

Exploring winding sector with Double Field Theory

G. Aldazabal, CAB-IB,

Bariloche

Fernando's Fest, AS-ICTP, 2016

Conference on Aspects of String Phenomenology and Cosmology

- GA, L. E. Ibanez, F. Quevedo and A. M. Uranga, "D-branes at singularities: A Bottom up approach to the string embedding of the standard model," JHEP 0008 (2000) 002
- G.A, L. E. Ibanez, F. Quevedo and A. M. Uranga, "From branes at singularities to particle physics," 9th Marcel Grossmann Meeting, 2-9 Jul 2000. Rome, Italy
- G.A, L. E. Ibanez and F. Quevedo, "A D^{-}brane alternative to the MSSM," JHEP 0002 (2000) 0152
- G.A, L. E. Ibanez and F. Quevedo, "On realistic brane worlds from type I strings," hep-ph/0005033.2
- G.A, L. E. Ibanez and F. Quevedo, "Standard - like models with broken supersymmetry from type I string vacua," JHEP 0001 (2000) 031
- G.A , A. Font, L. E. Ibanez and F. Quevedo, 'Heterotic / heterotic duality in $\mathrm{D}=6, \mathrm{D}=4$," Phys. Lett. B 380 (1996) 33
- G.A, A. Font, L. E. Ibanez and F. Quevedo, 'Chains of N=2, D $=4$ heterotic type II duals," Nucl. Phys. B 461 (1996) 85

Dualities, Brane worlds, physcis at different scales....

DFT

Duff, Siegel, Tseytlin,
Hull, Zwiebach
Hohm, Hull, Zwiebach
G.A, Andriot, Baron, Bedoya, Berkeley, Berman, Betz, Blair, Blumenhagen, Dall Agata, Dibitetto, Cederwall, Coimbra, Copland, Geissbuller, Fernandez-Melgarejo, Graña, Hohm, Hull, Iguri, Jeon, Kleinschmidt, Kwak, Larfors, Lee, Lust, Malek, Marques, Mayo, Minasias, Nibbelink, Nuñez, Park, Patalong, Penas, Perry, Petrini, Pezzella, Renecke, Roest, Rosabal, Rudolph, Samtleben, Shahbazi, StricklandConstable, Thomson, Waldram, West, Zweibach, ...

Many others...

Motivation:

- Windings are a key stringy ingredient of T-duality.
- DFT aims to incorporate stringy T-duality in an effective field theory.

compact momentum	p	\leftrightarrow	y	compact coordinate
winding	\tilde{p}	\leftrightarrow	\tilde{y}	New dual coordinate

$$
D=d+2 n
$$

$$
T(x, \mathbb{Y})=T(x, y, \tilde{y}) \quad O(n, n) \quad \text { tensor }
$$

- However DFT requires constraints:

Strong constraint

$$
\partial_{y} \otimes \partial_{\tilde{y}}=0 \rightarrow \Phi(x, y)
$$

Generalized Scherk-Schwarz $\Phi(x, \mathbb{Y})=\hat{\Phi}(x) T(y, \tilde{y}) \quad$ Twist of KK zero mode

Windings have not been clearly included in DFT, yet

O(D,D)

D-dim SUGRA

2-D Double Field

 Theorytwisted
T^{d}
twisted
$\mathrm{T}^{d, d}$

$\mathcal{N}=4, D=4$
Full gauged supergravity

$$
D=d+n
$$

$$
d=6, n \underset{6}{=} 4
$$

$$
\text { Gaugings } \equiv \text { fluxes } \longrightarrow \text { scalar potential }
$$

- Moduli stabilization
- Avoid non physical long range forces
- Susy breaking mechanism
- New phenomenology

Circle compactification $z=e^{i \sigma+\tau}$

$$
Y(z, \bar{z})=y(z)+\bar{y}(\bar{z}) \rightarrow Y(z, \bar{z})+2 \pi \tilde{p} R
$$

$$
\uparrow
$$

$$
\tilde{Y}(z, \bar{z})=y(z)-\bar{y}(\bar{z}) \rightarrow \tilde{Y}(z, \bar{z})+2 \pi p \tilde{R}
$$

Left

Right

$$
k=\frac{p}{R}+\frac{\tilde{p}}{\tilde{R}}, \quad \bar{k}=\frac{p}{R}-\frac{\tilde{p}}{\tilde{R}}
$$

Dual radius

$$
\tilde{R}=\alpha^{\prime} / R
$$

String states

$$
\sim: e^{[i k y(z)+i \bar{k} \bar{y}(\bar{z})]} e^{i K \cdot[x(z)+\bar{x}(\bar{z})]}: \equiv e^{[i p Y(z, \bar{z})+\tilde{p} \tilde{Y}(z, \bar{z})]} e^{i K \cdot X(z, \bar{z})}:
$$

$$
\begin{array}{rlr}
X^{\mu}(z, \bar{z}) & \rightarrow x^{\mu} & \\
Y(z) & \rightarrow Y & \tilde{p}, p \neq 0 \\
\tilde{Y}(\bar{z}) & \rightarrow \tilde{Y} & \\
S^{1} \times M_{s t} & \rightarrow S^{1}(R) \times \tilde{S}^{1}(\tilde{R}) \times M_{s t}
\end{array}
$$

String $\quad \rightarrow \quad$ DFT

Need to explore $p, \tilde{p} \neq 0$ sector

$$
\begin{aligned}
M^{2} & =\frac{2}{\alpha^{\prime}}(N+\tilde{N}-2)+\left[\left(\frac{p}{R}\right)^{2}+\left(\frac{\tilde{p}}{\tilde{R}}\right)^{2}\right] \\
\tilde{N}-N & =p \cdot \tilde{p} \quad \text { Level matching }
\end{aligned}
$$

Massive states

Need to explore $p, \tilde{p} \neq 0$ sector

$$
\begin{aligned}
M^{2} & =\frac{2}{\alpha^{\prime}}(N+\tilde{N}-2)+\left[\left(\frac{p}{R}\right)^{2}+\left(\frac{\tilde{p}}{\tilde{R}}\right)^{2}\right] \\
\tilde{N}-N & =p \cdot \tilde{p} \quad \text { Level matching }
\end{aligned}
$$

Massive states

Need to explore $p, \tilde{p} \neq 0$ sector

$$
\begin{aligned}
M^{2} & =\frac{2}{\alpha^{\prime}}(N+\tilde{N}-2)+\left[\left(\frac{p}{R}\right)^{2}+\left(\frac{\tilde{p}}{\tilde{R}}\right)^{2}\right] \\
\tilde{N}-N & =p \cdot \tilde{p} \quad \text { Level matching }
\end{aligned}
$$

Massive states

Need to explore $p, \tilde{p} \neq 0$ sector

$$
\begin{aligned}
M^{2} & =\frac{2}{\alpha^{\prime}}(N+\tilde{N}-2)+\left[\left(\frac{p}{R}\right)^{2}+\left(\frac{\tilde{p}}{\tilde{R}}\right)^{2}\right] \\
\tilde{N}-N & =p \cdot \tilde{p} \quad \text { Level matching }
\end{aligned}
$$

Massive states

$$
\begin{array}{ll}
\text { ie } \quad \tilde{N}=1, N=1 & M^{2}=\left(\frac{p}{R}\right)^{2}+\left(\frac{\tilde{p}}{\tilde{R}}\right)^{2} \\
p=\tilde{p}=0 & \begin{array}{l}
\text { Universal massless sector }+\mathrm{KK} \\
\text { massless vector bosons }
\end{array} \\
p \text { or } \tilde{p} \neq 0 & \text { Massive (work in progress) }
\end{array}
$$

Universal massless sector $+\mathrm{KK} \quad U(1)_{L} \times U(1)_{R}$

Need to explore $p, \tilde{p} \neq 0$ sector

$$
\begin{aligned}
M^{2} & =\frac{2}{\alpha^{\prime}}(N+\tilde{N}-2)+\left[\left(\frac{p}{R}\right)^{2}+\left(\frac{\tilde{p}}{\tilde{R}}\right)^{2}\right] \\
\tilde{N}-N & =p \cdot \tilde{p} \quad \text { Level matching }
\end{aligned}
$$

Massive states

$$
\left.\begin{array}{ll}
\text { ie } \quad \tilde{N}=1, N=1 \quad M^{2}=\left(\frac{p}{R}\right)^{2}+\left(\frac{\tilde{p}}{\tilde{R}}\right)^{2} \\
p=\tilde{p}=0 \quad & \begin{array}{l}
\text { Universal massless sector + KK } U(1)_{L} \times U(1)_{R} \\
\text { massless vector bosons }
\end{array} \\
p \text { or } \tilde{p} \neq 0 & \text { Massive (work in progress) }
\end{array}\right] \quad \text { Gauge enhancing }
$$

Gauge enhancing

Gauge enhancing

$$
\begin{aligned}
M^{2} & =\frac{2}{\alpha^{\prime}}(N+\tilde{N}-2)+\left[\left(\frac{p}{R}\right)^{2}+\left(\frac{\tilde{p}}{\tilde{R}}\right)^{2}\right] \quad N=N_{x}+N_{y} \\
\tilde{N}-N & =p \cdot \tilde{p} \quad \quad \text { Level } \\
\text { matching } &
\end{aligned}
$$

