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There is always a spread (uncertainty)
in forecasts!

 Non-linear dynamical systems sensitivity to
specification of initial conditions

« Deterministic chaos

« Uncertainty could be better quantified, but can

never be removed

« dx/dt = o (y - xX)
» dy/dt=x(p-2) -y
- dz/dt =xy-B z
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 There is always a spread (uncertainty) in forecasts...

« This forecast uncertainty is quantified using ensemble
prediction approach where a collection of forecasts is
initiated from small perturbations in the initial
conditions

« Evolution of individual forecasts in the ensemble
results in a collection of future outcomes which can be

quantified using a probability density function (PDF)
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Example of forecast spread: ENSO
Prediction
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Characterizing seasonal prediction

There is a PDF of possible outcomes of mean states for a
specific season

There is a climatological PDF based on aggregation of
seasonal mean outcomes for all seasons.

These PDF depends on
— Season
— Variable
— Location

Seasonal prediction depends our ability to differentiate PDF
of forecast outcomes (for an individual season) from the
climatological PDF
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Characterizing seasonal prediction
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What lends predictability in long-range
predictions?

« Initial conditions

— Weather prediction
— ENSO prediction

« Influence of boundary conditions

— Anomalous SSTs - Influence on atmospheric variability

« Influence of external forcings
— Changes in CO,
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Sources of predictability and initial
value predictions

Atmospheric ICs

Boundary Conditions

--------

Anthropogenic Forcings
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Initial value predictions with different
lead time

= Climatological e ong Lead Forecast = == o \ledium Lead Forecast == Short Lead Forecast

» The spread with lead time increases

= PDF shifts towards the climatological PDF
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Initialized predictions

= Climatological em—| ong Lead Forecast e == o \ledium Lead Forecast = Short Lead Forecast

Ny,
Implication?
Special attention needs to

be paid to the initialization
of sources of predictability

= PDF shifts towards the climatological PDF
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What provides skill in seasonal
predictions

« It is our ability to distinguish PDF of outcomes for
the event to be predicted from the corresponding
climatological PDF

« Differences in the PDF can come from differences

in various moments of the PDF
— Mean
— Spread

— Skewness
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Examples of high/low prediction skill

e=Climatologica PDF ~ es==Predicted POF

High
Predictability

Climo PDF ———— —
FCST PDF

Low
Predictability
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Seasonal Prediction Methods

« Empirical prediction tools

— Advantages
 Trained based on historical observations
 Unbiased

« Simple and computationally efficient

— Disadvantages

Limited by observational data

Mostly depend on linear relationships

Non-stationarity in climate is hard to include

Cannot handle unprecedented situations
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Seasonal Prediction Methods

 Dynamical Prediction Tools

— Advantages
« Linearity and non-stationarity is not an issue
« Easier to construct PDF of seasonal mean state
« Easier to handle unprecedented situations

— Disadvantages
« Computationally expensive and require a large infrastructure
« Forecast systems have biases that requires special attention

« Properties of empirical and dynamical prediction tools are
complementary in nature, and in general, and generally both are used
in the development of final forecast

« This is the current practice used by several operational centers, e.qg.,
prediction of monsoon rainfall by the IMD
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Components of a Seasonal Forecast
System

« Forecast system components
— Initialization
— Hindcasts
— Real-time forecasts
— SKkill assessment
— Bias correction and calibration

— Forecast dissemination
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Initialization

« Various components of the forecast system need to be

initialized from their observed state

— Atmosphere (temperature; humidity; winds)
— Ocean (temperature; salinity; ocean currents)
— Land (soil moisture; snow)

— Sea ice (extent; thickness)

« Initialization is done from the Climate Forecast System
Reanalysis (CFSR) that provides a consistent 3-dimensional
analysis of various components of the Earth System

« After initialization, forecast system is run to nine months
into the future
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Hindcasts

 Hindcasts — Run the real-time forecast system
over historical cases

 Run the forecast system over last thirty years
(1981-2010)

« Four nine months forecast every 5th day of the
calendar month

« 72 forecasts every year
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Hindcasts

« What is the purpose of hindcasts?

— Provides an assessment of the skill of the seasonal
forecast system

— Because of model biases
« Real-time forecasts have to be bias corrected
« Hindcasts provide the data set for bias correction
« Hindcasts are used to develop initial month, and lead-time

dependent model climatology

— Calibration of real-time forecasts
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Real-time forecasts: CFSv2

 Four nine month forecasts every day

« 120 seasonal forecasts in a month

- Real-time forecasts are constructed based on
forecasts from latest 10 days of initial conditions,
i.e., an ensemble of 40 forecasts is used for
developing real-time seasonal predictions

 Lagged ensemble provides an estimate of PDF of

seasonal mean states
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Real-time forecasts

« Configuration of real-time forecasts generally

differs from their hindcast counterpart
— More frequent

— Larger ensembles
« Consistency in the analysis of initial conditions,
particularly for slowly varying components of the

Earth System (SST, soil moisture) is crucial!
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Skill Assessments

« Based on 30-year hindcast, skill of the CFSv2 can

be assessed for

— Predicting sea surface temperature anomalies

— Predicting various SST indices that are important for
seasonal predictions, e.g., Nino 3.4 SST index

— Surface quantities over land, e.g., precipitation and
surface temperatures

— Other variables
e Soil moisture
e Sea ice
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Skill Assessment: SST

Anomaly Correlation

CFSv2 Correlation 55T

Initial month: May 1982-2009
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Skill Assessment: Surface Temperature

Anomaly Correlation

CFSv2 Correlation TZm
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Anomaly Correlation

Skill Assessment: Precipitation

CFSv2 Correlation Precipitation

Initial month: May 1982-2009

JJA Lead: 0 month
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Bias Correction and Calibration

« Bias correction
— Correct for differences in observed and predicted mean
state

— Adjust if variability between observations and predictions
differs

« Calibration
— Adjust predicted anomaly based on assessment of past skill
(e.g., from hindcast data set)
— If past skill is close to zero, make the forecast PDF same as
the climatological PDF
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Model bias

CFSv2 Bias(Fcst—Ghen) T2m (K)
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Differences in Variability

Standard Deviation Nino34 SST(K)
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Forecast Dissemination

« Graphical products
— Bias corrected seasonal mean anomalies
— Normalized anomalies

— Bias corrected anomalies with skill mask

« Forecast and hindcast gridded data
— Real-time forecasts
— Hindcast data available via several channels
— Procedures could be developed for statistical

downscaling
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Graphical Products: SST Anomaly

A7

CFSv2 seasonal SST anomalies (K) NWS /NCEP /CPC

Apr—May—dJun 2014 Initinl conditions: 30Mar2014—8Apr2014
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Graphical Products: Standardized SST
Anomalies
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Summary

« Seasonal prediction system are fairly mature

« Skill of prediction is limited, but it is better than a
random guess

 Hindcast and real-time forecast data is a huge
data base that can be used for various research

and analyses purposes

— Analysis and predictability of extremes

— Influence of various climatic factors on extremes
(attribution and prediction)
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