Statistics of the epoch of reionization(EoR) 21-cm signal:

power spectrum error-covariance

Rajesh Mondal

Department of Physics (and CTS), Indian Institute of Technology Kharagpur

Workshop on Cosmology with Next Generation Radio Surveys, ICTP, Trieste, Italy 22 June 2016

Rajesh Mondal (IIT KGP)

Non-Gaussianity

Introduction

- It is being anticipated that the EoR 21-cm power spectrum is the main tool to achieve the first detection of the signal.
- Cosmic variance: Any statistical estimation of a cosmological signal comes with intrinsic uncertainty
- Question: How accurately can the power spectrum be estimated from a given EoR 21-cm data set?
- We want to have prior knowledge of the expected error before the detection has been made.

Motivations

- There have been several works to quantify the sensitivity to the EoR signal for different instruments.
- It is commonly assumed in all sensitivity estimates studies that the EoR 21-cm signal is independent Gaussian random variable
- How good is this assumption?
- How this affects the error predictions for the EoR 21-cm power spectrum.
- Generic: not limited only to the EoR 21-cm signal but can be applied to any non-Gaussian signal (*e.q.* galaxy redshift surveys - Feldman & Peacock, 1994; Neyrinck, 2011; Carron, Wolk & Szapudi, 2014) Non-Gaussianity Rajesh Mondal (IIT KGP)

Introduction

The power spectrum

• Binned power spectrum estimator

$$\hat{P}_{\mathrm{b}}(k_{i}) = \frac{1}{N_{k_{i}}V} \sum_{\boldsymbol{k}} \tilde{\mathrm{T}}_{\mathrm{b}}(\boldsymbol{k}) \tilde{\mathrm{T}}_{\mathrm{b}}(-\boldsymbol{k})$$

averaged over $N_{k_i} \approx \frac{V}{(2\pi)^2} k_i^2 \Delta k_i$

• The power spectrum is defined as

$$P(k) = V^{-1} \langle \tilde{T}_{\rm b}(k) \, \tilde{T}_{\rm b}(-k) \rangle$$

$$\langle \hat{P}_{\mathrm{b}}(k_i) \rangle = \bar{P}_{\mathrm{b}}(k_i) = \frac{1}{N_{k_i}} \sum_{a} P_{\mathrm{b}}(a)$$

Mondal et al. 2016a, arXiv: 1606.03874

Introduction

The error covariance $\mathbf{C}_{ij} = \langle [\hat{P}(k_i) - \bar{P}(k_i)] [\hat{P}(k_j) - \bar{P}(k_j)] \rangle$ $= [\langle \hat{P}(k_i) \hat{P}(k_j) \rangle] - \bar{P}(k_i) \bar{P}(k_j)$

We have

$$\langle \hat{P}(k_i) \, \hat{P}(k_j) \rangle = \frac{1}{N_{k_i} N_{k_j} V^2} \sum_{\boldsymbol{k}_a \in i, \boldsymbol{k}_b \in j} \langle \, \tilde{T}_{\mathrm{b}}(\boldsymbol{k}_a) \, \tilde{T}_{\mathrm{b}}(-\boldsymbol{k}_a) \, \tilde{T}_{\mathrm{b}}(-\boldsymbol{k}_b) \, \tilde{T}_{\mathrm{b}}(-\boldsymbol{k}_b) \, \rangle$$

The four-point statistics

$$\langle \tilde{T}_{b}(\boldsymbol{k}_{a}) \, \tilde{T}_{b}(\boldsymbol{k}_{b}) \, \tilde{T}_{b}(\boldsymbol{k}_{c}) \, \tilde{T}_{b}(\boldsymbol{k}_{d}) \, \rangle = V^{2} [\, \delta_{a+b,0} \, \delta_{c+d,0} \, P(\boldsymbol{k}_{a}) P(\boldsymbol{k}_{c}) \\ + \, \delta_{a+c,0} \delta_{b+d,0} P(\boldsymbol{k}_{a}) P(\boldsymbol{k}_{b}) + \delta_{a+d,0} \delta_{b+c,0} P(\boldsymbol{k}_{a}) P(\boldsymbol{k}_{b})]$$