Gauge enhancing

$$
\begin{array}{rlr}
M^{2} & =\frac{2}{\alpha^{\prime}}(N+\tilde{N}-2)+\left[\left(\frac{p}{R}\right)^{2}+\left(\frac{\tilde{p}}{\tilde{R}}\right)^{2}\right] \quad N=N_{x}+N_{y} \\
\tilde{N}-N & =p \cdot \tilde{p} \quad \quad \text { Level } \\
& \quad \text { matching } &
\end{array}
$$

$$
\tilde{N}_{x}=1, N_{y}=1, p=\tilde{p}=0 \quad \text { KK massless vector boson } \quad U(1)_{L}
$$

Gauge enhancing

$$
\begin{array}{rlrl}
M^{2} & =\frac{2}{\alpha^{\prime}}(N+\tilde{N}-2)+\left[\left(\frac{p}{R}\right)^{2}+\left(\frac{\tilde{p}}{\tilde{R}}\right)^{2}\right] \quad N=N_{x}+N_{y} \\
\tilde{N}-N & =p \cdot \tilde{p} \quad \quad \text { Level } \\
& \text { matching } &
\end{array}
$$

$$
\tilde{N}_{x}=1, N_{y}=1, p=\tilde{p}=0 \quad \text { KK massless vector boson } \quad U(1)_{L}
$$

$$
\text { choose } \tilde{N}_{x}=1, N_{x}=0
$$

Massive vector boson

Gauge enhancing

$$
\tilde{N}_{x}=1, N_{y}=1, p=\tilde{p}=0 \quad \text { KK massless vector boson } \quad U(1)_{L}
$$

$$
\text { choose } \quad \tilde{N}_{x}=1, N_{x}=0
$$

Massive vector boson

Gauge enhancing

$$
\begin{aligned}
M^{2} & =\frac{2}{\alpha^{\prime}}(0+1-2)+\left(\frac{p}{R}\right)^{2}+\left(\frac{\tilde{p}}{\tilde{R}}\right)^{2} \\
1-0 & =1=p \cdot \tilde{p}
\end{aligned}
$$

$\tilde{N}_{x}=1, N_{y}=1, p=\tilde{p}=0 \quad$ KK massless vector boson $\quad U(1)_{L}$
choose $\tilde{N}_{x}=1, N_{x}=0$
Massive vector boson

Gauge enhancing

$$
\begin{aligned}
M^{2} & =\frac{2}{\alpha^{\prime}}(0+1-2)+\left(\frac{p}{R}\right)^{2}+\left(\frac{\tilde{p}}{\tilde{R}}\right)^{2} \\
1-0 & =1=p \cdot \tilde{p}
\end{aligned}
$$

$\tilde{N}_{x}=1, N_{y}=1, p=\tilde{p}=0 \quad$ KK massless vector boson $\quad U(1)_{L}$
choose $\tilde{N}_{x}=1, N_{x}=0$
choose $\tilde{p}=p= \pm 1$

Massive vector boson
Level matching

Gauge enhancing

$$
\begin{array}{lc}
\tilde{N}_{x}=1, N_{y}=1, p=\tilde{p}=0 & \text { KK massless vector boson } U(1)_{L} \\
\text { choose } & \tilde{N}_{x}=1, N_{x}=0
\end{array} \text { Massive vector boson }
$$

Gauge enhancing

$$
\begin{aligned}
M^{2} & =-\frac{2}{\alpha^{\prime}}+\left(\frac{1}{R}\right)^{2}+\left(\frac{1}{\tilde{R}}\right)^{2} \\
1-0 & =1=1.1
\end{aligned}
$$

$$
\tilde{N}_{x}=1, N_{y}=1, p=\tilde{p}=0 \quad \text { KK massless vector boson } \quad U(1)_{L}
$$

choose $\tilde{N}_{x}=1, N_{x}=0$
choose $\quad \tilde{p}=p= \pm 1$

Massive vector boson
Level matching

Gauge enhancing

$$
\begin{aligned}
M^{2} & =-\frac{2}{\alpha^{\prime}}+\left(\frac{1}{R}\right)^{2}+\left(\frac{1}{\tilde{R}}\right)^{2} \\
1-0 & =1=1.1
\end{aligned}
$$

$\tilde{N}_{x}=1, N_{y}=1, p=\tilde{p}=0 \quad$ KK massless vector boson $\quad U(1)_{L}$
choose $\tilde{N}_{x}=1, N_{x}=0$
choose $\quad \tilde{p}=p= \pm 1$
Slide to $\quad R=\tilde{R}=\sqrt{\alpha^{\prime}}=R_{s d}$

Massive vector boson
Level matching
Self dual radius

Gauge enhancing

$\tilde{N}_{x}=1, N_{y}=1, p=\tilde{p}=0 \quad$ KK massless vector boson $\quad U(1)_{L}$
choose $\tilde{N}_{x}=1, N_{x}=0$
choose $\tilde{p}=p= \pm 1$
Slide to $\quad R=\tilde{R}=\sqrt{\alpha^{\prime}}=R_{s d}$

Massive vector boson
Level matching
Self dual radius

Gauge enhancing

$$
M^{2}=-\frac{2}{\alpha^{\prime}}+\left(\frac{1}{\sqrt{\alpha^{\prime}}}\right)^{2}+\left(\frac{1}{\sqrt{\alpha^{\prime}}}\right)^{2}=0
$$

$\tilde{N}_{x}=1, N_{y}=1, p=\tilde{p}=0 \quad$ KK massless vector boson $\quad U(1)_{L}$
choose $\tilde{N}_{x}=1, N_{x}=0$
choose $\tilde{p}=p= \pm 1$
Slide to $\quad R=\tilde{R}=\sqrt{\alpha^{\prime}}=R_{s d}$

Massive vector boson
Level matching
Self dual radius

Gauge enhancing

$$
M^{2}=-\frac{2}{\alpha^{\prime}}+\left(\frac{1}{\sqrt{\alpha^{\prime}}}\right)^{2}+\left(\frac{1}{\sqrt{\alpha^{\prime}}}\right)^{2}=0
$$

$\tilde{N}_{x}=1, N_{y}=1, p=\tilde{p}=0 \quad$ KK massless vector boson $\quad U(1)_{L}$
choose $\tilde{N}_{x}=1, N_{x}=0 \quad$ Massive vector boson
choose $\quad \tilde{p}=p= \pm 1 \quad$ Level matching
Slide to $\quad R=\tilde{R}=\sqrt{\alpha^{\prime}}=R_{s d} \quad$ Self dual radius

2 new massless vector bosons

$$
U(1)_{L} \rightarrow S U(2)_{L}
$$

Gauge enhancing

$$
M^{2}=-\frac{2}{\alpha^{\prime}}+\left(\frac{1}{\sqrt{\alpha^{\prime}}}\right)^{2}+\left(\frac{1}{\sqrt{\alpha^{\prime}}}\right)^{2}=0
$$

$\tilde{N}_{x}=1, N_{y}=1, p=\tilde{p}=0 \quad$ KK massless vector boson $\quad U(1)_{L}$
choose $\tilde{N}_{x}=1, N_{x}=0 \quad$ Massive vector boson
choose $\quad \tilde{p}=p= \pm 1 \quad$ Level matching
Slide to $\quad R=\tilde{R}=\sqrt{\alpha^{\prime}}=R_{s d} \quad$ Self dual radius

2 new massless vector bosons

$$
U(1)_{L} \rightarrow S U(2)_{L}
$$

Same for Right sector, extra massless scalars..

Gauge enhancing

$$
U(1)_{L} \times U(1)_{R} \rightarrow S U(2)_{L} \times S U(2)_{R}
$$

2 d vectors
 6d vectors

1 massless KK scalar
(+ "slightly" massive states)

$$
R \rightarrow \tilde{R} \quad 9 \text { massless scalars }
$$

$\mathrm{d}^{2} \quad$ Universal gravity sector G, B

Massive states+tachyons I

Gauge enhancing

$$
U(1)_{L} \times U(1)_{R} \rightarrow S U(2)_{L} \times S U(2)_{R}
$$

2 d vectors
 6d vectors

1 massless KK scalar
(+ "slightly" massive states)

$$
R \rightarrow \tilde{R} \quad 9 \text { massless scalars }
$$

$\mathrm{d}^{2} \quad$ Universal gravity sector G, B

Gauge enhancing

$$
U(1)_{L} \times U(1)_{R} \rightarrow S U(2)_{L} \times S U(2)_{R}
$$

2d vectors
$6 d$ vectors
1 massless KK scalar
(+ "slightly" massive states)

$$
R \rightarrow \tilde{R} \quad 9 \text { massless scalars }
$$

$\mathrm{d}^{2} \quad$ Universal gravity sector G, B

Massive stata $<$ tachyons I

$d^{2}+2 d+1=\operatorname{dim} \frac{O(d+1, d+1)}{O(d+1) \times O(d+1)} \quad \rightarrow \quad d^{2}+6 d+9=\operatorname{dim} \frac{O(d+3, d+3)}{O(d+3) \times O(d+3)}$

Gauge enhancing

$$
U(1)_{L} \times U(1)_{R} \rightarrow S U(2)_{L} \times S U(2)_{R}
$$

2 d vectors
$6 d$ vectors
1 massless KK scalar
(+ "slightly" massive states)

$$
R \rightarrow \tilde{R} \quad 9 \text { massless scalars }
$$

$\mathrm{d}^{2} \quad \stackrel{+}{+}$ Universal gravity sector G, B

Massive stata $<$ tachyons I

$d^{2}+2 d+1=\operatorname{dim} \frac{O(d+1, d+1)}{O(d+1) \times O(d+1)} \quad \rightarrow \quad d^{2}+6 d+9=\operatorname{dim} \frac{O(d+3, d+3)}{O(d+3) \times O(d+3)}$
DFT description?

