From scratch to optimal
number of threads:
DEM and openMP

William Oguendo, woguendo@gmail.com

Parallel efficiency

10
Number of openMP threads

mailto:woquendo@gmail.com

THE PROBLEM
Why did | use my code?

Granular Media

Colloids

Molecules

}0BIUOD |BUOIIDLI

Apiwny

s92104 MPA
A1 YHM SUOIDeISRU|

$92104 MPA
uoneybe jewiay

le size

ic

t

I
ic par

Ist

]
c
O
ey
o
=
LL

Character

les and contacts in shace

THE SERIAL VERSION

My code is complex, let’s implement a “simpler” version

CoO~NNOYUR B WN

#include
#include
#include
#include
#include
#include
#include

From scratch ... Maybe not a good idea!

(about 400 loc)

NN

"random_helper.h"
"config.h"
"types_dem. h"
"prepro.h"
"helper_dem.h"
"time_evolution.h"
"forces.h"

Monday and Tuesday

W N

.
-

N

)

00 ~d

#include
#inc lude
#inc lude
#include
#inc lude
#inc lude
#include

From scratch ... Maybe not a good idea!
(about 400 loc)

NN

"random_helper.h"
"config.h"
"types_dem.h"
"prepro.h"
"helper_dem.h"
"time_evolution.h"
"forces.h"

Preprocessing : Put particles on a grid,
disorder, random vets, assign radii, set fixed
quantities

Fix Vx and Fy on top wall (simulates simple
shear)

Use leap frog for time evolution
Periodic boundary conditions (horizontal)

Postprocessing: Visualization with python +
paraview

Monday and Tuesday

#include
#include
#include
#include
#include
#include
#include

CO~OYUN B WN

From scratch ... Maybe not a good idea!
(about 400 loc)

NN

"random_helper.h"
"config.h"
"types_dem.h"
"prepro.h"
"helper_dem.h"
"time_evolution.h"
"forces.h"

Preprocessing : Put particles on a grid,
disorder, random vets, assign radii, set fixed
quantities

Fix Vx and Fy on top wall (simulates simple
shear)

Use leap frog for time evolution
Periodic boundary conditions (horizontal)

Postprocessing: Visualization with python +
paraview

Monday and Tuesday

Simplest algorithm -> Quadratic growth!
Profiling/Debugging with valgrind

100 N-coutime tt'
Ncputlme.tx’[2 .

X_

10

Cpu time (s)

0.1

// compute all forces for grains
const int ngrains = grains.size();
for (int idx = @; idx < ngrains; ++idx) {
for (int jdx = 1dx+1l; jdx < ngrains; ++jdx) {
double dx = grains[idx].R[@] - grains[jdx].R[@];

dx -= conf.LX*std::lrint(dx/conf.LX); // periodic, see Alen-Tildesley page 30
=> 777:_GLOBAL__sub_I_forces.cpp (192000000x)
const double dy = grains[idx].R[1] grains[jdx].R[1];
const double ri) = std::sqrt(dx*dx + dy*dy);
const double delta = grains[idx].rad + grains[jdx].rad
- - - - - - - - - // add force to both grains
384,000,000 192,000,000 - - - - - - . if (delta > 0.0) {

- - - - - - - - // dissipative normal force
30,383,242 - - - - - - - const double dVx = grains[idx].V[@] grains[jdx].Vv[@];

PARALLEL (OMP) OPTIMAL NUMBER OF
THREADS

Wednesday

First parallel approach : openmp
What is the ideal number of threads?

22 #pragma omp parallel for private(idx)
23 for (idx = @; idx < ngrains; ++idx) {
24 for (int jdx = idx+1l; jdx < ngrains; ++idx) {

Wednesday

First parallel approach : openmp
What is the ideal number of threads?

22 #pragma omp parallel for private(idx)
23 for (idx = @; idx < ngrains; ++idx) {
24 for (int jdx = idx+1l; jdx < ngrains; ++idx) {

21 double dx, dy, rij, urij, delta, dvx, dVy, tmp, Fnx, Fny;

22 int 11, 333

23 #pragma omp parallel for shared(grains, conf) private(ii, jj, dx, dy, rij, urij, delta, dvx, dVy, tmp, Fnx, Fny)
24 for (ii = @; ii < ngrains; ++ii) {

25 for (jj = ii+l; jj < ngrains; ++jj) {
26 dx = grains[ii].R[@] - grains[jj].R[0];
27 //if (dx <= conf.LX/2) dx += conf.LX;

Wednesday

21
22

24
25
26
27

0.1 ¢

0.01

0.001

0.0001

double dx, dy, rij, urij, delta, dvx, dVy, tmp, Fnx, Fny;

int 11, 333
23 #pragma omp parallel for shared(grains, conf) private(ii, jj, dx, dy, rij, urij, delta, dVx, dVy, tmp, Fnx, Fny)

for (ii = @; ii < ngrains; ++ii) {

for (jj

//1f

(dx <= conf.LX/2)

First parallel approach : openmp
What is the ideal number of threads?

