libraries successful?
Computational Science & Discovery, 6(1):015010, 2013.

Introduction

00®@0000000

@ A finite element library
« Open source project (LGPL 2.1+) written in C++, (15 years
old)
« Features:
« Various finite element of arbitrary order (CG, DG, RT, ...)
@ Manifold descriptions (local space descriptions using Charts)
« Massively parallel computations (MPI and/or TBB)
« Linear algebra: own/Trilinos/PETSc
« Matrix free computations
« Adaptive mesh refinement
@« Support for large number of optional packages

ﬁ Wolfgang Bangerth, Timo Heister, Luca Heltai, Guido Kanschat, Martin
Kronbichler, Matthias Maier, and Bruno Turcksin.
The dealii library, Version 8.3.
Archive of Numerical Software, 4(100), 2016.

Introduction
000®000000

« Documentation:

« 50+ tutorials with extensive descriptions, mathematical
background, code explanations, results, and exercises

« Extensive online documentation

= Video lectures by W. Bangerth, 45+ videos each 30-60mins,
1000s of views

@ widely used:

« 800+ papers using and citing deal.ll

« Small core: 4 principal developers, Publications per year
+4 developers, many contributors "

= Used in teaching at Texas A&M, Clemson,
Heidelberg, ltaly, South Korea, India, ... 50

40

0
i e

Introduction
0000®00000

ASPECT = Advanced Solver for Problems in Earth's ConvecTion

@« Mantle convection using modern numerical methods
« Open source, C++, based on deal.ll

@ Available at: http://aspect.dealii.org

@ In active development since 2011

@ Kronbichler, Heister and Bangerth.
High Accuracy Mantle Convection Simulation through Modern Numerical
Methods.
Geophysical Journal International, 2012, 191, 12-29.

http://aspect.dealii.org

Introduction
00000®0000

Parameter files Problem setup, configuration
most Materials, Geometries/Boundaries,
users Plugins Adiabats, Postprocessing, Visualization,

Interfacing to other tools
Equations, Numerical schemes,
ASPECT Framework
Finite Elements, AMR,
deal.ll Parallel abstraction,
Postprocessing, Visualization
MPI - Parallelization, 10, linear algebra,
and threads Trilinos/PETSc linear solvers

Introduction
000000e000

https://www.youtube.com/watch?v=j63MKEcORRw

https://www.youtube.com/watch?v=j63MkEc0RRw

Introduction

0000000 e00

@ Libraries, not applications
« API vs. input-driven or graphical interface
« ~~ different requirements
« Computational science, not generic software:
@ Audience: scientists only, much smaller (100s, not millions)
@ Limited commercial options/motivation
@ Developers need advanced skillsets
=« Additional challenges: super computers, floating point math,
etc.

Introduction
0000000080

“a thermodynamics and thermoelasticity toolkit"

COMPUTATIONAL INFRASTRUCTURE FOR GEODYNAMICS (CIG)

@« Written in Python

& see burmnan .0r g a thermodynamics and thermoelasticity toolkit
User Manual

Version 0.8.0b3

Sanne Cottaar
Timo Heister
Robert Myhill

lan Rose
Cayman Unterborn

http://geodynamics.org

burnman.org

Introduction
000000000e

: Fun!

(3

@« Reasonable good at it

@ Use as a tool for our work

@ Use for teaching, students, etc.

« Enabling other people, maximize impact of my work

« Find jobs (worked for me!)

« Caveat: not optimal for academic career? (more on that later)

Success

[le]

Why do we want "success”? How to define it?
@ maximize impact with my work
@« want at least a self-sustaining user base
@ better: maximize userbase

« (definition might be different for you)

en. Wlklpedla org/w/lndex php?curid=: 465

Success
oce

@ Useful software is a many year, many person effort
@ Need to get contributors / successors to sustain project
« Spreading of knowledge is task of academic institutions

« Note: not just throwing over the fence, but open development

Primary Reasons
°

1. Utility and Quality
2. Documentation

3. Community

Primary Reasons
[JeleTelolele}

@

®

e

provide some utility (opinion: not the "best” wins)
quality: "it works" and does what it promises to do

easy to get/install

@ no registration required
% if no instructions or complicated: lost user

@ no hand-editing of Makefiles, etc. (see MUMPS), use cmake
@ this is hard to do (Windows/OSX support, dependencies, ...)
Code is reasonably bug free

« assertions, testing (see later)

« fix bugs as quickly as possible (large audience helps, need
encouragement to report)

« provide help

Summary: maximize audience by offering utility and quality

Primary Reasons
0®00000

@ crucial to have extensive documentation
= what is documentation:
« manual
« tutorials
« API reference
@« code comments (yes, inside the library)
« installation instructions
= Wiki, FAQs
%« but also:

@ emails (mailing list archives, but also private)
@ lectures and recordings

@ videos

@ conversations

Primary Reasons

00®@0000

High to low:

1. What is this library about?
2. Worked out examples in tutorial form

3. Modules: high-level, how to combine classes, differences
between alternatives

4. Object/class level: meaning, how to use, limits
5. Function level: inputs, outputs, notes, pre/post conditions

6. Internal code comments (algorithm explanation, gotchas,
TODOs, ...)

Note: higher level information is crucial and often missing!