+
$$V\delta_{a+b+c+d,0} T(\boldsymbol{k}_a, \boldsymbol{k}_b, \boldsymbol{k}_c, \boldsymbol{k}_d)$$

Mondal et al. 2016b, arXiv: 1508.00896

The error-covariance

Using the definition of trispectrum (four-point statistics)

$$\mathcal{C}_{ij} = \frac{\overline{P_{\rm b}^{\ 2}}(k_i)}{N_{k_i}} \,\delta_{ij} \, + \frac{\overline{T}_{\rm b}(k_i, k_j)}{V}$$

Where
$$N_{k_i} \approx \frac{V}{(2\pi)^2} k_i^2 \Delta k_i$$
 and $\overline{P^2}(k_i) = \frac{1}{N_{k_i}} \sum_{k} P^2(k)$

the square of the power spectrum averaged over the i-th bin

$$\bar{T}(k_i, k_j) = \frac{1}{N_{k_i} N_{k_j}} \sum_{\boldsymbol{k}_a \in i, \boldsymbol{k}_b \in j} T(\boldsymbol{k}_a, -\boldsymbol{k}_a, \boldsymbol{k}_b, -\boldsymbol{k}_b)$$

the average trispectrum where k_a and k_b are summed over the i-th and the j-th bins respectively Error covariance

The dimensionless error-covariance

$$\mathbf{c}_{ij} = \frac{\mathbf{C}_{ij} V \, k_i^{3/2} k_j^{3/2}}{(2\pi)^2 \bar{P}(k_i) \, \bar{P}(k_j)} \qquad \mathbf{C}_{ij} = A_i^2 \left(\frac{k_i}{\Delta k_i}\right) \delta_{ij} + t_{ij}$$

where
$$A_i = \sqrt{\frac{\overline{P^2}(k_i)}{[\overline{P}(k_i)]^2}}$$
 and $t_{ij} = \frac{\overline{T}(k_i, k_j) \ k_i^{3/2} \ k_j^{3/2}}{(2\pi)^2 \overline{P}(k_i) \ \overline{P}(k_j)}$

Mondal et al. 2016b, arXiv: 1508.00896

- The diagonal elements of C_{ij} quantifies the variance.
- We have $t_{ii} = 0$ if the EoR 21-cm signal is a Gaussian random field then we have $\mathbf{c}_{ii} = A_i^2(k_i/\Delta k_i)$

Mondal et al. 2016b, arXiv: 1508.00896

- The diagonal elements of C_{ij} quantifies the variance.
- We have $t_{ii} = 0$ if the EoR 21-cm signal is a Gaussian random field then we have $\mathbf{c}_{ii} = A_i^2(k_i/\Delta k_i)$

The off-diagonal terms of error-covariance

- The off-diagonal terms of C_{ij} quantify the correlations between the errors in the power spectrum estimated at different bins.
- These terms are all zero if the signal is a Gaussian random field *i.e.* the errors in the different bins are **uncorrelated**.
- However, the EoR 21-cm signal becomes increasingly non-Gaussian as reionization proceeds, and we expect the offdiagonal terms to develop non-zero values.
- We interpret any statistically significant non-zero offdiagonal component of C_{ij} as arising from the trispectrum.

Signal Ensemble (SE)

We have generated the redshifted EoR 21-cm signal using seminumerical simulations which involve three main steps.

- First, we use a particle mesh *N*-body code to generate the dark matter distribution at the different redshifts.
- In the next step we use the Friends-of-Friends algorithm to identify collapsed halos in the dark matter distribution.
- The third and final step generates the ionization map based on an excursion set formalism (Furlanetto et al. 2004).
- We have run 50 independent realizations of the simulations to generate an ensemble of 50 statistically independent realizations of the EoR 21-cm signal. We refer to this ensembles as the Signal Ensemble (SE).

