
Dr Gavin J. Pringle
Applications Consultant

gavin@epcc.ed.ac.uk
+44 131 650 6709

Parallel I/O
and split communicators

David Henty, Fiona Ried, Gavin J. Pringle

2 Parallel IO and Split
Communicators

Overview

Why is Parallel IO difficult

Single IO processor

Multiple IO processors

Split Communicators

Using Libraries

3 Parallel IO and Split
Communicators

Why is Parallel IO difficult?

Cannot have multiple processes writing a file
Unix cannot cope with this
data cached in units of disk blocks (eg 4K) and is not coherent
not even sufficient to have processes writing to distinct parts of file

Even reading can be difficult
1024 processes opening a file can overload the filesystem (fs)

Data is distributed across different processes
processes do not in general own contiguous chunks of the file
cannot easily do linear writes
local data may have halos to be stripped off

Parallel file systems may allow multiple access
but complicated and difficult for the user to manage

Parallel IO and Split Communicators 4

1 2 3 4

4x4 array on 2x2 Process Grid

Parallel Data

File

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1 2 3 41 2 3 4 1 2 3 4

5 Parallel IO and Split
Communicators

Shared Memory

Easy to solve in shared memory

imagine a shared array called data
begin serial region

open the file
write data to the file
close the file

end serial region

Simple as every thread can access shared data
may not be efficient but it works

But what about message-passing?

Message Passing

Single master IO processor

Multiple IO processors

All processors write their own files

A subset of all process write their own files

Parallel IO and Split Communicators 6

7 Parallel IO and Split
Communicators

Master IO

All processors send their data to the Master

If the master has large enough memory
Create a single array
Write to a single file

If master memory is too small
Receive data from each process in turn
Append data to file

Order will be important

But does not benefit from a parallel fs that supports multiple
write streams

Multiple IO processors, single file

Cannot have multiple processors writing to a single file
Unix cannot cope with this
Not even sufficient to have processes writing to distinct parts of a
file
Even reading can be difficult

1024 processes opening a file can over load the file system
Data is typically distributed across different processes

Processes do not in general own contiguous chunks of the file
Cannot easily do linear writes
Local data my have ghost cells which need to be ignored.

Solution is to have Multiple IO processors

Parallel IO and Split Communicators 8

Multiple IO processors, multiple files

All processors write their own data to their own file
N processors create N files

Major problem is reassembling data
contents of the file are dependent on the decomposition
pre and post-processing steps to change number of processes

Each process writes to a local file system and user copies back to home
or each process opens a unique file (dataXX.dat) on shared fs

but at least this approach means that reads and writes are in parallel
but may overload file system for many processes

Parallel IO and Split Communicators 9

Parallel IO and Split Communicators 10

9

10

13

14

2x2 to 1x4 Redistribution

data1.dat

data2.dat

data3.dat

data4.dat

write

1

2

3

4

5

6

7

8

11

12

15

16

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

newdata4.dat

newdata3.dat

newdata2.dat

newdata1.dat

read

1

3

9

11

2

4

10

12

5

7

13

15

14

16

6

8

reorder

Multiple IO processors, multiple files (cont.)

Only some processors perform IO
More efficient than using all processors or just one IO processor

Most efficient number of IO processors is
Problem dependant
System dependant

Highly beneficial to employ split communicators

Parallel IO and Split Communicators 11

Parallel IO and Split Communicators 12

Communicators

All MPI communications take place within a communicator
a group of processes with necessary information for message passing
there is one pre-defined communicator: MPI_COMM_WORLD
contains all the available processes

Messages move within a communicator
E.g., point-to-point send/receive must use same communicator
Collective communications occur in single communicator
unlike tags, it is not possible to use a wildcard

rank=6rank=2
rank=1 rank=3

rank=0 rank=4
rank=5size=7

MPI_COMM_WORLD

Parallel IO and Split Communicators 13

Use of communicators

Question: Can I just use MPI_COMM_WORLD for everything?