Primary Reasons

000e000

« Document on all levels, also cover installation, FAQ, how to
contribute, etc.

@ Different forms should complement each other
: Start early!

@« very time intensive

« writing after the fact is unrealistic

@ consider: write documentation first/while developing
Scalability

@ think about reach of documentation form
« developer time does not scale (answering private emails)
« mailing list answer vs. writing an FAQ entry

(3

®

+ Avoid out-of-date documentation

is worse than no documentation

« use forms that are easy to update

« hard: mailing list archives, printed books

(3

Primary Reasons

0000e00

@« Mailing lists:

P
&

&
P
@
P
@

use

P
@
P
@&

™
@&

even mailing lists don't scale well (strategy: update and link)
many are afraid or too lazy to ask

use as signal about documentation quality (where to improve)
we get many more high-level questions and bug reports, but
also installation questions

a tool like doxygen to extract documentation

cross referenced, well-structured, easy to search
crucial: documentation and code at same location
easier to keep updated and in sync than a PDF manual

Primary Reasons

0O0000e0

Sphinx for Python

L

L

Doxyge N https://www.dealii.org/developer/doxygen/deal.II/classDataOut.html Al d

https://github.com/dealii/dealii/blob/master/include/deal.II/numerics/data_out.h

@ Tutorial programs in deal.ll:
https://www.dealii.org/8.4.0/doxygen/deal.II/Tutorial.html

@« show ASPECT manual
@« show BurnMan pdf

https://www.dealii.org/developer/doxygen/deal.II/classDataOut.html
https://github.com/dealii/dealii/blob/master/include/deal.II/numerics/data_out.h
https://www.dealii.org/8.4.0/doxygen/deal.II/Tutorial.html

Primary Reasons
00000Oe

NumPy/SciPy " SciPy documentation project”:
@ create documentation as community

« easy workflow for users to fix/add docs (later: reducing
friction to contribute)

@ wiki style, reviewed by devs and commited
« Note: after the fact is hard!
Do it right from the start and concurrently
@ “write later” is much more difficult
« many years of work (deal.ll)

@« documentation first: "design by contract”

ﬁ S. J. Van der Walt.
The SciPy documentation project (technical overview).
In SciPy Conference—Pasadena, CA, August 19-24, 2008., page 27.

Primary Reasons
[JeleleTolo)

@« Three groups:
1. maintainers: run the project, testing, fixing bugs, politics, ...
2. contributors (from small fixes to main developers)
3. users

L

People move dynamically up and down or leave completely

« communities don't just happen, need to be engineered:
This is hard work!

~> requires " humility, respect, and trust” as said in:

[@ B. Fitzpatrick and B. Collins-Sussman.
Team Geek: A Software Developer’s Guide to Working Well with Others.
O'Reilly Media, Incorporated, 2012.

How to reduce friction to have people move up?

Primary Reasons
0®0000

« make it easy to submit patches, fixes, documentation, bug
reports
@ encourage contributions
« be friendly, open, social
@ provide, help with, highlight incentives:
@ intrinsic:
« do not need to maintain your fixes (I got into it this way)
@ get improvements from others
« provide:
@ appreciate contributions, "your work matters” (even if tiny)
« free t-shirts: scipy documentation project
« advantages:
%« get known, "street cred”
% involvments in research projects
% invitations to speak
« publications, citations
« jobs
@« funding

Primary Reasons
00®000

don’t turn people away

®

@

but help: requires lots of patience and work
« don't be territorial

- develop/discuss things in public (+-welcoming atmosphere)
~+ "bazaar" model

<

@ E. S. Raymond.
The Cathedral and the Bazaar: Musings on Linux and Open Source by an

Accidental Revolutionary.
O’Reilly Media, 1999.

Primary Reasons
[eJeleY Yolo)

Old:
@ public subversion repository
@ need account for write access
@ is blank check, no review process!
@ many “oops’ commits

New:

(3

+ git hosted on github.com

(3

» Everything by pull request only, also for main devs

¢ Very little friction to contribute!