Left: This tabulates the redshifts (z) and corresponding mass averaged neutral fraction Right: This shows the reionization history

> Mondal et al. 2016a, arXiv: 1606.03874 Non-Gaussianity

Rajesh Mondal (IIT KGP)

Introduction

Mini Summary

- For Gaussian random field, we expect the SNR to scale as the square-root of the number of independent measurements.
- We find the expected $SNR \propto \sqrt{N_k}$ behaviour at low SNR
- For larger SNR it increases slower than $\sqrt{N_k}$ and finally saturates at a limiting value

$$[\text{SNR}]_l = \sqrt{\frac{[\bar{P}_{b}(k)]^2 V}{\bar{T}_{b}(k,k)}}$$

• As the reionization proceeds, the ionized bubbles grow (both in number and size), thus affect power spectrum error estimates more in the later stages of the EoR.

The diagonal terms of error-covariance

- We expect the diagonal term to have values $\mathbf{c}_{ii} = A_i^2(k_i/\Delta k_i)$ if the 21-cm signal is a Gaussian random field.
- We interpret any excess relative to this prediction as arising from the trispectrum t_{ii} which arises when the EoR 21-cm signal becomes non-Gaussian.
- The difficulty is that it is not possible to predict the precise value of $\overline{P^2}(k_i)$
- In other words, it is not possible to use the Signal Ensemble (SE) to determine the contribution from the non-Gaussianity
- We use the Randomized Signal Ensemble (RSE) to interpret the diagonal terms of the error-covariance.

The Randomized Signal Ensemble (RSE)

- Each realization in RSE is a mixture of Fourier modes $\tilde{T}_{\rm b}(\mathbf{k})$.
- It is expected that modes from one realization in SE is **not correlated** with those from other realization in SE
- The average trispectrum $\overline{T}_{b}(k_{i}, k_{j})$ is at least 50 times smaller for RSE as compared to SE.
- We expect $\overline{P_{b}(k_{i})}$ and $P_{b}^{2}(k_{i})$ to have exactly the same value in both SE and RSE. Essentially A_i is same
- RSE has been used to estimate the error-covariance that would be expected if the signal were a Gaussian random
- It thus becomes possible to interpret any deviations from this as arising from trispectrum. $[\mathbf{c}_{ii}]_{\text{SE}} [\mathbf{c}_{ii}]_{\text{RSE}} = t_{ii}$

Dimensionless trispectrum

The off-diagonal terms of error-covariance

• The off-diagonal terms of C_{ij} quantify the correlations between the errors in the power spectrum estimated at different bins.

The correlation coefficient r_{i}

$$c_{ij} = rac{c_{ij}}{\sqrt{c_{ii} \, c_{jj}}}$$

The Gaussian Random Ensemble (GRE)

- The GRE contains 50 realizations of the 21-cm signal, the signal in each realization is a Gaussian random field.
- Error-covariance for a Gaussian random field is diagonal

Mondal et al. 2016b, arXiv: 1508.00896

Non-Gaussianity

Ensemble of Gaussian Random Ensembles (EGRE)

- The off-diagonal terms of the error-covariance estimated from GRE will not be zero due to finite number of realizations
- 50 independent GREs are used to construct an EGRE which we have used to estimate the variance of covariance.
- We compare the error-covariance C_{ij} against the variance of covariance from EGRE to determine statistical significance

Correlation coefficient

Mondal et al. 2016b, arXiv: 1508.00896

Summary and discussion

- The non-Gaussian components are correlated, which is quantified through trispectrum in C_{ij} .
- The EoR 21-cm signal becomes increasingly non-Gaussian. This manifests itself as a non-zero trispectrum in **C**_{*i*j}.
- The diagonal elements quantifie the variance of error in P(k).
- It is not possible to use the SE to independently determine the contributions of non-Gaussianity in C_{ij}
- We have overcome this problem by constructing the **RSE**
- The difference $[\mathbf{c}_{ii}]_{SE} [\mathbf{c}_{ii}]_{RSE} = t_{ii}$
- The off-diagonal terms of C_{ij} quantify the correlations between the errors in the P(k) estimated at different bins.
- We interpret any statistically significant non-zero offdiagonal component as arising from t_{ij} (using EGRE).