
Towards parallelizing the
Gillespie SSA

Srivastav Ranganathan
and
Aparna JS

Indian Institute of Technology Bombay
Mumbai,
India

Gillespie Algorithm

• A stochastic simulation approach to study the time
evolution of a system of reactions (processes)

• Each reaction occurs at an average rate

• The abundance of various species and their rates decide
the propensity of each event to occur

• Many independent trajectories are generated to compute
ensemble averaged statistical quantities

Where is it used?

• In biological systems

• Outcomes of cellular processes are driven by
stochasticity at a molecular level

• Deterministic approaches cannot capture the inherent
randomness of biological systems

The algorithm

•

Initialize the system (individual
rates)

Compute the probabilities of
going from one state to another
(pi)

Generate the firing time for
the next reaction to be fired

Select the next reaction to be
fired

Most expensive of all these
steps

Selecting the event to be fired
• Draw a uniform random number ran1

0 P1 P1+ P2

P1+P2
….P8P1+P2+..

+P4
P1+ P2..
 P3

Fire
Reaction

1

Fire
Reaction 4

• Update the system configuration based on the fired reaction (abundance, rates etc)

• Update the time based on the exponential distribution of wait time between events (

This search for the next event to be
fired is really expensive if there is a

large reaction space!

Our attempt (Scheme 1, One-One
communications)

Master
• Owns the transition

probability matrix

• Keeps the system
config updated

W1

W2

W3
Worker Nodes:
Receive blocks of the search space

Identify the event to be fired

Pass the event info into a buffer,
if a hit is received

MPI_REDUCE (MPI_MAX)

MPI_SEND

MPI_SEND

MPI_SEND

Our attempt (Scheme 2, Collective communication)

Master
• Owns the transition

probability matrix

• Also performs part
of the search

• Keeps the system
config updated

W1

W2

W3

Worker Nodes:
Receive blocks of the search space

Identify the event to be fired

Pass the event info into a buffer,
if a hit is received

MPI_REDUCE (MPI_MAX)

MPI_SCATTER

MPI_SCATTER

MPI_SCATTER

● Our naïve serial code was optimized to minimize cache
misses (a speedup of 1.5 times)

● The MPI code did give us correct results (compared
with the serial code and analytical results!)

● Exposed us to a new way of thinking

What worked

● MPI codes show a speedup from 1 to 3 cores but scale
poorly

● Performance slows down at 5 processes or more

● Probably due to huge communication overhead in our
code

● Possibly revisit the whole algorithm or use a more
parallel-friendly algorithm!

What did`nt?

Thank You!

	Slide 1
	Gillespie Algorithm
	Where is it used?
	The algorithm
	Slide 5
	Selecting the event to be fired
	Slide 7
	Slide 8
	Slide 9
	Our attempt (Scheme 1, One-One communications)
	Slide 11
	Our attempt (Scheme 2, Collective communication)
	Slide 13
	Slide 14
	Slide 15
	Slide 16