Answer: Yes
many people use MPI_COMM_WORLD everywhere in their MPI programs

Better programming practice suggests
abstract the communicator using the MPI handle
such usage offers very powerful benefits

MPI_Comm comm;; /* or INTEGER for Fortran */
comm = MPI_COMM_WORLD;;
...
MPI_Comm_rank(comm, &rank);;
MPI_Comm_size(comm, &size);;
....

Parallel IO and Split Communicators 14

Split Communicators

It is possible to sub-divide communicators

E.g.,split MPI_COMM_WORLD
Two sub-communicators can have the same or differing sizes
Each process has a new rank within each sub communicator
Messages in different communicators guaranteed not to interact

rank=6rank=2
rank=1 rank=3

rank=0 rank=4
rank=5size=7

rank=2

MPI_COMM_WORLD

rank=0 rank=1 rank=3size=4
size=3

comm1 comm2

rank=2rank=0
rank=1

Parallel IO and Split Communicators 15

MPI interface

MPI_Comm_split()
splits an existing communicator into disjoint (i.e. non-overlapping)
subgroups

Syntax, C:
int MPI_Comm_split(MPI_Comm comm, int colour, int

key, MPI_Comm *newcomm)

Fortran:
MPI_COMM_SPLIT(COMM, COLOUR, KEY, NEWCOMM, IERROR)

INTEGER COMM, COLOUR, KEY, NEWCOMM, IERROR

colour controls assignment to new communicator

key controls rank assignment within new communicator

Parallel IO and Split Communicators 16

MPI_Comm_split() is collective
must be executed by all processes in group associated with comm

New communicator is created
for each unique value of colour
All processes having the same colour will be in the same sub-
communicator

-1
determined by the (ascending) value of the key
If keys are same, then MPI determines the new rank
Processes with the same colour are ordered according to their key

Allows for arbitrary splitting
other routines for particular cases, e.g. MPI_Cart_sub

Parallel IO and Split Communicators 17

Split Communicators Fortran example

integer :: comm, newcomm

integer :: colour, rank, size, errcode

comm = MPI_COMM_WORLD

call MPI_COMM_RANK(comm, rank, errcode)

! Again, set colour according to rank

colour = mod(rank,2)

call MPI_COMM_SPLIT(comm, colour, rank, newcomm,&
errcode)

MPI_COMM_SIZE(newcomm, size, errcode)

MPI_COMM_RANK(newcomm, rank, errcode)

Parallel IO and Split Communicators 18

Split Communicators C example

MPI_Comm comm, newcomm;;

int colour, rank, size;;

comm = MPI_COMM_WORLD;;

MPI_Comm_rank(comm, &rank);;

/* Set colour depending on rank: Even numbered ranks have

colour = 0, odd have colour = 1 */
colour = rank%2;;
MPI_Comm_split(comm, colour, rank, &newcomm);;
MPI_Comm_size (newcomm, &size);;

MPI_Comm_rank (newcomm, &rank);;

Parallel IO and Split Communicators 19

Diagrammatically

Rank and size of the new communicator

0 1 2 43
MPI_COMM_WORLD, size=5

color = rank%2;;

key = rank;;

newcomm, color=0, size=3

newcomm, color=1, size=2

0

0 1

1 2

key=0 key=2 key=4

key=1 key=3

Parallel IO and Split Communicators 20

Freeing Communicators

MPI_Comm_free()
a collective operation which destroys an unwanted communicator

Syntax, C:
int MPI_Comm_free(MPI_Comm * comm)

Fortran:
MPI_COMM_FREE(COMM, IERROR)

INTEGER COMM, IERROR

Any pending communications which use the communicator will
complete normally
Deallocation occurs only if there are no more active references to the
communication object

Parallel IO and Split Communicators 21

Advantages of Communicators

Many requirements can be met by using communicators

Possibly, but difficult, painful and error-prone

Easier to use collective communications than point-to-point
Where subsets of MPI_COMM_WORLD are required
For example

averages over coordinate directions in Cartesian grids
parallel IO

In dynamic problems
Allows controlled assignment of different groups of processors to
different tasks at run time

