

Diurnal Variations in Precipitation during East Asian Summer Monsoon

Korea Institute of Atmospheric Prediction Systems

www.kiaps.org

OSPHER

PS

Contents

- Background and objectives
- Diurnal variation of precipitation with different cumulus parameterizat

ion schemes

- Impact of model resolution on diurnal variation of precipitation
- Improvement of diurnal variation of precipitation with the SAS CPS
- Summary and conclusions

Modelling Issues in Simulating Diurnal Variation of Precipitation

- Modeling issues
 - The realistic simulation of diurnal cycle of precipitating convection, in particular, over the land is one of major shortcomings of physical parameterizations of numerical models.
 - Models tend to advance the time of the maximum precipitation over the land [e.g. Yang and Slingo, 20 01]

Background and Objectives

- ✓ To improve the diurnal cycle of precipitation
 - Different cumulus parameterization scheme Simulated diurnal cycle of precipitation tends to be very sensitive to the CPS in land area due to the convection by surface radiative heating [Bec htold et al., 2008; Koo and Hong., 2010].
 - Increasing horizontal resolution The impacts of horizontal resolution in models with CPS are
 rather inconsistent among previous studies on diurnal cycle of precipitation [Lee et al., 2007; Dir
 meyer et al., 2012],], while the life cycle and maximum intensity of convective systems could stro
 ngly depend on the model horizontal resolution in cloud resolving model [e.g. Petch et al., 2002].
 - Testing convection-permitting CRM can reproduce realistic diurnal variations of rainfall in ph ase, intensity, period and spatial structure [Sato et al., 2009; Dirmeyer et al., 2012].
 - Modifying the cumulus parameterization scheme A diagnostic convective closure linked to b oundary layer forcing derived by Bechtold et al. [2014] significantly improved the diurnal cycle of convection.

Diurnal Variations of Precipitation with Different Cum ulus Parameterization Schemes

Choi, I.-J., E. K. Jin, J.-Y. Han, S.-Y. Kim, and Y. Kwon (20 15), Sensitivity of diurnal variation in simulated precipitatio n during East Asian summer monsoon to cumulus parame terization schemes, J. Geophys. Res. Atmos., 120, 11,971 – 11,987, doi:10.1002/2015JD023810.

Model and Experimental Design

> Model

	Description	
Model	WRF ARW v3.6	
Radiation	Simple could-interactive shortwave (Dudhia, 1989) RRTM longwave (Mlawer et al. 1997)	
PBL	YSU (Hong et al. 2006)	
Land surface	Unified Noah land-surface model	
Microphysics	WSM3 (Hong et al. 2004)	

For CTL, For sensitivity test,

> Experimental design

Model	WRF ARW v3.6	WPS Domain Configuration
Initial condition and lateral BC	NCEP RA2	
Surface BC	OISST 6-hourly update	
Vertical resolution	30 levels upto 50 mb	×0+
Horizontal resolution	50 km	30'N
Time step	240 sec	30%
Domain (East Asia)	East Asia	25%
Period	JJA 2011	20'8
Ensembles	5 member (ICs from 00UTC 21 to 25 May 2011)	110°E 120°E 130°E 140°E 120°E

 90-minute mean rainfall of WRF output is summed as 3-hour mean rainfall identical to the T MPA data (observational counterpart).

• Ensemble mean data of 5 members is analyzed for the seasonal mean of JJA 2006.

Model and Experimental Design

Scheme	Туре	Trigger	Entrainment Formulation	Closure
KF	Mass-flux	Perturbation based on low-level vertical motion	Variability of cloud radius and cloud-depth threshold allowed	CAPE closure
SAS	Mass-flux	Parcel buoyancy	Height and RH dependent	Quasi-equilibrium Closure
BMJ	Adjustment	CAPE, cloud depth threshold value, and moist sounding needed	Convection profiles depends on clo	and relaxation time oud efficiency
TDK	Mass-flux	Moisture convergence	RH dependent	CAPE closure
KFtr	Mass-flux	Perturbation based on local average moisture advection	Same as KF	Same as KF

Impact of Trigger Function on Diurnal Variations Convective precipitation - KF T at LCL Environmental T _ بے _{0.2} - KFti $T_{LCL} + \delta T_{vv} > T_{ENV}$ rate [mm ÷ T perturbation ation Very crucial in determining the prerequisite for a parcel to move upward and to trigger convection ž 03 06 09 12 15 18 21 Kain and Fritsch (1993, 2004) Modified Kain and Fritsch [Ma and Tan (2009)] time [LST] : the role of convergence in destabilizing and : the role of moisture advection in Less sensitive initiation of convection activity du moistening atmosphere destabilizing and moistening atmosphere e to the determination of temperature anomaly i n trigger function and less frequent convective p $\delta T_{vv} = c_1 w_g^{1/3}$ $\delta T_{vv} = R_h \delta T_{vvh} + R_v \delta T_{vvv}$ recipitation 3 sigma levels → Delayed peak in convective precipitation. Grid-resolved 9 closest vertical motion grid points Non-convective precipitation $R_{h/v} = \frac{(\vec{v}_M \cdot \nabla q_M)_{h/v} - Min(\vec{v}_M \cdot \nabla q_M)_{h/v}}{Max(\vec{v}_M \cdot \nabla q_M)_{h/v} - Min(\vec{v}_M \cdot \nabla q_M)_{h/v}}$ 0.2-- KF hr.] - KFtr $0 < R_{h/v} < 1$ rate [mm precipitation °† 12 15 03 06 09 18 21 24 time [I ST] Through the interaction between convection an d microphysics, non-convective precipitation inc reases in late afternoon. ◊ → Delayed peak in convective precipitation is s **KIAPS** hifted to late afternoon .