PLAN

PLAN

- String: (3-point) scattering amplitudes for $R=\tilde{R} \quad$ and $R \neq \tilde{R}$

Derivation of Effective gauge field theory action

PLAN

- String: (3-point) scattering amplitudes for $R=\tilde{R}$ and $R \neq \tilde{R}$

Derivation of Effective gauge field theory action

- DFT: Brief introduction. Frame formulation.

PLAN

- String: (3-point) scattering amplitudes for $R=\tilde{R}$ and $R \neq \tilde{R}$

Derivation of Effective gauge field theory action

- DFT: Brief introduction. Frame formulation.

Derivation of generic Effective DFT gauge field theory action.

PLAN

- String: (3-point) scattering amplitudes for $R=\tilde{R}$ and $R \neq \tilde{R}$

Derivation of Effective gauge field theory action

- DFT: Brief introduction. Frame formulation.

Derivation of generic Effective DFT gauge field theory action.

- String: (3-point) scattering amplitudes for $R=\tilde{R} \quad$ and $R \neq \tilde{R}$

Derivation of Effective gauge field theory action

- DFT: Brief introduction. Frame formulation.

Derivation of generic Effective DFT gauge field theory action.

- Build up a specific frame and compare with strings results.
- String: (3-point) scattering amplitudes for $R=\tilde{R} \quad$ and $R \neq \tilde{R}$

Derivation of Effective gauge field theory action

- DFT: Brief introduction. Frame formulation.

Derivation of generic Effective DFT gauge field theory action.

- Build up a specific frame and compare with strings results.
- String: (3-point) scattering amplitudes for $R=\tilde{R} \quad$ and $R \neq \tilde{R}$

Derivation of Effective gauge field theory action

- DFT: Brief introduction. Frame formulation.

Derivation of generic Effective DFT gauge field theory action.

- Build up a specific frame and compare with strings results.
- Compactification space geometry?
- String: (3-point) scattering amplitudes for $\quad R=\tilde{R} \quad$ and $R \neq \tilde{R}$

Derivation of Effective gauge field theory action

- DFT: Brief introduction. Frame formulation.

Derivation of generic Effective DFT gauge field theory action.

- Build up a specific frame and compare with strings results.
- Compactification space geometry?
- String: (3-point) scattering amplitudes for $\quad R=\tilde{R} \quad$ and $R \neq \tilde{R}$

Derivation of Effective gauge field theory action

- DFT: Brief introduction. Frame formulation.

Derivation of generic Effective DFT gauge field theory action.

- Build up a specific frame and compare with strings results.
- Compactification space geometry?
- Conclusions and Outlook
- String: (3-point) scattering amplitudes for $R=\tilde{R} \quad$ and $R \neq \tilde{R}$

Derivation of Effective gauge field theory action

- DFT: Brief introduction. Frame formulation.

Derivation of generic Effective DFT gauge field theory action.

- Build up a specific frame and compare with strings results.
- Compactification space geometry?
- Conclusions and Outlook

String theory action

String vertex operators

String vertex operators

$$
\begin{aligned}
& V(z, \bar{z}) \sim: \Phi(\epsilon \partial y, \partial X) e^{[i k y(z)+i \bar{k} \bar{y}(\bar{z})]} e^{i K \cdot[x(z)+\bar{x}(\bar{z})]}: \equiv \Phi(\epsilon \partial y, \partial X) e^{[i p Y(z, \bar{z})+\tilde{p} \tilde{Y}(z, \bar{z})]} e^{i K \cdot X(z, \bar{z})}: \\
& k=\frac{p}{R}+\frac{\tilde{p}}{\tilde{R}}, \quad \bar{k}=\frac{p}{R}-\frac{\tilde{p}}{\tilde{R}} \quad \text { mixes Left and Right }
\end{aligned}
$$

String vertex operators

$V(z, \bar{z}) \sim: \Phi(\epsilon \partial y, \partial X) e^{[i k y(z)+i \bar{k} \bar{y}(\bar{z})]} e^{i K \cdot[x(z)+\bar{x}(\bar{z})]}: \equiv \Phi(\epsilon \partial y, \partial X) e^{[i p Y(z, \bar{z})+\tilde{p} \tilde{Y}(z, \bar{z})]} e^{i K \cdot X(z, \bar{z})}:$
$k=\frac{p}{R}+\frac{\tilde{p}}{\tilde{R}}, \quad \bar{k}=\frac{p}{R}-\frac{\tilde{p}}{\tilde{R}} \quad$ mixes Left and Right

Level matching

$$
p . \tilde{p}=k . k-\bar{k} . \bar{k}=\bar{N}-N
$$

$$
\partial_{Y} \partial_{\tilde{Y}} V=\left(\partial_{y} \partial_{y}-\partial_{\bar{y}} \partial_{\bar{y}}\right) V=p \cdot \tilde{p} V=(\bar{N}-N) V
$$

String vertex operators

$V(z, \bar{z}) \sim: \Phi(\epsilon \partial y, \partial X) e^{[i k y(z)+i \bar{k} \bar{y}(\bar{z})]} e^{i K \cdot[x(z)+\bar{x}(\bar{z})]}: \equiv \Phi(\epsilon \partial y, \partial X) e^{[i p Y(z, \bar{z})+\tilde{p} \tilde{Y}(z, \bar{z})]} e^{i K \cdot X(z, \bar{z})}:$
$k=\frac{p}{R}+\frac{\tilde{p}}{\tilde{R}}, \quad \bar{k}=\frac{p}{R}-\frac{\tilde{p}}{\tilde{R}} \quad$ mixes Left and Right

Level matching

$$
p . \tilde{p}=k . k-\bar{k} \cdot \bar{k}=\bar{N}-N
$$

$$
\partial_{Y} \partial_{\tilde{Y}} V=\left(\partial_{y} \partial_{y}-\partial_{\bar{y}} \partial_{\bar{y}}\right) V=p \cdot \tilde{p} V=(\bar{N}-N) V
$$

i.e. $\quad p=\tilde{p}=1 \quad p . \tilde{p}=1$
$V^{ \pm}(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{\prime 1 / 2}} \epsilon_{\mu}^{ \pm}: \bar{\partial} X^{\mu} e^{i K \cdot X} \exp \left[\pm i m_{+} y(z)\right] \exp \left[\pm i m_{-} \bar{y}(\bar{z})\right]:$

$$
\begin{aligned}
& m_{-}=R^{-1}-\tilde{R}^{-1}=\frac{1}{\alpha^{\prime}}(\tilde{R}-R), \\
& m_{+}=R^{-1}+\tilde{R}^{-1}=\frac{1}{\alpha^{\prime}}(\tilde{R}+R) .
\end{aligned}
$$

String vertex operators

$V(z, \bar{z}) \sim: \Phi(\epsilon \partial y, \partial X) e^{[i k y(z)+i \bar{k} \bar{y}(\bar{z})]} e^{i K \cdot[x(z)+\bar{x}(\bar{z})]}: \equiv \Phi(\epsilon \partial y, \partial X) e^{[i p Y(z, \bar{z})+\tilde{p} \tilde{Y}(z, \bar{z})]} e^{i K \cdot X(z, \bar{z})}:$
$k=\frac{p}{R}+\frac{\tilde{p}}{\tilde{R}}, \quad \bar{k}=\frac{p}{R}-\frac{\tilde{p}}{\tilde{R}} \quad$ mixes Left and Right

Level matching

$$
p . \tilde{p}=k . k-\bar{k} \cdot \bar{k}=\bar{N}-N
$$

$$
\partial_{Y} \partial_{\tilde{Y}} V=\left(\partial_{y} \partial_{y}-\partial_{\bar{y}} \partial_{\bar{y}}\right) V=p \cdot \tilde{p} V=(\bar{N}-N) V
$$

i.e. $\quad p=\tilde{p}=1 \quad p . \tilde{p}=1$
$V^{ \pm}(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{\prime 1 / 2}} \epsilon_{\mu}^{ \pm}: \bar{\partial} X^{\mu} e^{i K \cdot X} \exp \left[\pm i m_{+} y(z)\right] \exp \left[\pm i m_{-} \bar{y}(\bar{z})\right]:$

Massive vector

$$
\begin{array}{ll}
m_{V}=m_{-} \rightarrow 0 & m_{-}=R^{-1}-\tilde{R}^{-1}=\frac{1}{\alpha^{\prime}}(\tilde{R}-R), \\
R \rightarrow \tilde{R} \rightarrow \sqrt{\alpha^{\prime}} & m_{+}=R^{-1}+\tilde{R}^{-1}=\frac{1}{\alpha^{\prime}}(\tilde{R}+R) .
\end{array}
$$

$$
R=\tilde{R}=\sqrt{\alpha^{\prime}}
$$

String vertex operators $R=\tilde{R}=\sqrt{\alpha^{\prime}}$

String vertex operators
 $$
R=\tilde{R}=\sqrt{\alpha^{\prime}}
$$

- Massless Left gauge bosons

String vertex operators
 $$
R=\tilde{R}=\sqrt{\alpha^{\prime}}
$$

- Massless Left gauge bosons $S U(2)_{L}$

$\bar{N}_{x}=1, N_{y}=1$	$p=\tilde{p}=0(k=\bar{k}=0)$	$V^{3}(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{\prime} / 2} \epsilon_{\mu}^{3}: J^{3}(z) \bar{\partial} X^{\mu} e^{i K \cdot X}$	$A_{\mu}^{3} d x^{\mu}$
$\bar{N}_{x}=1$	$p=\tilde{p}= \pm 1\left(k= \pm \frac{2}{\sqrt{\alpha^{\prime}}} \bar{k}=0\right)$	$V^{ \pm}(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{\prime 1 / 2}} \epsilon_{\mu}^{ \pm}: J^{ \pm}(z) \bar{\partial} X^{\mu} e^{i K \cdot X}$	$A_{\mu}^{ \pm} d x^{\mu}$

