Nonlinear effects on ultra-large scales

Obinna Umeh

Center for Radio Cosmology Department of Physics and Astronomy University of the Western Cape

Republic of South Africa

June 22, 2016

Next Generation Large Scale Structure Surveys

• Future survey like HI intensity mapping will cover very large volumes.

- Could possibly test
 - Theories of gravity.
 - Cosmological inflation)
 - Supersymmetry
 - Bell inequalities
 - Add yours · · ·

Non-Gaussianity

Figure 1: Santos et al (2015)

Constraint on GR and non-Gaussianity

Figure 2: Fonseca et al (2015)

• Key assumptions:

- On ultra-large scales, linear approximation is valid.
- Gaussian bias is scale independent.

Methodology

Range of validity of cosmological perturbation theory

- This holds for:
 - Dark matter density field.
 - Tracers after renormalization.

Biased tracers on ultra-large scales

Dark matter density field

• Matter power spectrum: $P_m(k) = P_m^{11}(k) + \overbrace{P_m^{22}(k) + P_m^{13}(k)}^{2}$.

nonlinear

Tracer relationship with dark matter

- Assume that δ_{HI} is related to δ_m : $\delta_{\text{HI}}(\tau, \mathbf{x}) = \mathcal{F}(\delta_m(\tau, \mathbf{x}))$.
- The form of the functional \mathcal{F} is not exactly known?
- Employ series expansion:

$$\delta_{\rm HI}(\tau,\mathbf{x}) = \sum_{n=0}^{\infty} \frac{b_n^{(0)}}{n!} \delta_m^n(\tau,\mathbf{x}).$$

- Common assumption is that on large scales: $\delta_{HI}(\tau, \mathbf{x}) = b_1 \delta_m^n(\tau, \mathbf{x})$.
- Important question: Does the series converge?.

Linear approximation is not enough?

Taylor series expansion:

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \cdots + \frac{(x - x_0)^n}{n!}f^{(n)}(x_0) + R_n.$$

Linear approximation implies:

$$f(x) = f(x_0) + (x - x_0)f'(x_0)$$
.

• The remainder is given by

$$R_n = f^{(n+1)}(x^*) \frac{(x-x_0)^{n+1}}{(n+1)!} = E_n.$$

Error associated with linear approximation(theoretical systematic):

$$E_2(\eta, \mathbf{x}) = \frac{1}{2}b_2(\delta_m(\eta, \mathbf{x}))^2 + \frac{1}{3!}b_3(\delta_m(\eta, \mathbf{x}))^3 + \cdots$$

• Include the error in the likelihood function (Baldauf et al. 2016)

HI brightness temperature in real space

- In real space: $T \propto n_{\rm HI} = ar{n}_{\rm HI} \left[1 + \delta_{\rm HI}
 ight]$ (i.e no RSD)
- ullet Ensure that $\langle \delta_{
 m HI}
 angle = 0$ (McDonald 2006, Umeh et al. 2015)

$$\begin{split} \delta_{\text{HI}} &= b_1 \delta_m^{(1)} + \frac{1}{2} \left[b_1 \delta_m^{(2)} + b_2 \left(\left(\delta_m^{(1)} \right)^2 - \sigma_{\Lambda}^2 \right) \right] \\ &+ \frac{1}{3!} \left[b_1 \delta_m^{(3)} + 3 b_2 \delta_m^{(1)} \delta_m^{(2)} + b_3 (\delta_m^{(1)})^3 \right] \,. \end{split}$$

Effective background number density

$$\bar{\textit{n}}_{\scriptscriptstyle HI}^{\scriptscriptstyle FLRW} \rightarrow \bar{\textit{n}}_{\scriptscriptstyle HI} = \bar{\textit{n}}_{\scriptscriptstyle HI}^{\scriptscriptstyle FLRW} \big(1+\textit{b}_{0}\big) = \bar{\textit{n}}_{\scriptscriptstyle HI}^{\scriptscriptstyle FLRW} \big(1+\textit{b}_{2}\sigma_{\Lambda}^{2}/2\big)\,.$$

ullet where σ_{Λ}^2 is variance of matter density field smoothed at $\Lambda \sim \emph{k}_{\rm nl}$.