P

@ Run checks with continuous integration

cleaner project history

P

@ Transformed our project: easier contribution, better quality,
review between devs is great

Primary Reasons
0000®0

Active Authors by Month

0
1997-11 1998-11 1999-11 2000-11 2001-11 2002-11 2003-11 2004-11 2005-11 2006-11 2007-11 2008-11 2009-11 2010-11 2011-11 2012-11 2013-11 2014-11 201511

Primary Reasons
00000e

Nov 23, 1997 — Mar 14, 2016

Contributions to master, excluding merge commits

bangerth #1
15,317 commits / 8,191,589 ++ / 4,532,032 --

bl g bl kRN 0 GRG lbibis die

tamiko #3
2,363 commits / 7,584,601 ++ / 5,811,780

: Li.ﬁ....d.

guidokanschat

PO 3.660 commits / 1,201,746 ++ | 1,517,606 —

tihei

P 1.734 commits / 1,187,436 ++ / 1,056,654 —

https://github.com/dealii/dealii/graphs/contributors

NPT VTP

Contributions: Commits ~

#
Y TPV

#

. dkobibl e

https://github.com/dealii/dealii/graphs/contributors

Secondary Reasons
°

. Timing

@« projects need to serve a market

@ success: easier with little competition
. Make a project usable

@ catalog common use cases; example codes (deal.ll / PETSc)

@ asserts()

@ backward compatiblity (TriBits model), linux ("don't break
userspace”)

. Maintainability

@ standardize, modularize, do it right
« verify correctness (automatic tests)

. Software license
@ license change is hard /impossible
@ choice complicated, but: do not exclude people

. Marketing

Testing
[Jelelelolote}

@« Testing is essential

« Correctness of numerical methods (convergence rates, etc.)
@ Also normal testing of functionality

@ my opinion: untested code is broken

@ Required to be able to maintain a large project

Testing
0®00000

@ Unit testing:
« Test single function/class/functionality for correctness
« Example: norm of a vector gives what you expect
@ Integration testing:
@ Interaction of different modules
« Complete examples

Testing
00®0000

@ Story: Python needs close to 100% test coverage, run all
examples, etc. because it is dynamically typed

@ Testing framework: unittest, show demo!
see

https://docs.python.org/2/library/unittest.html
« Example: tests/test_averaging.py
« Handwritten tool to compare example output

« Example, somebody changed argument order:
https://github.com/geodynamics/burnman/pull/174/files

@ http://burnman.org/coverage/

https://docs.python.org/2/library/unittest.html
https://github.com/geodynamics/burnman/pull/174/files
http://burnman.org/coverage/

Testing

000e000

@ Typically: floating point computations
« Need comparisons with epsilon! (demo)

« Results can depend on architecture, optimization flags,
compilers, etc. :-(

@ Another issue: number of iterations of iterative solver can
change

@ numdiff

@« Problem: many dependencies, for example in deal.ll:
c++11, c++14, MPI?, threading?, PETSc?, Trilinos,
UMFPACK, etc.

@

Testing
000000

Testsuite with 7000+ tests, hand-written based on ctest,
numdiff

http://cdash.kyomu.43-1.0org/index.php?project=deal.II
slow turn-around, 24 hours on fast machine

ideally: split into fast unit tests, slow integration tests
split into modules: grid, fe, hp, etc.

show example: numerics/project_01

http://cdash.kyomu.43-1.org/index.php?project=deal.II

Testing
000000

@« Run application based on parameter files
@« Check output

@ Additional code via plugins

« Example: tests/solver_history.cc

Testing
[eleelelolo) }

@ Several machines run tests after every commit with different
configurations

¢ Autmatic testing of pull requests:
https://github.com/geodynamics/burnman/pull/243 or
https://github.com/geodynamics/aspect/pull/790

« Partly based on docker images (work in progress)

« Demo:

https://github.com/geodynamics/burnman/pull/243
https://github.com/geodynamics/aspect/pull/790

Career
°

« making software:
« fewer papers and/or smaller impact
= huge time sink (project management, testing, bugfixing,
support, ...)
@ In academia:
@« writing software counts very little in promotion
« own project: high risk — doubtful reward
« getting credit is hard (especially when joining an existing
project)

% many oportunities to cooperate
@« networking
« jobs

Conclusions
°

@ Primary reasons for success:

1. Provide utility and quality (testing!)
2. Be smart about and provide documentation on many levels
3. Engineering a community

@ This is hard work and requires a big time investment

« Social skills not optional!

Thanks for your attention!

Additional Material
°

) & B & R

Wolfgang Bangerth and Timo Heister.

What makes computational open source software libraries successful?
Computational Science & Discovery, 6(1):015010, 2013.

W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, and B. Turcksin.

The deal.II library, version 8.3.
Archive of Numerical Software, 4(100):1-11, 2016.

S. J. Van der Walt.

The SciPy documentation project (technical overview).

In SciPy Conference—Pasadena, CA, August 19-24, 2008., page 27.

B. Fitzpatrick and B. Collins-Sussman.

Team Geek: A Software Developer's Guide to Working Well with Others.
O'Reilly Media, Incorporated, 2012.

E. S. Raymond.

The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary.
O'Reilly Media, 1999.

	Introduction
	Introduction

	Success
	Primary Reasons
	Secondary Reasons
	Testing
	Career
	Conclusions
	Additional Material

