From scratch to optimal
number of threads:
DEM and openMP

William Oguendo, woguendo@gmail.com
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THE PROBLEM
Why did | use my code?
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THE SERIAL VERSION

My code is complex, let’s implement a “simpler” version



CoO~NNOYUR B WN

#include
#include
#include
#include
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#include

From scratch ... Maybe not a good idea!

(about 400 loc)

NN

"random_helper.h"
"config.h"
"types_dem. h"
"prepro.h"
"helper_dem.h"
"time_evolution.h"
"forces.h"

Monday and Tuesday
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#inc lude
#inc lude
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From scratch ... Maybe not a good idea!
(about 400 loc)

NN

"random_helper.h"
"config.h"
"types_dem.h"
"prepro.h"
"helper_dem.h"
"time_evolution.h"
"forces.h"

Preprocessing : Put particles on a grid,
disorder, random vets, assign radii, set fixed
quantities

Fix Vx and Fy on top wall (simulates simple
shear)

Use leap frog for time evolution
Periodic boundary conditions (horizontal)

Postprocessing: Visualization with python +
paraview

Monday and Tuesday
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Simplest algorithm -> Quadratic growth!
Profiling/Debugging with valgrind

100 N-coutime tt'
Ncputlme.tx’[2 .

X_

10

Cpu time (s)

0.1

// compute all forces for grains
const int ngrains = grains.size();
for (int idx = @; idx < ngrains; ++idx) {
for (int jdx = 1dx+1l; jdx < ngrains; ++jdx) {
double dx = grains[idx].R[@] - grains[jdx].R[@];

dx -= conf.LX*std::lrint(dx/conf.LX); // periodic, see Alen-Tildesley page 30
=> 777:_GLOBAL__sub_I_forces.cpp (192000000x)
const double dy = grains[idx].R[1] grains[jdx].R[1];
const double ri) = std::sqrt(dx*dx + dy*dy);
const double delta = grains[idx].rad + grains[jdx].rad
- - - - - - - - - // add force to both grains
384,000,000 192,000,000 - - - - - - . if (delta > 0.0) {

- - - - - - - - // dissipative normal force
30,383,242 - - - - - - - const double dVx = grains[idx].V[@] grains[jdx].Vv[@];




PARALLEL (OMP) OPTIMAL NUMBER OF
THREADS
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First parallel approach : openmp
What is the ideal number of threads?

22 #pragma omp parallel for private(idx)
23  for (idx = @; idx < ngrains; ++idx) {
24 for (int jdx = idx+1l; jdx < ngrains; ++idx) {

Wednesday



First parallel approach : openmp
What is the ideal number of threads?

22 #pragma omp parallel for private(idx)
23 for (idx = @; idx < ngrains; ++idx) {
24 for (int jdx = idx+1l; jdx < ngrains; ++idx) {

21 double dx, dy, rij, urij, delta, dvx, dVy, tmp, Fnx, Fny;

22 int 11, 333

23 #pragma omp parallel for shared(grains, conf) private(ii, jj, dx, dy, rij, urij, delta, dvx, dVy, tmp, Fnx, Fny)
24 for (ii = @; ii < ngrains; ++ii) {

25 for (jj = ii+l; jj < ngrains; ++jj) {
26 dx = grains[ii].R[@] - grains[jj].R[0];
27 //if (dx <= conf.LX/2) dx += conf.LX;

Wednesday
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0.001
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double dx, dy, rij, urij, delta, dvx, dVy, tmp, Fnx, Fny;

int 11, 333
23 #pragma omp parallel for shared(grains, conf) private(ii, jj, dx, dy, rij, urij, delta, dVx, dVy, tmp, Fnx, Fny)

for (ii = @; ii < ngrains; ++ii) {

for (jj

//1f

(dx <= conf.LX/2)

First parallel approach : openmp
What is the ideal number of threads?

22 #pragma omp parallel for private(idx)
for (idx = @; idx < ngrains; ++idx) {

23
24

for (int jdx

ii+1; jj < ngrains; ++jj) {
dx = grains[ii].R[@] - grains[jj].R[0];

dx += conf.LX;

idx+1; idx < ngrains; ++idx) {

T
Num threads =
Num threads =
Num threads =
Num threads =

]
2
4
8

time step

100
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double dx, dy, rij, urij, delta, dVx,

First parallel approach : openmp
What is the ideal number of threads?

22 #pragma omp parallel for private(idx)
r (idx = @; idx < ngrains; ++idx) {
for (int jdx = idx+1l; jdx < ngrains; ++idx) {

23 fo
24

int ii, jj;

#pragma omp parallel for shared(grains,

for (ii = 0; ii < ngrains; ++ii) {

for (jj = ii+l; jj < ngrains; ++jj) {
dx = grains[ii].R[@] - grains[jj].R[O];
//1f (dx <= conf.LX/2) dx += conf.LX;

dVy, tmp, Fnx, Fny;

Num threads = 8

Numthrelads=1 —_—
Num threads = 2 == ]
Num threads =4 =

time step

100

conf) private(ii, jj, dx, dy, rij, urij, delta, dVx, dVy, tmp, Fnx, Fny)

But time appears to be
slower for more
threads :(
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double dx, dy, rij, urij, delta, dvx, dVy, tmp, Fnx, Fny;

int ii, jj;
23 #pragma omp parallel for shared(grains, conf) private(ii, jj, dx, dy, rij, urij, delta, dVx, dVy, tmp, Fnx, Fny)

for (ii = 0; ii < ngrains; ++ii) {

for (jj =

First parallel approach : openmp
What is the ideal number of threads?

22 #pragma omp parallel for private(idx)
for (idx = 0; idx < ngrains; ++idx) {
for (int jdx = idx+1l; jdx < ngrains; ++idx) {

23
24

ii+1; jj < ngrains; ++jj) {
dx = grains[ii].R[@] - grains[jj].R[0];
//if (dx <= conf.LX/2) dx += conf.LX;

T ]
Num threads = 1 == ]
Num threads = 2 =——— |
Num threads = 4 ———— |
Num threads =8 = |

time step

80 100

But time appears to be
slower for more
threads :(

Be ambitious! Increase the
system size (decreases the ratio

of communication or thread
creation/destruction to
computation)!!!
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Parallel efficiency

Several runs
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Parallel efficiency

Several runs
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Wall-time [s]

Parallel efficiency
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The optimal number of cores

seems to be 2!!! (wall time equal
to 0.25s)
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Parallel efficiency

Wall-time [s]

©
©

©
o

Competing threads because of 3th Newton law

25 -

10! -

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

0.1+

10°

Average wall time for the force routine

@ Data computed at cluster -

B8 Data computed at

10!

Number of openMP threads

102

m—@ Data computed at cluster
— ideal

0 10 20 30 40 50 60 70

Number of openMP threads

The optimal number of
cores seems to be 32!!! Maybe

because the actual wall time
increased by a factor of 10. (2
seconds)
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Conclusions

Always think if your system size is really testing the
parallel approach.

Be explicit about what is shared and private inside
an omp parallel tor .

Always test and debug with the right tools.

Compute the parallel efficiency to really get an idea
of the ideal number of cores