HI power spectrum in real space

nonlinear correction

• HI power spectrum at z=1.5: $P_{\rm HI}(k)=P_{\rm HI}^{11}(k)+\overline{P_{\rm HI}^{22}(k)+P_{\rm HI}^{13}(k)}$.

Linear HI power spectrum not enough on ultra-large scales.

Bias renormalization: Gaussian initial conditions I

On large scale, it is possible to obtain an effective linear theory:

$$P_{ extsf{HI}}^L(k) ~pprox ~ \left[b_1 + rac{1}{2}\left(b_3 + rac{68}{21}b_2
ight)\sigma_{\Lambda}^2
ight]^2 P_m(k) + N_{ ext{eff}}$$

• where $N_{\rm eff}$ is given by

$$N_{\mathrm{eff}} = rac{1}{2}b_2^2 \int rac{\mathrm{d}^3 k_1}{(2\pi)^3} P_m^2(k_1) \,.$$

Define an effective bias on large scales

$$b_{ ext{eff}}(k, \Lambda) = \sqrt{rac{P_{ ext{HI}}(k)}{P_{m}(k)}} = \sqrt{b_1 + rac{1}{2} \left(b_3 + rac{68}{21} b_2
ight) \sigma_{\Lambda}^2 + rac{N_{ ext{eff}}}{P_{m}(k)}} \,.$$

Effective bias acquires scale dependence due to nonlinear effects.

Bias renormalization: Gaussian initial conditions II

• Scale dependence of the effective bias on ultra-large scales.

Implications for primordial non-Gaussainity

• Non-Gaussainity in the bias (Dalal et al. 2007, Matarrese et al. 2008)

$$b_1\mapsto b_1(k)=b_1+\mathsf{f}_{\mathsf{nl}}\left(rac{\mathcal{H}}{k}
ight)^2\Delta b\,,\quad \Delta b\propto (b_1-1)
eq (b_{\mathsf{eff}}-1)$$

Redshift space distortions

Let's include the effect of redshift space distortions.

General relativistic redshift space distortions I

Real to redshift space map

$$s^i = x^i + \frac{n^i}{\mathcal{H}} \delta z \,,$$

On large scales, perturbation theory is valid, so we expand

$$\delta z = \partial_{_{\parallel}} v_{s}^{_{(1)}} - \Phi_{s}^{_{(1)}} - \int_{0}^{\chi_{s}} (\Phi^{_{(1)}\prime} + \Psi^{_{(1)}\prime}) d\chi + \frac{1}{2} \partial_{_{\parallel}} v_{s}^{_{(2)}} + \frac{1}{3!} \partial_{_{\parallel}} v_{s}^{_{(3)}}.$$

The HI brightness temperature becomes

$$\mathcal{T}^{\mathrm{obs}}(z,\mathbf{n}) = \bar{\mathcal{T}}(z) \Big[1 + \Delta_{\mathcal{T}}(z,\mathbf{n}) \Big]$$

General relativistic redshift space distortions II

Dominant terms on all scales:

$$\begin{split} \Delta_{T}(z,\mathbf{n}) &= \delta_{\mathsf{HI}} - \frac{1}{\mathcal{H}} \partial_{\parallel}^{2} v \\ &= \frac{\mathsf{GRcorrection}}{\mathsf{GRcorrection}} \\ &+ \left[\partial_{\parallel} v^{(1)}, \Psi^{(1)'}, \Phi^{(1)} \right] \\ &+ \left[\delta_{\mathsf{HI}}^{(1)} \partial_{\parallel}^{2} v^{(1)}, \left(\partial_{\parallel}^{2} v^{(1)} \right)^{2} \right] \\ &+ \left[\left(\frac{1}{\mathcal{H}} \partial_{\parallel}^{2} v^{(1)} \right)^{3}, \delta_{\mathsf{HI}}^{(2)} \partial_{\parallel}^{2} v^{(1)} \right] \\ &+ \mathsf{Lensing correction} \end{split}$$

HI power spectrum in redshift space

• Power spectrum: $P_T = P_T^{11}(k, \mu) + \overbrace{P_T^{22}(k, \mu) + P_T^{13}(k, \mu)}^{\text{nonlinear correction}}$

