
Managing Open Source
Scientific Software Projects

Timo Heister (Clemson University)
heister@clemson.edu

2016-03-15

heister@clemson.edu


Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Hello, my name is ...

Timo Heister

Assistant Professor at
Clemson since 2013 in
Mathematical Sciences

PhD from Göttingen,
Germany

Research: Finite
Elements, Software,
Parallelization, Fluid Flow

2



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Summary

What goes into a successful computational open source library

Pitfalls, Tricks, etc.

Why do we do this?

What worked for us

Warning: lots of opinions!

Wolfgang Bangerth and Timo Heister.
What makes computational open source software libraries successful?
Computational Science & Discovery, 6(1):015010, 2013.

3



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Project: deal.II

A finite element library
Open source project (LGPL 2.1+) written in C++, (15 years
old)
Features:

Various finite element of arbitrary order (CG, DG, RT, . . . )
Manifold descriptions (local space descriptions using Charts)
Massively parallel computations (MPI and/or TBB)
Linear algebra: own/Trilinos/PETSc
Matrix free computations
Adaptive mesh refinement
Support for large number of optional packages

Wolfgang Bangerth, Timo Heister, Luca Heltai, Guido Kanschat, Martin
Kronbichler, Matthias Maier, and Bruno Turcksin.
The dealii library, Version 8.3.
Archive of Numerical Software, 4(100), 2016.

4



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Continued: about deal.II

Documentation:

50+ tutorials with extensive descriptions, mathematical
background, code explanations, results, and exercises
Extensive online documentation
Video lectures by W. Bangerth, 45+ videos each 30-60mins,
1000s of views

widely used:

800+ papers using and citing deal.II
Small core: 4 principal developers,
+4 developers, many contributors
Used in teaching at Texas A&M, Clemson,
Heidelberg, Italy, South Korea, India, . . .

5



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Project: ASPECT

ASPECT = Advanced Solver for Problems in Earth’s ConvecTion

Mantle convection using modern numerical methods

Open source, C++, based on deal.II

Available at: http://aspect.dealii.org

In active development since 2011

Kronbichler, Heister and Bangerth.
High Accuracy Mantle Convection Simulation through Modern Numerical
Methods.
Geophysical Journal International, 2012, 191, 12-29.

6

http://aspect.dealii.org


Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Structure of ASPECT

7



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

ASPECT: an example

https://www.youtube.com/watch?v=j63MkEc0RRw
8

https://www.youtube.com/watch?v=j63MkEc0RRw


Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Limits of This Talk

Libraries, not applications

API vs. input-driven or graphical interface
 different requirements

Computational science, not generic software:

Audience: scientists only, much smaller (100s, not millions)
Limited commercial options/motivation
Developers need advanced skillsets
Additional challenges: super computers, floating point math,
etc.

9



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Project: BurnMan

“a thermodynamics and thermoelasticity toolkit”

Written in Python

Based on numpy, scipy, . . .

see burnman.org

10

burnman.org


Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Why do we make software?

Fun!

Reasonable good at it

Use as a tool for our work

Use for teaching, students, etc.

Enabling other people, maximize impact of my work

Find jobs (worked for me!)

Caveat: not optimal for academic career? (more on that later)

11



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

“Success”

Why do we want ”success”? How to define it?

maximize impact with my work

want at least a self-sustaining user base

better: maximize userbase

(definition might be different for you)

12

en.wikipedia.org/w/index.php?curid=46523616



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Why Open Source

Useful software is a many year, many person effort

Need to get contributors / successors to sustain project

Spreading of knowledge is task of academic institutions

Note: not just throwing over the fence, but open development

13



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Primary Reasons for Success

1. Utility and Quality

2. Documentation

3. Community

14



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

1. Utility and Quality

provide some utility (opinion: not the ”best” wins)

quality: ”it works” and does what it promises to do

easy to get/install

no registration required
if no instructions or complicated: lost user

no hand-editing of Makefiles, etc. (see MUMPS), use cmake

this is hard to do (Windows/OSX support, dependencies, . . . )

Code is reasonably bug free

assertions, testing (see later)
fix bugs as quickly as possible (large audience helps, need
encouragement to report)
provide help

Summary: maximize audience by offering utility and quality

15



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

2. Documentation

crucial to have extensive documentation

what is documentation:

manual
tutorials
API reference
code comments (yes, inside the library)
installation instructions
Wiki, FAQs

but also:

emails (mailing list archives, but also private)
lectures and recordings
videos
conversations

16



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Levels of traditional documentation

High to low:

1. What is this library about?

2. Worked out examples in tutorial form

3. Modules: high-level, how to combine classes, differences
between alternatives

4. Object/class level: meaning, how to use, limits

5. Function level: inputs, outputs, notes, pre/post conditions

6. Internal code comments (algorithm explanation, gotchas,
TODOs, . . . )

Note: higher level information is crucial and often missing!