String vertex operators
 $R=\tilde{R}=\sqrt{\alpha^{\prime}}$

- Massless Left gauge bosons $\quad S U(2)_{L}$

$\bar{N}_{x}=1, N_{y}=1$	$p=\tilde{p}=0(k=\bar{k}=0)$	$V^{3}(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{\prime 1 / 2}} \epsilon_{\mu}^{3}: J^{3}(z) \bar{\partial} X^{\mu} e^{i K \cdot X}$	$A_{\mu}^{3} d x^{\mu}$
$\bar{N}_{x}=1$	$p=\tilde{p}= \pm 1\left(k= \pm \frac{2}{\sqrt{\alpha^{\prime}}}, \bar{k}=0\right)$	$V^{ \pm}(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{c}}{\alpha^{\prime 1 / 2}} \epsilon_{\mu}^{ \pm}: J^{ \pm}(z) \bar{\partial} X^{\mu} e^{i K \cdot X}$	$A_{\mu}^{ \pm} d x^{\mu}$

- Massless Right gauge bosons $\quad S U(2)_{R}$

$N_{x}=1, \bar{N}_{y}=1$	$p=\tilde{p}=0(k=\bar{k}=0)$	$\bar{V}^{3}(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{\prime} / 2} \epsilon_{\mu}^{3}: \bar{J}^{3}(z) \bar{\partial} X^{\mu} e^{i K \cdot X}$	$\bar{A}_{\mu}^{3} d x^{\mu}$
$N_{x}=1$	$p=-\tilde{p}= \pm 1\left(k=0, \bar{k}= \pm \frac{2}{\sqrt{\alpha^{\prime}}}\right)$	$\bar{V}^{ \pm}(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{\prime 1 / 2}} \epsilon_{\mu}^{ \pm}: \bar{J}^{ \pm}(z) \partial X^{\mu} e^{i K \cdot X}$	$\bar{A}_{\mu}^{ \pm} d x^{\mu}$

String vertex operators
 $$
R=\tilde{R}=\sqrt{\alpha^{\prime}}
$$

- Massless Left gauge bosons $\quad S U(2)_{L}$

$\bar{N}_{x}=1, N_{y}=1$	$p=\tilde{p}=0(k=\bar{k}=0)$	$V^{3}(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{\prime 1 / 2}} \epsilon_{\mu}^{3}: J^{3}(z) \bar{\partial} X^{\mu} e^{i K \cdot X}$	$A_{\mu}^{3} d x^{\mu}$
$\bar{N}_{x}=1$	$p=\tilde{p}= \pm 1\left(k= \pm \frac{2}{\sqrt{\alpha^{\prime}}}, \bar{k}=0\right)$	$V^{ \pm}(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{\prime 1 / 2}} \epsilon_{\mu}^{ \pm}: J^{ \pm}(z) \bar{\partial} X^{\mu} e^{i K \cdot X}$	$A_{\mu}^{ \pm} d x^{\mu}$

- Massless Right gauge bosons $\quad S U(2)_{R}$

$N_{x}=1, \bar{N}_{y}=1$	$p=\tilde{p}=0(k=\bar{k}=0)$	$\bar{V}^{3}(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{\prime} / 2} \epsilon_{\mu}^{3}: \bar{J}^{3}(z) \bar{\partial} X^{\mu} e^{i K \cdot X}$	$\bar{A}_{\mu}^{3} d x^{\mu}$
$N_{x}=1$	$p=-\tilde{p}= \pm 1\left(k=0, \bar{k}= \pm \frac{2}{\sqrt{\alpha^{\prime}}}\right)$	$\bar{V}^{ \pm}(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{\prime 1 / 2}} \epsilon_{\mu}^{ \pm}: \bar{J}^{ \pm}(z) \partial X^{\mu} e^{i K \cdot X}$	$\bar{A}_{\mu}^{ \pm} d x^{\mu}$

- Massless scalars
$(3,3) \quad S U(2)_{L} \times S U(2)_{R}$

$$
\begin{array}{|c|c|c|}
\hline N_{y}=1, \bar{N}_{y}=1 & p=\tilde{p}=0 & M^{33} \\
N_{y}=1, \bar{N}_{y}=0 & p=-\tilde{p}= \pm 1 & M^{3 \pm} \\
N_{y}=0, \bar{N}_{y}=1 & p=\tilde{p}= \pm 1 & M^{ \pm 3} \\
N_{y}=0, \bar{N}_{y}=0 & p= \pm 2, \tilde{p}=0 & M^{ \pm \pm} \\
N_{y}=0, \bar{N}_{y}=0 & p=0, \tilde{p}= \pm 2 & M^{ \pm \mp} \\
\hline
\end{array}
$$

$$
V_{S}(z, \bar{z})=g_{c}^{\prime} \sqrt{2} M^{a b}(K): J^{a}(z) \bar{J}^{b}(\bar{z}) e^{i K \cdot X}:
$$

CFT Currents

$$
V(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{\prime 1 / 2}} \epsilon_{\mu}^{a}(K): J^{a}(z) \bar{\partial} X^{\mu} e^{i K \cdot X} d z d \bar{z}
$$

CFT Currents

$$
V(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{\prime} / 2} \varepsilon_{\mu \mu}^{a}(K): J^{a}(z) \bar{\partial} X^{\mu} e^{i K \cdot X} d z \overline{\bar{z}}
$$

$$
J^{3}(z)=\frac{i}{\sqrt{\alpha^{\prime}}} \partial z y(z), \quad J^{ \pm}(z)=: \exp \left(\pm 2 i \alpha^{\prime-1 / 2} y(z)\right):
$$

$$
\mathrm{J}^{a}(z) J^{b}(0) \sim \frac{\kappa^{a b}}{z^{2}}+\frac{f_{c}^{a b}}{z} J^{c}(0) \quad \rightarrow \quad S U(2)_{L}
$$

CFT Currents

$$
V(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{1 / 2} \varepsilon_{\mu}^{e}(K): J^{\alpha}(z) \bar{\partial} X^{\mu} e^{i K \cdot X} d z d \bar{z}}
$$

$$
J^{3}(z)=\frac{i}{\sqrt{\alpha^{\prime}}} \partial_{z} y(z), \quad J^{ \pm}(z)=: \exp \left(\pm 2 i \alpha^{\prime-1 / 2} y(z)\right):
$$

$$
\mathrm{J}^{a}(z) J^{b}(0) \sim \frac{\kappa^{a b}}{z^{2}}+\frac{f_{c}^{a b}}{z} J^{c}(0) \quad \rightarrow \quad S U(2)_{L}
$$

$$
A^{a} J^{a}(z) d z=\left(A^{+} e^{+2 i \alpha^{\prime-1 / 2} y(z)}+A^{-} e^{-2 i \alpha^{\prime-1 / 2} y(z)}\right) d z+A^{3} d y(z)
$$

CFT Currents

$$
V(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{1 / 2} \epsilon_{\mu}^{e}(K): J^{a}(z) \bar{\partial} X^{\mu} e^{i K \cdot x} d z d \bar{z}}
$$

$$
J^{3}(z)=\frac{i}{\sqrt{\alpha^{\prime}}} \partial_{z} y(z), \quad J^{ \pm}(z)=: \exp \left(\pm 2 i \alpha^{\prime-1 / 2} y(z)\right):
$$

$$
\mathrm{J}^{a}(z) J^{b}(0) \sim \frac{\kappa^{a b}}{z^{2}}+\frac{f_{a}^{a b}}{z} J^{c}(0) \quad \rightarrow \quad S U(2)_{L}
$$

$$
A^{a} J^{a}(z) d z=\left(A^{+} e^{+2 i \alpha^{\prime-1 / 2} y(z)}+A^{-} e^{-2 i \alpha^{\prime-1 / 2} y(z)}\right) d z+A^{3} d y(z)
$$

Mode expansion

CFT Currents

$$
V(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{11 / 2}} \epsilon_{\mu}^{a}(K): J^{a}(z) \bar{\partial} X^{\mu} e^{i K \cdot X} d z d \bar{z}
$$

$$
J^{3}(z)=\frac{i}{\sqrt{\alpha^{\prime}}} \partial_{z} y(z), \quad J^{ \pm}(z)=: \exp \left(\pm 2 i \alpha^{\prime-1 / 2} y(z)\right):
$$

$$
\mathrm{J}^{a}(z) J^{b}(0) \sim \frac{\kappa^{a b}}{z^{2}}+\frac{f^{a b}}{z} J^{c}(0) \quad \rightarrow \quad S U(2)_{L}
$$

$$
A^{a} J^{a}(z) d z=\left(A^{+} e^{+2 i \alpha^{\prime-1 / 2} y(z)}+A^{-} e^{-2 i \alpha^{\prime-1 / 2} y(z)}\right) d z+A^{3} d y(z)
$$