Effective HI power spectrum on large scales

Large scale limit

$$P_T^{0L}(k) = \bar{T}^2 \left[b_1 b_{NL} + \frac{1}{3} (b_1 + b_{NL}) f + \frac{1}{5} f^2 + \left(\frac{\mathcal{B}^2}{3} + \mathcal{A} (b_1 + b_{NL}) + \frac{2}{3} \mathcal{A} f \right) \left(\frac{\mathcal{H}}{k} \right)^2 + \mathcal{A}^2 \left(\frac{\mathcal{H}}{k} \right)^4 \right] P_m(k) + N_{\text{eff}},$$

where

$$b_{
m NL}=b_1+\left(b_3+rac{68}{21}b_2
ight)\sigma_{\Lambda}^2+\mathcal{I}_R^0(k,\Lambda)\,.$$

• The effective bias in redshift space:

$$b_{\mathrm{eff}}^{\mathrm{RS}}(k,\Lambda) = \sqrt{\frac{P_T^0(k)}{P_m(k)}} = \sqrt{\frac{{P_T^0}^L(k)}{P_m(k)}} \,.$$

Real/redshift space bias

• The assumption that $b_{\text{eff}}^{\text{RS}}(k, \Lambda) = b_{\text{eff}}(k, \Lambda)$?

Angular Correlation function

What does the angular correlation function say?

Angular Correlation function I

 We can also compute the simpler part of the total angular power spectrum.

$$\mathcal{C}_{\ell}(\nu_1, \nu_2) = \mathcal{C}^{\operatorname{Lin}}_{\ell}(\nu_1, \nu_2) + \mathcal{C}^{\operatorname{Nonlin}}_{\ell}(\nu_1, \nu_2),$$

where the linear order is given by

$$C_{\ell}^{L}(\nu_{1},\nu_{2}) = \frac{2}{\pi} \int k^{2} dk P_{m}(k) W_{\ell}^{(1)}(\nu_{1},k) W_{\ell}^{(1)}(\nu_{2},k),$$

and the nonlinear part is given by

$$C_{\ell}^{\mathrm{NL}}(\nu_{1},\nu_{2}) = \frac{2}{\pi} \int k^{2} dk \left[P_{22}(\nu_{1},\nu_{2},k) + \frac{1}{2} \left(W_{\ell}^{(1)}(\nu_{1},k) P_{13}(\nu_{2},k) + W_{\ell}^{(1)}(\nu_{2},k) P_{13}(\nu_{1},k) \right) \right].$$

Angular Correlation function II

Angular Correlation function III

Term	Effect	Scale dep.	z-dep	% contri.
Δ_{HI}	Clustering	$\sim \delta_{m}$	Local	≈ 30
$\Delta_{ m RSD}$	Kaiser RSD	$\sim \delta_{m}$	Local	≈ 20
$\Delta_{ m Dop}$	Doppler effect	$\sim \left(rac{\mathcal{H}}{k} ight)\delta_{m{m}}$	Local	≈ 0.023
$\Delta_{ m SW}$	Sachs-Wolfe effect	$\sim \left(rac{\mathcal{H}}{k} ight)^2 \delta_{m}$	Local	$< 10^{-3}$
Δ_{TD}	Time delay effect	$\sim \left(\frac{\mathcal{H}}{k}\right)^2 \delta_m$	Local	$< 10^{-3}$
$\Delta_{ m ISW}$	ISW effect	$\sim \left(rac{\mathcal{H}}{k} ight)^2 \delta_{m}$	Int.	$< 10^{-4}$
$\Delta_{ m NG}$	Non-Gaussianity	$\sim \left(\frac{\mathcal{H}}{k}\right)^2 \delta_m$	Local	$< 10^{-3}$
$\Delta_{ m NL}$	Nonlinear term	$\sim \left(\frac{\mathcal{H}}{k}\right)^{-2} (\delta_m)^{2*}$	Local	≈ 3.6

atio June 22, 2016

Conclusion

- Contamination: Bias is contaminated by GR and nonlinear effects.
- Scale dependence: Effective Gaussian bias is scale dependent on ultra-large scales.
- Scale dichotomy: For precision cosmology, there may not be a clear dichotomy between linear scales (where everything is fine and good) and nonlinear scales.

Thanks for listening.