Parallel IO and Split Communicators 22

Applications, for example

Linear algebra
row or column operations or act on specific regions of a matrix
(diagonal, upper triangular etc)

Hierarchical problems
Multi-grid problems e.g. overlapping grids or grids within grids
Adaptive mesh refinement

E.g. complexity may not be known until code runs, can use split comms
to assign more processors to a part of the problem

Taking advantage of locality
Especially for communication (e.g. group processors by node)

Multiple instances of same parallel problem
Task farms

Parallel IO communicators

Create M sets of processors
Each set will have its own master IO
Writes/reads from M files in total

Each set is a new communicators

All processor then send their data to the master IO
processes

If master has enough memory, then master can contain all data and
then perform a single read/write operation
If master has limited memory, then master can receive and write
chunks of the data.f

The problems of multiple data files remain
But at least the number of data files has been reduced

Parallel IO and Split Communicators 23

24 Parallel IO and Split
Communicators

What do we really need?

Using Parallel IO with MPI communicators is a good start

But we really need a way to do parallel IO efficiently
where the IO system deals with all the system specifics

Want a single file format

We already have one: the serial format
all files should have same format as a serial file
entries stored according to position in global array

not dependent on which process owns them
order should always be 1, 2, 3, 4,, 15, 16

25 Parallel IO and Split
Communicators

Information on Machine

What does the IO system need to know about the parallel
machine?

all the system-specific file system details
block sizes, number of IO nodes, etc.

All this should be hidden from the user
but the user may still wish to pass system-specific options
how can this be done in a portable manner?

26 Parallel IO and Split Communicators

Information on Data Layout

What does the IO system need to know about the
data?

how the local arrays should be stitched together to form the file

But ...
mapping from local data to the global file is only in the mind of the
programmer!
the program does not know that we imagine the processes to be
arranged in a 2D grid

How do we describe data layout to the IO system
without introducing a whole new concept to MPI?
cartesian topologies are not sufficient

do not distinguish between block and block-cyclic decompositions

Parallel IO and Split Communicators 27

Programmer View vs Machine View

1 2 3 4

1 2 3 4

1 2 3

1 2 3 4

Process 4
Process 2

Process 1

Process 31

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

4

28 Parallel IO and Split
Communicators

Files vs Arrays

Think of the file as a large array
forget that IO actually goes to disk
imagine that we are simply recreating a single large array on some master
process

The IO system must create this array and save to disk
without running out of memory

never actually creating the entire array
ie without doing naive master IO

and by doing big writes
try to create and write large contiguous sections at a time

utilising any parallel features
doing multiple simultaneous writes if there are multiple IO nodes

Solution is to use Parallel IO libraries

MPI-IO
Part of the MPI-2 standard

-2 to have MPI-IO
ROMIO is an MPI-IO implementation that uses MPI-1 calls
Builds on most MPI systems
see: www-unix.mcs.anl.gov/romio/

MPI-
Very difficult to use

Better still to use a self-describing IO format and library
HDF5

HDF5 files contain complete information on their structure
http://hdf.ncsa.uiuc.edu/HDF5/

Parallel NETCDF
http://trac.mcs.anl.gov/projects/parallel-netcdf

Both employ MPI-IO

Parallel IO and Split Communicators 29

http://hdf.ncsa.uiuc.edu/HDF5/
http://trac.mcs.anl.gov/projects/parallel-netcdf

Parallel IO and Split Communicators 30

Summary

Parallel IO is difficult

Single IO process is easiest to construct
Highly inefficient

Multiple IO processors is more efficient

Split Communicators are extremely useful
Not just for parallel IO but for many HPC codes

Issues of multiple data files remain

Libraries may hold the solution
Can be very complex to use

Thanks you

Any questions?

gavin@epcc.ed.ac.uk

Parallel IO and Split Communicators 31

mailto:gavin@epcc.ed.ac.uk