Impact of Model Resolution on the Simulation of Diur nal Variations of Precipitation

Project Athena: Resolution vs. Process-resolving

Diurnal Variation

The local hour of maximum precipitation du ring JJA [*Dirmeyer et al. 2012*]

Bias of Mean Field

Mean JJA precipitation from GPCP and the error s relative to GPCP for the various global model i ntegrations [*Dirmeyer et al. 2012*]

Model and Experimental Design

> Model

	Description		
Model	WRF ARW v3.6		
Radiation	Simple could-interactive shortwave (Dudhia, 1989) RRTM longwave (Mlawer et al. 1997)		
PBL	YSU (Hong et al. 2006)		
Land surface	Unified Noah land-surface model		
Microphysics	WSM3 (Hong et al. 2004)		
Convection	 SAS CPS Kain-Fritcsh (KF) Kain-Fritcsh with modified trigger (KFtr) 		
	No CPS • convection-permitting (CP)		

> Experimental design

Model		WRF ARW v3.6	
Initial condition and lateral BC		NCEP RA2	
Surface BC		OISST 6-hourly update	
Vertical resolution		30 levels upto 50 mb	
Horizontal resolution	50	27	9
Time step	180	72	30
Domain (East Asia)	108X79	200X146	588X434
Period	JJA 2006 (from	n 00UTC 21~25 May to 00U	TC 1 Sep 2006)
Ensembles	5 membe	(ICs from 00UTC 21 to 25	May 2006)

90-minute mean rainfall of WRF output is summed as 3-hour mean rainfall identical to the T MPA data (observational counterpart).

• Ensemble mean data of 5 members is analyzed for the seasonal mean of JJA 2006.

Power spectrum density of precipitation

 Power spectrum density: a forward complex discrete Fourier transform of a real periodic sequence is cond ucted with the removal of t he least square linear tren

 The observed diurnal varia tion of the summer rainfall in East Asia is characteriz ed by two maximum peaks at 24-hr (diurnal cycle) an d 12-hr (semi-diurnal cycle), especially over the land

Total

18

Land

Ocean

18

..... TMPA 50 km 27 km

9 km

Time [LST]

Time [LST]

12

Time (LST)

(a) CP (total)

- CP_50km

- CP_27km - CP_9km

-- TMPA

(e) CP (land)

- CP_50km

- CP_9km

____ CP_27km

- TMPA

03

(i) CP (ocean)

- CP 50km

- CP_27km - CP 9km

0.3-

0.1+

0.3

0.3 --- TMPA

KIAPS

Diurnal variations of precipitation

- > The diurnal variations of precipitatior on the 1-hourhly precipitation on the
- The observed diurnal variation of tota E. n the early morning at 0600 LST and
- · The afternoon peak is dominant over peak is dominant over the ocean.
- The CP runs reproduce two peaks ve
- · The initiation of convective systems i w resolution CP runs.
- However, the afternoon peak of 9-km

 There is a remarkable resolution dep amplitude of the diurnal cycle of rainf

g. Sato et al. 2009], because the high resolution CRMs are only capable of the greatest realism in terms of explicitly resolving th e vertical structure of cloud systems [e.g. Petch et al., 2002].

The 9-km looks good enough to mimic the observed features in our case, nevertheless the optimal resolution to reproduce the o bserved diurnal variation varies depending on cases, target regi ons and seasons.

FIG. 5. Diurnal cycle of the precipitation intensity anomaly in the nt with observation with realistic amp NICAM-3.5km (circles), NICAM-7km (crosses), NICAM-14km (squares), and 3G68 (filled triangles) runs averaged over 15°S-15°N. Red lines indicate land grids and blue lines indicate ocean grids.

Total

(a) CP (total)

- CP_50km

- CP_27km - CP_9km

- - TMPA

0.3-

Diurnal variations of precipitation

- > The diurnal variations of precipitation on the 1-hourhly precipitation on the
- The observed diurnal variation of tota E. n the early morning at 0600 LST and
- · The afternoon peak is dominant over peak is dominant over the ocean.
- The CP runs reproduce two peaks ve
- · The initiation of convective systems i w resolution CP runs.
- · However, the afternoon peak of 9-km
- There is a remarkable resolution dep amplitude of the diurnal cycle of rainf g. Sato et al. 2009], because the high recapable of the greatest realism in term e vertical structure of cloud systems [e
- The 9-km looks good enough to mimic our case, nevertheless the optimal res bserved diurnal variation varies depen ons and seasons.