17



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Best Practices

Document on all levels, also cover installation, FAQ, how to
contribute, etc.

Different forms should complement each other

Start early!

very time intensive
writing after the fact is unrealistic
consider: write documentation first/while developing

Scalability

think about reach of documentation form
developer time does not scale (answering private emails)
mailing list answer vs. writing an FAQ entry

Avoid out-of-date documentation

is worse than no documentation
use forms that are easy to update
hard: mailing list archives, printed books

18



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Best Practices II

Mailing lists:

even mailing lists don’t scale well (strategy: update and link)
many are afraid or too lazy to ask
use as signal about documentation quality (where to improve)
we get many more high-level questions and bug reports, but
also installation questions

use a tool like doxygen to extract documentation

cross referenced, well-structured, easy to search
crucial: documentation and code at same location
easier to keep updated and in sync than a PDF manual

19



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Demo

Sphinx for Python

Doxygen: https://www.dealii.org/developer/doxygen/deal.II/classDataOut.html and
https://github.com/dealii/dealii/blob/master/include/deal.II/numerics/data_out.h

Tutorial programs in deal.II:
https://www.dealii.org/8.4.0/doxygen/deal.II/Tutorial.html

show ASPECT manual

show BurnMan pdf

20

https://www.dealii.org/developer/doxygen/deal.II/classDataOut.html
https://github.com/dealii/dealii/blob/master/include/deal.II/numerics/data_out.h
https://www.dealii.org/8.4.0/doxygen/deal.II/Tutorial.html


Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

An Example

NumPy/SciPy ”SciPy documentation project”:

create documentation as community

easy workflow for users to fix/add docs (later: reducing
friction to contribute)

wiki style, reviewed by devs and commited

Note: after the fact is hard!

Do it right from the start and concurrently

“write later” is much more difficult

many years of work (deal.II)

documentation first: ”design by contract”

S. J. Van der Walt.
The SciPy documentation project (technical overview).
In SciPy Conference–Pasadena, CA, August 19-24, 2008., page 27.

21



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

3. Community

Three groups:

1. maintainers: run the project, testing, fixing bugs, politics, . . .
2. contributors (from small fixes to main developers)
3. users

People move dynamically up and down or leave completely

communities don’t just happen, need to be engineered:
This is hard work!

 requires ”humility, respect, and trust” as said in:

B. Fitzpatrick and B. Collins-Sussman.
Team Geek: A Software Developer’s Guide to Working Well with Others.
O’Reilly Media, Incorporated, 2012.

How to reduce friction to have people move up?

22



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

“Lowering the Bar”

make it easy to submit patches, fixes, documentation, bug
reports

encourage contributions

be friendly, open, social
provide, help with, highlight incentives:

intrinsic:
do not need to maintain your fixes (I got into it this way)
get improvements from others

provide:
appreciate contributions, ”your work matters” (even if tiny)
free t-shirts: scipy documentation project

advantages:
get known, ”street cred”
involvments in research projects
invitations to speak
publications, citations
jobs
funding

23



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Accepting contributions

don’t turn people away

but help: requires lots of patience and work

don’t be territorial

develop/discuss things in public (+welcoming atmosphere)
 ”bazaar” model

E. S. Raymond.
The Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary.
O’Reilly Media, 1999.

24



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Example: deal.II

Old:

public subversion repository

need account for write access

is blank check, no review process!

many “oops” commits

New:

git hosted on github.com

Everything by pull request only, also for main devs

Very little friction to contribute!