Mode expansion

$$
\begin{aligned}
& A(x, \mathbb{Y})=\sum_{(\mathbb{P}=p, \tilde{\boldsymbol{p}})} A^{(\mathbb{P})}(x) e^{i \mathbb{P} \cdot \mathbb{Y} \delta\left(\text { level } \quad \text { matching } \equiv \mathbb{P} \cdot \mathbb{P}=p \cdot \tilde{p}=1 \equiv \partial_{\mathbb{Y}} . \partial_{\mathbb{Y}}=\mathbf{1}\right)} \\
& \mathbb{Y}=(y, \tilde{y})
\end{aligned}
$$

CFT Currents

$$
V(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{11 / 2}} \epsilon_{\mu}^{a}(K): J^{a}(z) \bar{\partial} X^{\mu} e^{i K \cdot X} d z d \bar{z}
$$

$$
J^{3}(z)=\frac{i}{\sqrt{\alpha^{\prime}}} \partial_{z} y(z), \quad J^{ \pm}(z)=: \exp \left(\pm 2 i \alpha^{\prime-1 / 2} y(z)\right):
$$

$$
\mathrm{J}^{a}(z) J^{b}(0) \sim \frac{\kappa^{a b}}{z^{2}}+\frac{f^{a b}}{z} J^{c}(0) \quad \rightarrow \quad S U(2)_{L}
$$

$$
A^{a} J^{a}(z) d z=\left(A^{+} e^{+2 i \alpha^{\prime-1 / 2} y(z)}+A^{-} e^{-2 i \alpha^{\prime-1 / 2} y(z)}\right) d z+A^{3} d y(z)
$$

Mode expansion

$$
\begin{aligned}
& A(x, \mathbb{Y})=\sum_{(\mathbb{P}=p, \tilde{\boldsymbol{p}})} A^{(\mathbb{P})}(x) e^{i \mathbb{P} \cdot \mathbb{Y} \delta\left(\text { level } \quad \text { matching } \equiv \mathbb{P} \cdot \mathbb{P}=p \cdot \tilde{p}=1 \equiv \partial_{\mathbb{Y}} . \partial_{\mathbb{Y}}=\mathbf{1}\right)} \\
& \mathbb{Y}=(y, \tilde{y})
\end{aligned}
$$

CFT Currents

$$
V(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{11 / 2}} \epsilon_{\mu}^{a}(K): J^{a}(z) \bar{\partial} X^{\mu} e^{i K \cdot X} d z d \bar{z}
$$

$$
J^{3}(z)=\frac{i}{\sqrt{\alpha^{\prime}}} \partial_{z} y(z), \quad J^{ \pm}(z)=: \exp \left(\pm 2 i \alpha^{\prime-1 / 2} y(z)\right):
$$

$$
\mathrm{J}^{a}(z) J^{b}(0) \sim \frac{\kappa^{a b}}{z^{2}}+\frac{f^{a b}}{z} J^{c}(0) \quad \rightarrow \quad S U(2)_{L}
$$

$$
A^{a} J^{a}(z) d z=\left(A^{+} e^{+2 i \alpha^{\prime-1 / 2} y(z)}+A^{-} e^{-2 i \alpha^{\prime-1 / 2} y(z)}\right) d z+A^{3} d y(z)
$$

Mode expansion

$$
\begin{gathered}
A(x, \mathbb{Y})=\sum_{(\mathbb{P}=p, \tilde{p})} A^{(\mathbb{P})}(x) e^{i \mathbb{P} \cdot \mathbb{Y} \delta\left(\text { level } \quad \text { matching } \equiv \mathbb{P} \cdot \mathbb{P}=p \cdot \tilde{p}=1 \equiv \partial_{\mathbb{Y}} \cdot \partial_{\mathbb{Y}}=\mathbf{1}\right)} \\
\mathbb{Y}=(y, \tilde{y}) \\
\partial_{\mathbb{Y}} \cdot \partial_{\mathbb{Y}}=0
\end{gathered}
$$

CFT Currents

$$
V(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{\prime 1} / 2} \epsilon_{\mu}^{a}(K): J^{a}(z) \bar{\partial} X^{\mu} e^{i K \cdot X} d z d \bar{z}
$$

$$
J^{3}(z)=\frac{i}{\sqrt{\alpha^{\prime}}} \partial_{z} y(z), \quad J^{ \pm}(z)=: \exp \left(\pm 2 i \alpha^{\prime-1 / 2} y(z)\right):
$$

$$
\mathrm{J}^{a}(z) J^{b}(0) \sim \frac{\kappa^{a b}}{z^{2}}+\frac{f^{a b}}{z} J^{c}(0) \quad \rightarrow \quad S U(2)_{L}
$$

$$
A^{a} J^{a}(z) d z=\left(A^{+} e^{+2 i \alpha^{\prime-1 / 2} y(z)}+A^{-} e^{-2 i \alpha^{\prime-1 / 2} y(z)}\right) d z+A^{3} d y(z)
$$

Mode expansion

$$
\begin{aligned}
& A(x, \mathbb{Y})=\sum_{(\mathbb{P}=p, \tilde{\boldsymbol{p}})} A^{(\mathbb{P})}(x) e^{i \mathbb{P} \cdot \mathbb{Y} \delta\left(\text { level } \quad \text { matching } \equiv \mathbb{P} \cdot \mathbb{P}=p \cdot \tilde{p}=1 \equiv \partial_{\mathbb{Y}} . \partial_{\mathbb{Y}}=\mathbf{1}\right)} \\
& \mathbb{Y}=(y, \tilde{y})
\end{aligned}
$$

$J^{a} \quad$ Internal base

CFT Currents

$$
V(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{11 / 2}} \epsilon_{\mu}^{a}(K): J^{a}(z) \bar{\partial} X^{\mu} e^{i K \cdot X} d z d \bar{z}
$$

$$
J^{3}(z)=\frac{i}{\sqrt{\alpha^{\prime}}} \partial_{z} y(z), \quad J^{ \pm}(z)=: \exp \left(\pm 2 i \alpha^{\prime-1 / 2} y(z)\right):
$$

$$
\mathrm{J}^{a}(z) J^{b}(0) \sim \frac{\kappa^{a b}}{z^{2}}+\frac{f^{a b}}{z} J^{c}(0) \quad \rightarrow \quad S U(2)_{L}
$$

$$
A^{a} J^{a}(z) d z=\left(A^{+} e^{+2 i \alpha^{\prime-1 / 2} y(z)}+A^{-} e^{-2 i \alpha^{\prime-1 / 2} y(z)}\right) d z+A^{3} d y(z)
$$

Mode expansion

$$
\begin{aligned}
& A(x, \mathbb{Y})=\sum_{(\mathbb{P}=p, \tilde{p})} A^{(\mathbb{P})}(x) e^{i \mathbb{P} \cdot \mathbb{Y}} \delta\left(\text { level } \quad \text { matching } \equiv \mathbb{P} \cdot \mathbb{P}=p \cdot \tilde{p}=1 \equiv \partial_{\mathbb{Y}} \cdot \partial_{\mathbb{Y}}=\mathbf{1}\right) \\
& \mathbb{Y}=(y, \tilde{y})
\end{aligned}
$$

$J^{a} \quad$ Internal base

String 3-point amplitudes

$\langle G G G\rangle$
$\langle V V G\rangle+\langle V V V\rangle$
$\langle\bar{V} \bar{V} \bar{G}\rangle+\langle\bar{V} \bar{V} \bar{V}\rangle$
$\left\langle V_{S} V_{S} G\right\rangle+\left\langle V V_{S} V_{S}\right\rangle$
$\left\langle V_{S} V_{S} V_{S}\right\rangle$
$\left\langle V \bar{V} V_{S}\right\rangle$
mixings

Effective action

$R=\tilde{R}=\sqrt{\alpha^{\prime}}$

$$
\begin{aligned}
\frac{1}{\sqrt{g}} \mathcal{L} & =R-\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho} \\
& -\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}-\frac{1}{4} \bar{F}_{\mu \nu}^{a} \bar{F}^{a \mu \nu}-\frac{1}{2} D_{\mu} M^{a \tilde{a}} D_{\nu} M^{a \tilde{a}} g^{\mu \nu} \\
& -\operatorname{det} M-\frac{1}{2} M^{a \tilde{a}} F_{\mu \nu}^{a} \bar{F}^{\tilde{\mu} \mu \nu}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
F_{\mu \nu}^{a} & =2 \partial_{[\mu} A_{\nu]}^{a}+f^{a b c} A_{\mu}^{b} A_{\nu}^{c}, \quad F_{\mu \nu}^{\tilde{a}}=2 \partial_{[\mu} A_{\nu]}^{\tilde{a}}+f^{\tilde{a} \tilde{b} \tilde{c}} A_{\mu}^{\tilde{b}} A_{\nu}^{\tilde{c}}, \\
D_{\mu} M^{a \tilde{a}} & =\partial_{\mu} M^{a \tilde{a}}+f^{a b c} A_{\mu}^{b} M^{c \tilde{a}}+f^{\tilde{a} \tilde{c} \tilde{c}} A_{\mu}^{\tilde{b}} M^{a \tilde{c}} \\
H_{\mu \nu \rho} & =\partial_{\mu} B_{\nu \rho}+A_{[\mu}^{a} F_{\nu \rho]}^{a}+f^{a b c} A_{\mu}^{a} A_{\nu}^{b} A_{\mu}^{c}+\ldots
\end{aligned}
$$

$$
R \neq \tilde{R}
$$

String vertex operators
 $R \neq \tilde{R}$

Only fields that are massles at $R=\tilde{R}=\sqrt{\alpha}^{\prime}$

$$
M^{3 \pm}, \mathrm{M}^{ \pm 3} ?
$$

scalars	m^{2}
M^{33}	0
$M^{ \pm \pm}$	$\frac{4}{R} m_{-}$
$M^{ \pm \mp}$	$\frac{4}{\tilde{R}} m_{-}$

vectors	m^{2}
V^{3}	0
\bar{V}^{3}	0
$V^{ \pm}$	m_{-}^{2}

$$
\begin{aligned}
& m_{-}=R^{-1}-\tilde{R}^{-1}=\frac{1}{\alpha}(\tilde{R}-R) \\
& m_{+}=R^{-1}+\tilde{R}^{-1}=\frac{1}{\alpha}(\tilde{R}+R)
\end{aligned}
$$

