The ICTP Regional System Model (RegESM) to simulate the monsoon in the South Asia CORDEX domain

Fabio Di Sante, Erika Coppola, Riccardo Farneti and Filippo Giorgi

The Abdus Salam International Centre for Theoretical Physics

Eighth ICTP Workshop on the Theory and Use of Regional Climate Models

Outline:

1) Motivation

2) Experiment design

3) Preliminary Analysis
3.1) Climatology
3.2) Inter-annual variability
3.3) Intra-seasonal oscillations

4) Preliminary Conclusions

Motivation

- To simulate correctly the inter-annual and the intra-seasonal oscillation (ISO) of the Indian monsoon it is necessary to use a coupled atmosphere-ocean model as supported by different studies. (Fu et. al 2002; Fu et al. 2007; Ratnam et al. 2008; Seo et al. 2009; Samala et al. 2013)
- Precipitation and river discharge well exceed the evaporation in the Bay of Bengal making this area the region with more fresh water in the Indian Ocean. Moreover ³/₄ of riverine discharge is observed during MJJAS season

Socio-economic motivations

Motivation

• 75% of Bangladesh is less than 10m above sea level and 80% is flood plain

http://www.dartmouth.edu/~floods/Archives/GlobalFloods1985-2007.gif

Motivation

Year

Webster et Al 1999

Flood fatalities (since 1985)

International Centre for Theoretical Physics

Experiment design

ATMOSPHERIC MODEL:

RegCM4.4

Grid points: Y direction-170; X direction-216 Horizontal Resolution: 50 km Vertical levels: 18 Boundary conditions: ERA-Interim Cumulus convection: MIT (Emanuel 1991) Land surface: CLM4.5 (Olson et al. 2014)

COUPLER:

RegESM

Coupling intervals: 3hr ATM-OCN 1day ATM-RIV-OCN

Exchange fields: winds, surface air pressure, water and heat fluxes ATM-OCN; SST OCN-ATM; runoff ATM-RIV; fresh water discharge RIV-OCN

OCEAN MODEL:

MitGCM c64s

Grid points: Y direction-276; X direction-408

Horizontal Resolution: 18 km

Vertical levels: 45

Initial and Boundary conditions: MOM Simulation at 0.25°

Vertical mixing: Nonlocal K-Profile Parameterization KPP (Large et al. 1994)

RIVER ROUTING:

<u>HD</u>

Grid: Global grid (0.5°)

- Rivers: all the rivers with a mean annual
- discharge > 500 m³/s

<u>CHyM</u>

Grid: Regional grid

Experiment design

29 years simulated (1979 – 2007) coupled and uncoupled simulations

JJAS Seasonal Climatology

Dynamics

The resulting summer land-sea temperature gradient promotes the development of a low-level cross-equatorial jet that transports moisture from the ocean toward the Asian continent, giving rise to the strongest monsoon on Earth. [Findlater, 1970]

The coupled model shows improvements in correctly simulating the intensity of the North-East monsoon probably due to the freshwater forcing from the river discharge on the SST over the Bay of Bengal as suggested by Seo et Al (2009).

Inter-annual variability of rainfall

RegCM coupled simulation capture the sign of inter-annual variations in 57% of the years if we consider IMD (39% in the uncoupled simulation; 39% in the Era-Interim reanalysis)

Composite of WET years

RegCM4 CPL

RegCM4 STD

The Abdus Salam International Centre for Theoretical Physics

1.2 0.8 0.4 0

(CTP

ERA Interim

Composite of DRY years

Inter-annual variations of monthly

Temporal correlation of seasonal precipitation

JJAS Sea Surface Temperature

Seasonal mean

Bias

MIT CPL - HadSST

• More accurate representation of river basins

Actual design

Preliminary Conclusions

- Reduction of the precipitation positive bias over the Bay of Bengal (better representation of sea-atmo interactions).
- Better low-level jet simulated by the coupled model, particularly over Bay of Bengal.
- Improve the representation of NE monsoon seasonality
- Coupled model better represent temporal and spatial interannual variability
- More realistic sequences of active and break phases of the Indian monsoon.