Run checks with continuous integration

cleaner project history

Transformed our project: easier contribution, better quality,
review between devs is great

25



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Monthly Contributors

26



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Commits to deal.II

https://github.com/dealii/dealii/graphs/contributors

27

https://github.com/dealii/dealii/graphs/contributors


Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Secondary Reasons

1. Timing

projects need to serve a market
success: easier with little competition

2. Make a project usable

catalog common use cases; example codes (deal.II / PETSc)
asserts()
backward compatiblity (TriBits model), linux (”don’t break
userspace”)

3. Maintainability

standardize, modularize, do it right
verify correctness (automatic tests)

4. Software license

license change is hard/impossible
choice complicated, but: do not exclude people

5. Marketing

28



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Testing

Testing is essential

Correctness of numerical methods (convergence rates, etc.)

Also normal testing of functionality

my opinion: untested code is broken

Required to be able to maintain a large project

29



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Types of Tests

Unit testing:

Test single function/class/functionality for correctness
Example: norm of a vector gives what you expect

Integration testing:

Interaction of different modules
Complete examples

30



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Testing in BurnMan

Story: Python needs close to 100% test coverage, run all
examples, etc. because it is dynamically typed

Testing framework: unittest, show demo!
see
https://docs.python.org/2/library/unittest.html

Example: tests/test averaging.py

Handwritten tool to compare example output

Example, somebody changed argument order:
https://github.com/geodynamics/burnman/pull/174/files

http://burnman.org/coverage/

31

https://docs.python.org/2/library/unittest.html
https://github.com/geodynamics/burnman/pull/174/files
http://burnman.org/coverage/


Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Caveats for scientific software

Typically: floating point computations

Need comparisons with epsilon! (demo)

Results can depend on architecture, optimization flags,
compilers, etc. :-(

Another issue: number of iterations of iterative solver can
change

numdiff

Problem: many dependencies, for example in deal.II:
c++11, c++14, MPI?, threading?, PETSc?, Trilinos,
UMFPACK, etc.

32



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Testing in deal.II

Testsuite with 7000+ tests, hand-written based on ctest,
numdiff

http://cdash.kyomu.43-1.org/index.php?project=deal.II

slow turn-around, 2+ hours on fast machine

ideally: split into fast unit tests, slow integration tests

split into modules: grid, fe, hp, etc.

show example: numerics/project 01

33

http://cdash.kyomu.43-1.org/index.php?project=deal.II


Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Testing in ASPECT

Run application based on parameter files

Check output

Additional code via plugins

Example: tests/solver history.cc

34



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Continuous Integration

Several machines run tests after every commit with different
configurations

Autmatic testing of pull requests:
https://github.com/geodynamics/burnman/pull/243 or
https://github.com/geodynamics/aspect/pull/790

Partly based on docker images (work in progress)

Demo:

35

https://github.com/geodynamics/burnman/pull/243
https://github.com/geodynamics/aspect/pull/790


Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Software and your academic career

making software:

fewer papers and/or smaller impact
huge time sink (project management, testing, bugfixing,
support, . . . )

In academia:

writing software counts very little in promotion
own project: high risk – doubtful reward
getting credit is hard (especially when joining an existing
project)

but:

many oportunities to cooperate
networking
jobs

36



Introduction Success Primary Reasons Secondary Reasons Testing Career Conclusions

Conclusions

Primary reasons for success:

1. Provide utility and quality (testing!)
2. Be smart about and provide documentation on many levels
3. Engineering a community

This is hard work and requires a big time investment

Social skills not optional!

Thanks for your attention!

37



Additional Material

Bibliography

Wolfgang Bangerth and Timo Heister.

What makes computational open source software libraries successful?
Computational Science & Discovery, 6(1):015010, 2013.

W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, and B. Turcksin.

The deal.II library, version 8.3.
Archive of Numerical Software, 4(100):1–11, 2016.

S. J. Van der Walt.

The SciPy documentation project (technical overview).
In SciPy Conference–Pasadena, CA, August 19-24, 2008., page 27.

B. Fitzpatrick and B. Collins-Sussman.

Team Geek: A Software Developer’s Guide to Working Well with Others.
O’Reilly Media, Incorporated, 2012.

E. S. Raymond.

The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary.
O’Reilly Media, 1999.

38


	Introduction
	Introduction

	Success
	Primary Reasons
	Secondary Reasons
	Testing
	Career
	Conclusions
	Additional Material