String vertex operators
 $R \neq \tilde{R}$

Only fields that are massles at $R=\tilde{R}=\sqrt{\alpha}^{\prime}$

$$
M^{3 \pm}, \mathrm{M}^{ \pm 3} ?
$$

scalars	m^{2}
M^{33}	0
$M^{ \pm \pm}$	$\frac{4}{R} m_{-}$
$M^{ \pm \mp}$	$\frac{4}{\tilde{R}} m_{-}$

vectors	m^{2}
V^{3}	0
\bar{V}^{3}	0
$V^{ \pm}$	m_{-}^{2}

i.e.

$$
\begin{aligned}
& m_{+}=R^{-1}+\tilde{R}^{-1}=\frac{1}{\alpha}(\tilde{R}+R) \\
& V^{ \pm}(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{\prime 1 / 2}} \epsilon_{\mu}^{ \pm}: \bar{\partial} X^{\mu} e^{i K \cdot X} \exp \left[\pm i m_{+} y(z)\right] \exp \left[\pm i m_{-} \bar{y}(\bar{z})\right]:
\end{aligned}
$$

String vertex operators
 $R \neq \tilde{R}$

Only fields that are massles at $R=\tilde{R}=\sqrt{\alpha}^{\prime}$

$$
M^{3 \pm}, \mathrm{M}^{ \pm 3} ?
$$

scalars	m^{2}
M^{33}	0
$M^{ \pm \pm}$	$\frac{4}{R} m_{-}$
$M^{ \pm \mp}$	$\frac{4}{\tilde{R}} m_{-}$

vectors	m^{2}
V^{3}	0
\bar{V}^{3}	0
$V^{ \pm}$	m_{-}^{2}

i.e.

$$
\begin{array}{r}
V_{+}(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{\prime 1 / 2}} \epsilon_{\mu}^{ \pm}: \bar{\partial} X^{\mu} e^{i K \cdot X} \exp \left[\pm i m_{+} y(z)\right] \exp \left[\pm i m_{-} \bar{y}(\bar{z})\right]:
\end{array}
$$

$$
\bar{T}(\bar{z}) V(0) \sim k \cdot \epsilon^{+} \frac{1}{z^{3}}+V(0) \frac{1}{z} \quad \text { anomalous }
$$

String vertex operators
 $R \neq \tilde{R}$

Only fields that are massles at $R=\tilde{R}=\sqrt{\alpha}^{\prime}$

$$
M^{3 \pm}, \mathrm{M}^{ \pm 3} ?
$$

scalars	m^{2}
M^{33}	0
$M^{ \pm \pm}$	$\frac{4}{R} m_{-}$
$M^{ \pm \mp}$	$\frac{4}{\tilde{R}} m_{-}$

vectors	m^{2}
V^{3}	0
\bar{V}^{3}	0
$V^{ \pm}$	m_{-}^{2}

i.e.

$$
\begin{aligned}
& V^{ \pm}(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{\prime 1 / 2}} \epsilon_{\mu}^{ \pm}: \bar{\partial} X^{\mu} e^{i K \cdot X} \exp \left[\pm i m_{+} y(z)\right] \exp \left[\pm i m_{-} \bar{y}(\bar{z})\right]: \\
& \bar{T}(\bar{z}) V(0) \sim R^{-1}+\tilde{R}^{-1}=\frac{1}{\alpha}(\tilde{R}+R) \\
&
\end{aligned}
$$

String vertex operators
 $R \neq \tilde{R}$

Only fields that are massles at $R=\tilde{R}=\sqrt{\alpha}^{\prime}$

$$
M^{3 \pm}, \mathrm{M}^{ \pm 3} ?
$$

scalars	m^{2}
M^{33}	0
$M^{ \pm \pm}$	$\frac{4}{R} m_{-}$
$M^{ \pm \mp}$	$\frac{4}{\tilde{R}} m_{-}$

vectors	m^{2}
V^{3}	0
\bar{V}^{3}	0
$V^{ \pm}$	m_{-}^{2}

$$
m_{-}=R^{-1}-\tilde{R}^{-1}=\frac{1}{\alpha}(\tilde{R}-R)
$$

i.e.

$$
\begin{aligned}
& V^{ \pm}(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{1 / 2}} \epsilon_{\mu}^{ \pm}: \bar{\partial} X^{\mu} e^{i K \cdot X} \exp \left[\pm i m_{+} y(z)\right] \exp \left[\pm i m_{-} \bar{y}(\bar{z})\right]: \\
& \bar{T}(\bar{z}) V(0) \sim R^{-1}+\tilde{R}^{-1}=\frac{1}{\alpha}(\tilde{R}+R) \\
& V^{ \pm, 3}(z, \bar{z})=\frac{g_{c}^{\prime}}{\alpha^{\prime 1 / 2}} \epsilon^{ \pm, 3} \bar{\partial} \bar{y}(\bar{z}) e^{ \pm i m_{+} y} e^{ \pm i m_{-} \bar{y}} e^{i K \cdot X} . \quad \text { Goldstone boson } \\
& V^{\prime \pm}=V^{ \pm}-\xi V^{ \pm, 3} \quad \text { Massive vector boson }
\end{aligned}
$$

String vertex operators
 $R \neq \tilde{R}$

Only fields that are massles at $R=\tilde{R}=\sqrt{\alpha}^{\prime}$

$$
M^{3 \pm}, \mathrm{M}^{ \pm 3} ?
$$

scalars	m^{2}
M^{33}	0
$M^{ \pm \pm}$	$\frac{4}{R} m_{-}$
$M^{ \pm \mp}$	$\frac{4}{\tilde{R}} m_{-}$

vectors	m^{2}
V^{3}	0
\bar{V}^{3}	0
$V^{ \pm}$	m_{-}^{2}

$$
m_{-}=R^{-1}-\tilde{R}^{-1}=\frac{1}{\alpha}(\tilde{R}-R)
$$

i.e.

$$
\begin{aligned}
& \begin{array}{c}
m_{+}=R^{-1}+\tilde{R}^{-1}=\frac{1}{\alpha}(\tilde{R}+R) \\
V^{ \pm}(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{m^{1 / 2}} \epsilon_{\mu}^{ \pm}: \bar{\partial} X^{\mu} e^{i K \cdot X} \exp \left[\pm i m_{+} y(z)\right] \exp \left[\pm i m_{-} \bar{y}(\bar{z})\right]:
\end{array} \\
& V^{ \pm}(z, \bar{z})=i \sqrt{2} \frac{g_{c}^{\prime}}{\alpha^{\prime 1 / 2}} \epsilon_{\mu}^{ \pm}: \bar{\partial} X^{\mu} e^{i K \cdot X} \exp \left[\pm i m_{+} y(z)\right] \exp \left[\pm i m_{-} \bar{y}(\bar{z})\right]: \\
& \bar{T}(\bar{z}) V(0) \sim \kappa \epsilon^{+} \frac{1}{z^{3}}+V(0) \frac{1}{z} \quad \text { anomalous } \\
& V^{ \pm, 3}(z, \bar{z})=\frac{g_{c}^{\prime}}{\alpha^{\prime 1 / 2}} \epsilon^{ \pm, 3} \bar{\partial} \bar{y}(\bar{z}) e^{ \pm i m_{+} y} e^{ \pm i m_{-} \bar{y}} e^{i K \cdot X} . \\
& \text { Goldstone boson } \\
& V^{\prime \pm}=V^{ \pm}-\xi V^{ \pm, 3} \quad \text { Massive vector boson } \\
& K \cdot \epsilon^{ \pm} \mp \xi m_{-} \epsilon^{ \pm, 3}=0 \quad \text { Anomaly cancellation, longitudinal polarization } \\
& \partial_{\mu} A^{ \pm \mu} \pm i \xi m_{-} M^{ \pm, 3}=0 \quad \text { 't Hooft gauge fixing }
\end{aligned}
$$