22 #pragma omp parallel for private(idx)
for (idx = @; idx < ngrains; ++idx) {

23
24

for (int jdx

ii+1; jj < ngrains; ++jj) {
dx = grains[ii].R[@] - grains[jj].R[0];

dx += conf.LX;

idx+1; idx < ngrains; ++idx) {

T
Num threads =
Num threads =
Num threads =
Num threads =

]
2
4
8

time step

100

Wednesday

NNNNNNN
J N =

s N 8
~SSTOYO & G

0.1

0.01

0.001

0.0001

double dx, dy, rij, urij, delta, dVx,

First parallel approach : openmp
What is the ideal number of threads?

22 #pragma omp parallel for private(idx)
r (idx = @; idx < ngrains; ++idx) {
for (int jdx = idx+1l; jdx < ngrains; ++idx) {

23 fo
24

int ii, jj;

#pragma omp parallel for shared(grains,

for (ii = 0; ii < ngrains; ++ii) {

for (jj = ii+l; jj < ngrains; ++jj) {
dx = grains[ii].R[@] - grains[jj].R[O];
//1f (dx <= conf.LX/2) dx += conf.LX;

dVy, tmp, Fnx, Fny;

Num threads = 8

Numthrelads=1 —_—
Num threads = 2 ==]
Num threads =4 =

time step

100

conf) private(ii, jj, dx, dy, rij, urij, delta, dVx, dVy, tmp, Fnx, Fny)

But time appears to be
slower for more
threads :(

Wednesday

0.1 ¢

0.01

0.001

0.0001

double dx, dy, rij, urij, delta, dvx, dVy, tmp, Fnx, Fny;

int ii, jj;
23 #pragma omp parallel for shared(grains, conf) private(ii, jj, dx, dy, rij, urij, delta, dVx, dVy, tmp, Fnx, Fny)

for (ii = 0; ii < ngrains; ++ii) {

for (jj =

First parallel approach : openmp
What is the ideal number of threads?

22 #pragma omp parallel for private(idx)
for (idx = 0; idx < ngrains; ++idx) {
for (int jdx = idx+1l; jdx < ngrains; ++idx) {

23
24

ii+1; jj < ngrains; ++jj) {
dx = grains[ii].R[@] - grains[jj].R[0];
//if (dx <= conf.LX/2) dx += conf.LX;

T]
Num threads = 1 ==]
Num threads = 2 =——— |
Num threads = 4 ———— |
Num threads =8 = |

time step

80 100

But time appears to be
slower for more
threads :(

Be ambitious! Increase the
system size (decreases the ratio

of communication or thread
creation/destruction to
computation)!!!

Wednesday

Parallel efficiency

Several runs

o0, Average wall time for the force routine 10 - ;
: m—m Data computed at cluster o =@ Data computed at cluster
' —— ideal

— 8 -

ﬂ O 7-
S5

£ S e

e U 5-
— Q

© V) 4-

= .

2 -

1072 - , , — . . I 1- i | , , , . -
100 101 102 0 10 20 30 40 50 60 70
Number of openMP threads Number of openMP threads

1.0 4 : : Lo : : L L
0.9 @@ Data computed at cluster
0.8 - -
0.7 - -
0.6 - -
0.5 - -
0.4 - -
0.3 - -
0.2 - -
0.1 - _

0wt e
Number of openMP threads Wednesday-Thursday

Parallel efficiency

Several runs

o0, Average wall time for the force routine 10 - ;
: m-@ Data computed at cluster : , EH Data computed at cluster
' — ideal
8 -
—
U, o 7-
Q >
O 6-
S 107)
- Q 5-
L o
T n -
= 5
2 -
10'2 - ; ; ; ; - - A L 1 1 I I I I I I I~
10° 101 102 0 0 20 30 40 50 60 70

Number of openMP threa mber of openMP threads

m—@ Data computed€Ngt cluster

o
o0}
[

©
~
I

0.6 -

There are some outliers, | need
to repeat the simulations

0.5 -

0.4 -
0.3 -
0.2 -

0.1 - . .

10° 10} 102
Number of openMP threads Wednesday-Thursday

Wall-time [s]

Parallel efficiency

10~ -

=
o

10

=
o
I

©
©

©
(00]
I

©
~

0.5 -

0.4 -

0.3 -

0.2 -

0.1

0

)

.27
I

10°

10°

Several runs

Average wall time for the force routine

@ Data computed at cluster -

10! 10°

Number of openMP threads

10!

Number of openMP threads

@@ Data computed at cluster

10°

Speedup

10 -)
0 B—@ Data computed at cluster
— ideal
8 -
7 -
o -
5 _
4 -
3 _
2 -
1 Tl I I I I I I I~
0 10 20 30 40 50 60 70

Number of openMP threads

The optimal number of cores

seems to be 2!!! (wall time equal
to 0.25s)

Thursday

Parallel efficiency

Wall-time [s]

©
©

©
o

Competing threads because of 3th Newton law

25 -

10! -

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

0.1+

10°

Average wall time for the force routine

@ Data computed at cluster -

B8 Data computed at

10!

Number of openMP threads

102

m—@ Data computed at cluster
— ideal

0 10 20 30 40 50 60 70

Number of openMP threads

The optimal number of
cores seems to be 32!!! Maybe

because the actual wall time
increased by a factor of 10. (2
seconds)

Thursday

Conclusions

Always think if your system size is really testing the
parallel approach.

Be explicit about what is shared and private inside
an omp parallel tor .

Always test and debug with the right tools.

Compute the parallel efficiency to really get an idea
of the ideal number of cores