50 km 27 km

9 km

FIG. 5. Diurnal cycle of the precipitation intensity anomaly in the nt with observation with realistic amp NICAM-3.5km (circles), NICAM-7km (crosses), NICAM-14km (squares), and 3G68 (filled triangles) runs averaged over 15°S-15°N. Red lines indicate land grids and blue lines indicate ocean grids.

Diurnal variations of convective & non-convective precipitation over the land

Ratio of seasonal mean convective precipitation in JJA 2006

• The relative amount of convective rainfall is one of unique features of each cumulus param eterization scheme.

- The convective rainfall ratio decreases with increasing resolution over the land.
- The SAS scheme generates the highest convective rainfall ratio, while the lowest value in KFtr scheme, in particular over the land.
- The relatively withholding convective rainfall is likely to imply the dominant contribution of t he cloud microphysical process in the KFtr runs, close to the CRM.

PSD of convective & non-convective precipitation over the land

→ The improvement of diurnal cycle with increasing resolution is primarily governed by the non-convective precipitation!

Improvement of Diurnal Variations of Precipitation wi th the SAS CPS in GCM

Modification of Convective Closure in SAS CPS

Bechtold et al. (2014) shows that a new diagnostic CAPE closure based on a planetary b oundary layer (PBL)-CPS equilibrium theory does improve the diurnal cycle of precipitat ion in IFS AGCM.

→ This extended diagnostic CAPE closure involving appropriate boundary layer time scales ov er land and water, is possible to represent not only large-scale synoptically driven convection, but also nonequilibrium boundary layer–driven convection with its characteristic diurnal cycle, and the inland advection of wintry convective showers.

Modification of Convective Closure in SAS CPS

Following the study of Bechtold et al. (2014), a planetary boundary layer (PBL)-CPS equi librium theory to hold rapidly varying boundary layer forcing is applied in the convectiv e closure of SAS CPS.

 Δh_{pbl} : Change of PBL height between t and $t - \Delta t$ τ_{pbl} : boundary layer time scale

Model and Experimental Design

• Case : 01 July 2013 – 31 July 2013

- Medium-range forecasts for 10 days from every 00 UTC

Model : GRIMs v3.3					
Horizontal resolution		T254 (approximately 50 km)			
Vertical level		28			
Time interval		300 sec			
Initial/boundary condition		GFS analysis			
Physics options for control simulation					
Deep Convection	SAS		Radiation	RRTMG	
Shallow convection	vection GRIMs		Vertical diffusion	YSU	
Microphysics WSM5		Land surface	NOAH		
Cloudiness Prognostic scheme		Gravity wave drag	Kim and Arakawa [1995]		

Experiment	
Diur off	Original closure
Diur on	Modified closure with PBL-CPS equilibrium

 \rightarrow Diurnal cycle of precipitation is improved.

Maximum Peak Time of Hourly Precipitation

Forecast Skill of Global Precipitation

Data : Climate Prediction Center (CPC) unified gauge-based analysis

→ Skill improvement in the bias and slightly in the ETS again st the CPC unified gauge-based analysis of global precipitati on.

Summary and Conclusions

✓ Different cumulus parameterization schemes

- · With overestimated precipitation rate, the simulated afternoon peaks occur earlier than the observed peaks.
- The scheme with alternative trigger function (KFtr) based on moisture advection provides slightly better res ults in terms of alleviating the overestimated precipitation rate and frequency and delaying the afternoon pe aks.

✓ Increasing horizontal resolution

- The increase of resolution improves the phase and amplitude of diurnal cycle in the CP runs due to the expl icit representation of the realistic cloud system.
- The contribution of non-convective precipitation from the microphysical process significantly improves the p hase of diurnal cycle in the CPS runs.

✓ Modification of convective closure

- A comparison of medium-range forecasts shows that the new closure can improve the diurnal cycle of simul ated precipitation by delaying afternoon peak.
- The impact of the new closure on diurnal cycle of precipitation looks more apparent over land than over oce an.

Remarks: Improvement of diurnal cycle does not guarantee the improvement in skill of precipita tion forecasts.

Observed Diurnal Variations

•	Cold-type rain	Warm-type rain
	High storm height and abundant ice water under c onvectively unstable condition	 Lower storm height and lower ice water content Ocean
	Inland China	• Wide spatial distribution over an area extending from the southwest to northea
	 Eastward moving cloud system with an oval shap 	st
	e	· Low-level moisture convergence area to the vertically aligned divergence area
		formed over the jet stream level \rightarrow push air upward under moist-adiabatically
		near-neutral condition → heavy rainfall

SATELLITE OBSERVATION (2002-2011 TRMM)