Effective action

$$
\begin{aligned}
\frac{1}{\sqrt{g}} \mathcal{L}= & \\
& \frac{1}{2 k_{d}^{2}} R-\frac{1}{4}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho} \\
- & \frac{1}{4} F_{\mu \nu}^{3} F^{\mu \nu 3}-\frac{1}{4} \bar{F}_{\mu \nu}^{3} \bar{F}^{\mu \nu 3} \\
- & \frac{1}{2} F_{\mu \nu}^{\prime+} F^{\prime \mu \nu-}-m_{-}^{2} A_{\mu}^{\prime} A_{\nu}^{\prime} G^{\mu \nu}-\frac{1}{2} \bar{F}_{\mu \nu}^{\prime+} \bar{F}^{\prime \mu \nu-}-m_{-}^{2} \bar{A}_{\mu}^{\prime} \bar{A}_{\nu}^{\prime} G^{\mu \nu} \\
+ & \frac{1}{2} \partial_{\mu} M^{33} \partial^{\mu} M^{33}+D_{\mu} M^{ \pm, \pm} D^{\mu} M^{\mp, \mp}+D_{\mu} M^{ \pm, \mp} D^{\mu} M^{\mp, \pm} \\
- & i \frac{g}{\sqrt{\alpha^{\prime}}} \frac{\sqrt{\alpha^{\prime}} m_{+}}{2} A^{\prime}+\mu A^{\prime}-\nu \frac{1}{2} F_{\mu \nu}^{3}+i \frac{g}{\sqrt{\alpha^{\prime}}} \frac{\sqrt{\alpha^{\prime}} m_{-}}{2} A^{\prime}+\mu A^{\prime}-\nu \frac{1}{2} \bar{F}_{\mu \nu}^{3} \\
- & i \frac{g}{\sqrt{\alpha^{\prime}}} \frac{\sqrt{\alpha^{\prime}} m_{+}}{2} \bar{A}^{\prime}+\nu \bar{A}^{\prime}-\nu \frac{1}{2} \bar{F}_{\mu \nu}^{3}+i \frac{g}{\sqrt{\alpha^{\prime}}} \frac{\sqrt{\alpha^{\prime}} m_{-}}{2} \bar{A}^{\prime}+\mu \bar{A}^{\prime}-\nu \frac{1}{2} F_{\mu \nu}^{3} \\
+ & 2 \frac{g}{\sqrt{\alpha^{\prime}}} \frac{m_{+} \sqrt{\alpha^{\prime}}}{2} A^{\prime \pm, \mu} A_{, \mu}^{\prime \mp} M^{33} m_{-}+2 \frac{g}{\sqrt{\alpha^{\prime}}} \frac{m_{+}}{2} \sqrt{\alpha^{\prime}} \bar{A}^{\prime \pm, \mu} \bar{A}_{\mu}^{\prime \mp} M^{33} m_{-} \\
- & \frac{1}{2} F_{\mu \nu}^{\prime}+\bar{F}^{\prime}+\mu \nu M^{-,-}-\frac{1}{2} F_{\mu \nu}^{\prime}+\bar{F}^{\prime}-\mu \nu \\
M^{-,+} & -\frac{1}{2} F_{\mu \nu}^{3} F^{3 \mu \nu} M^{3,3} \\
+ & \frac{4 g}{\alpha^{\prime}} M^{+,-} M^{-,+} M^{33}\left(\frac{\sqrt{\alpha^{\prime}}}{2}\right)-\frac{4 g}{\tilde{R}^{\prime}} M^{+,+} M^{-,-} M^{33}\left(\frac{\sqrt{\alpha^{\prime}}}{R^{\prime}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{\mu \nu}^{\prime \pm}=\partial_{[\mu} A_{\nu]}^{\prime} \pm i \frac{g}{\sqrt{\alpha^{\prime}}} \frac{\sqrt{\alpha^{\prime}} m_{+}}{2} A_{[\mu}^{3} A_{\nu]}^{\prime \pm} \mp i \frac{g}{\sqrt{\alpha^{\prime}}} \frac{\sqrt{\alpha^{\prime}} m_{-}}{2} \bar{A}_{[\mu}^{3} A_{\nu]}^{\prime \pm} \\
& \bar{F}_{\mu \nu}^{\prime \pm}=\partial_{[\mu} \bar{A}_{\nu]}^{\prime \pm} \mp i \frac{g}{\sqrt{\alpha^{\prime}}} \frac{\sqrt{\alpha^{\prime}} m_{+}}{2} \bar{A}_{[\mu}^{3} \bar{A}_{\nu]}^{\prime \pm} \mp i g \frac{\sqrt{\alpha^{\prime}} m_{-}}{2} A_{[\mu}^{3} \bar{A}_{\nu]}^{\prime \pm} \\
& F_{\mu \nu}^{3}=\partial_{[\mu} A_{\nu]}^{3} \\
& D_{\mu} M^{ \pm, \pm}=\left[\partial_{\mu}+i(\pm) g \frac{\sqrt{\alpha^{\prime}}}{R} A_{\mu}^{3}+i(\pm) g \frac{\sqrt{\alpha^{\prime}}}{R} \bar{A}_{\mu}^{3}\right] M^{ \pm, \pm} \\
& D_{\mu} M^{ \pm, \mp}=\left[\partial_{\mu}+i(\pm) g \frac{\sqrt{\alpha^{\prime}}}{\tilde{R}} A_{\mu}^{3}-i(\pm) g \frac{\sqrt{\alpha^{\prime}}}{\tilde{R}} \bar{A}_{\mu}^{3}\right] M^{ \pm, \mp}
\end{aligned}
$$

Effective theory with massless and "slightly massive" states
"Hidden" T-duality symmetry

Full dependence on $\quad R \quad\left(m_{-},\right)$

$$
R=\sqrt{\alpha^{\prime}} \exp \left(-\frac{1}{2} \epsilon\right)=\sqrt{\alpha^{\prime}}\left(1-\frac{1}{2} \epsilon+\mathcal{O}\left(\epsilon^{2}\right)\right) .
$$

can be understood from Higgs mechanism

$$
M^{33}+\epsilon
$$

with contributions coming from higher order "non renormalizable" terms

DFT action

PLAN

PLAN

- Brief introduction DFT frame formulation.

PLAN

- Brief introduction DFT frame formulation.

PLAN

- Brief introduction DFT frame formulation.
- DFT generalized Scherk-Schwarz compactification.

PLAN

- Brief introduction DFT frame formulation.
- DFT generalized Scherk-Schwarz compactification.
- General Effective DFT gauge field theory action

PLAN

- Brief introduction DFT frame formulation.
- DFT generalized Scherk-Schwarz compactification.
- General Effective DFT gauge field theory action
- Show a frame to describe enhancing to $S U(2)_{L} \times S U(2)_{R}$

PLAN

- Brief introduction DFT frame formulation.
- DFT generalized Scherk-Schwarz compactification.
- General Effective DFT gauge field theory action
- Show a frame to describe enhancing to $S U(2)_{L} \times S U(2)_{R}$
- $\quad S U(2)_{L} \times S U(2)_{R} \quad$ Effective DFT gauge field theory action

DFT

DFT

- coordinates

DFT

- coordinates
- fields
- coordinates

\author{

- fields
}
- Symmetries

DFT

- coordinates

p^{i}	\leftrightarrow	y_{i}	\tilde{p}^{i}	\leftrightarrow
		\tilde{y}^{i}	dual coordinates	
$P_{M}=\left(p_{i}, \tilde{p}^{i}\right)$	\leftrightarrow	$\mathbb{Y}=\left(y^{i}, \tilde{y}_{i}\right)$		internal, fundamental representation of

- fields
- Symmetries

DFT

- coordinates

| p^{i} | \leftrightarrow | y_{i} | $\tilde{p}^{i} \quad \leftrightarrow$ | \tilde{y}^{i} |
| :---: | :---: | :---: | :---: | :---: | | dual coordinates |
| :---: |
| |

$P_{M}=\left(p_{i}, \tilde{p}^{i}\right) \quad \leftrightarrow \quad \mathbb{Y}=\left(y^{i}, \tilde{y}_{i}\right) \quad$ internal, fundamental representation of $\quad \mathrm{O}(\mathrm{n}, \mathrm{n})$

- fields

$$
T(x, \mathbb{Y})=T(x, y, \tilde{y}) \quad \text { restrict to } \quad \mathcal{H}_{M N}(X), d(X)
$$

Generalized metric
dilaton

$$
\mathcal{H}_{M N}=\left(\begin{array}{cc}
g^{i j} & -g^{i k} b_{k j} \\
b_{i k} g^{k j} & g_{i j}-b_{i k} g^{k l} b_{l j}
\end{array}\right) \in O(D, D) \quad e^{-2 d}=\sqrt{g} e^{-2 \phi}
$$

- Symmetries

DFT

- coordinates

| p^{i} | \leftrightarrow | y_{i} | $\tilde{p}^{i} \quad \leftrightarrow$ | \tilde{y}^{i} |
| :---: | :---: | :---: | :---: | :---: | | dual coordinates |
| :---: |
| |

$P_{M}=\left(p_{i}, \tilde{p}^{i}\right) \quad \leftrightarrow \quad \mathbb{Y}=\left(y^{i}, \tilde{y}_{i}\right) \quad$ internal, fundamental representation of $\quad \mathrm{O}(\mathrm{n}, \mathrm{n})$

- fields

$$
T(x, \mathbb{Y})=T(x, y, \tilde{y}) \quad \text { restrict to } \quad \mathcal{H}_{M N}(X), d(X)
$$

Generalized metric
dilaton

$$
\mathcal{H}_{M N}=\left(\begin{array}{cc}
g^{i j} & -g^{i k} b_{k j} \\
b_{i k} g^{k j} & g_{i j}-b_{i k} g^{k l} b_{l j}
\end{array}\right) \in O(D, D) \quad e^{-2 d}=\sqrt{g} e^{-2 \phi}
$$

- Symmetries

DFT

-coordinates

| p^{i} | \leftrightarrow | y_{i} | $\tilde{p}^{i} \quad \leftrightarrow$ | \tilde{y}^{i} |
| :---: | :---: | :---: | :---: | :---: | | dual coordinates |
| :---: |
| |

$P_{M}=\left(p_{i}, \tilde{p}^{i}\right) \quad \leftrightarrow \quad \mathbb{Y}=\left(y^{i}, \tilde{y}_{i}\right) \quad$ internal, fundamental representation of $\quad \mathrm{O}(\mathrm{n}, \mathrm{n})$

- fields

$$
T(x, \mathbb{Y})=T(x, y, \tilde{y}) \quad \text { restrict to } \quad \mathcal{H}_{M N}(X), d(X)
$$

Generalized metric
dilaton

$$
\mathcal{H}_{M N}=\left(\begin{array}{cc}
g^{i j} & -g^{i k} b_{k j} \\
b_{i k} g^{k j} & g_{i j}-b_{i k} g^{k l} b_{l j}
\end{array}\right) \in O(D, D) \quad e^{-2 d}=\sqrt{g} e^{-2 \phi}
$$

- Symmetries

$$
\mathcal{L}_{V_{1}} V_{2}^{M}=L_{V_{1}} V_{2}^{M}+Y_{P Q}^{M N} \partial_{N} V_{1 P} V_{2}^{Q}=V_{1}^{P} \partial_{P} V_{2}^{M}-V_{2}^{P} \partial_{P} V_{1}^{M}+\partial^{P} V_{1 P} V_{2}^{M}
$$

DFT

- coordinates

| p^{i} | \leftrightarrow | y_{i} | $\tilde{p}^{i} \quad \leftrightarrow$ | \tilde{y}^{i} |
| :---: | :---: | :---: | :---: | :---: | | dual coordinates |
| :---: |
| |

$P_{M}=\left(p_{i}, \tilde{p}^{i}\right) \quad \leftrightarrow \quad \mathbb{Y}=\left(y^{i}, \tilde{y}_{i}\right) \quad$ internal, fundamental representation of $\quad \mathrm{O}(\mathrm{n}, \mathrm{n})$

- fields

$$
T(x, \mathbb{Y})=T(x, y, \tilde{y}) \quad \text { restrict to } \quad \mathcal{H}_{M N}(X), d(X)
$$

Generalized metric
dilaton

$$
\mathcal{H}_{M N}=\left(\begin{array}{cc}
g^{i j} & -g^{i k} b_{k j} \\
b_{i k} g^{k j} & g_{i j}-b_{i k} g^{k l} b_{l j}
\end{array}\right) \in O(D, D) \quad e^{-2 d}=\sqrt{g} e^{-2 \phi}
$$

- Symmetries

$$
Y^{M}{ }_{P}{ }^{N}{ }_{Q}=\eta^{M N} \eta_{P Q}
$$

$$
\mathcal{L}_{V_{1}} V_{2}^{M}=L_{V_{1}} V_{2}^{M}+Y_{P Q}^{M N} \partial_{N} V_{1 P} V_{2}^{Q}=V_{1}^{P} \partial_{P} V_{2}^{M}-V_{2}^{P} \partial_{P} V_{1}^{M}+\partial^{P} V_{1 P} V_{2}^{M}
$$

DFT

- coordinates

| $p^{i} \leftrightarrow y_{i}$ | $\tilde{p}^{i} \quad \leftrightarrow$ | \tilde{y}^{i} | dual coordinates |
| :---: | :---: | :---: | :---: | :---: |
| | | | |
| | | | |
| | | | |

$$
P_{M}=\left(p_{i}, \tilde{p}^{i}\right) \quad \leftrightarrow \quad \mathbb{Y}=\left(y^{i}, \tilde{y}_{i}\right) \quad \text { internal, fundamental representation of } \quad \mathrm{O}(\mathrm{n}, \mathrm{n})
$$

- fields

$$
T(x, \mathbb{Y})=T(x, y, \tilde{y}) \quad \text { restrict to } \quad \mathcal{H}_{M N}(X), d(X)
$$

Generalized metric
dilaton

$$
\mathcal{H}_{M N}=\left(\begin{array}{cc}
g^{i j} & -g^{i k} b_{k j} \\
b_{i k} g^{k j} & g_{i j}-b_{i k} g^{k l} b_{l j}
\end{array}\right) \in O(D, D) \quad e^{-2 d}=\sqrt{g} e^{-2 \phi}
$$

- Symmetries

$$
Y^{M}{ }_{P}{ }^{N}{ }_{Q}=\eta^{M N} \eta_{P Q}
$$

$$
\mathcal{L}_{V_{1}} V_{2}^{M}=L_{V_{1}} V_{2}^{M}+Y_{P Q}^{M N} \partial_{N} V_{1 P} V_{2}^{Q}=V_{1}^{P} \partial_{P} V_{2}^{M}-V_{2}^{P} \partial_{P} V_{1}^{M}+\partial^{P} V_{1 P} V_{2}^{M}
$$

+ closure \longrightarrow constraints

DFT

- coordinates

| $p^{i} \leftrightarrow y_{i}$ | $\tilde{p}^{i} \quad \leftrightarrow$ | \tilde{y}^{i} | dual coordinates |
| :---: | :---: | :---: | :---: | :---: |
| | | | |
| | | | |
| | | | |

$P_{M}=\left(p_{i}, \tilde{p}^{i}\right) \quad \leftrightarrow \quad \mathbb{Y}=\left(y^{i}, \tilde{y}_{i}\right) \quad$ internal, fundamental representation of $\quad \mathrm{O}(\mathrm{n}, \mathrm{n})$

- fields

$$
T(x, \mathbb{Y})=T(x, y, \tilde{y}) \quad \text { restrict to } \quad \mathcal{H}_{M N}(X), d(X)
$$

Generalized metric
dilaton

$$
\mathcal{H}_{M N}=\left(\begin{array}{cc}
g^{i j} & -g^{i k} b_{k j} \\
b_{i k} g^{k j} & g_{i j}-b_{i k} g^{k l} b_{l j}
\end{array}\right) \in O(D, D) \quad e^{-2 d}=\sqrt{g} e^{-2 \phi}
$$

- Symmetries

$$
Y^{M}{ }_{P}{ }^{N}{ }_{Q}=\eta^{M N} \eta_{P Q}
$$

$$
\mathcal{L}_{V_{1}} V_{2}^{M}=L_{V_{1}} V_{2}^{M}+Y_{P Q}^{M N} \partial_{N} V_{1 P} V_{2}^{Q}=V_{1}^{P} \partial_{P} V_{2}^{M}-V_{2}^{P} \partial_{P} V_{1}^{M}+\partial^{P} V_{1 P} V_{2}^{M}
$$

+ closure \longrightarrow constraints \quad i.e. $\quad \partial_{M} \partial^{M} \cdots=0, \quad \partial_{M} \cdots \partial^{M} \cdots=0$,

Frame formulation:

Geissbuhler, (2011)
Marques, Nuñez, Penas,
G.A, Marques, Nuñez (2014)
$E_{A} \equiv E^{a} \oplus E_{a}$
generalized frame $\quad \in O(D, D) / H$

$$
\begin{aligned}
& A \in H=O(1, D-1) \times O(D-1,1) \\
& \eta_{M N}=E^{A}{ }_{M} \eta_{A B} E^{B}{ }_{N}
\end{aligned}
$$

$\mathcal{H}_{M N}=E^{A}{ }_{M} S_{A \bar{B}} E^{B}{ }_{N} \quad$ generalized metric
can be parametrized as
$E^{A}{ }_{M}=\left(\begin{array}{cc}e_{a}{ }^{i} & e_{a}{ }^{j} b_{j i} \\ 0 & e^{a}{ }_{i}\end{array}\right), \quad S_{A B}=\left(\begin{array}{cc}s^{a b} & 0 \\ 0 & s_{a b}\end{array}\right)$
with

$$
g_{i j}=e_{i}^{a} s_{a b} e_{j}^{b} \quad \text { and } \quad s_{a b}=\operatorname{diag}(-+\cdots+)
$$

Generalized (dynamical) fluxes

$$
\mathcal{L}_{\xi} E_{A}^{M}=\xi^{P} \partial_{P} E_{A}^{M}+\left(\partial^{M} \xi_{P}-\partial_{P} \xi^{M}\right) E_{A}^{P}
$$

transforms as a vector
in particular

$$
\mathcal{L}_{E_{A}} E_{B}{ }^{M}=\mathcal{F}_{A B}^{C} E_{C}^{M}
$$

$$
\Delta_{\xi} \mathcal{F}_{A B C}=E_{C M} \Delta_{\xi}\left(\mathcal{L}_{E_{A}} E_{B}{ }^{M}\right)=0
$$

DFT action

$$
S_{D F T}=\int d X e^{-2 d} \mathcal{R}
$$

$\mathcal{R}=\mathcal{F}_{A B C} \mathcal{F}_{D E F}\left[\frac{1}{4} S^{A D} \eta^{B E} \eta^{C F}-\frac{1}{12} S^{A D} S^{B E} S^{C F}-\frac{1}{6} \eta^{A D} \eta^{B E} \eta^{C F}\right]$
$\mathcal{F}_{A B C}(x, \mathbb{Y})$

dynamical fluxes

Scherk-Schwarz dimensional reductions

$$
D=d+n
$$

G. A, Baron, Marques, Nuñez, (2011) Geissbuller

$$
\begin{aligned}
& \text { frame twist } \\
& \hat{\mathcal{F}}_{A B C}(x, \mathbb{Y})=\mathcal{F}_{A B C}(x)-f_{I J K}(\mathbb{Y}) U_{A}{ }^{I} U_{B}{ }^{J} U_{C}{ }^{K} \\
& f_{I J K}=3 \tilde{\Omega}_{[I J K]} \quad \text { constant } \\
& \mathcal{L}_{E_{A}} E_{I}{ }^{M}=f_{I J}{ }^{K} E_{K}{ }^{M} \\
& f_{[M N}{ }^{P} f_{Q] P}{ }^{R}=0, \\
& \text { Quadratic } \\
& \text { constraints } \\
& A \rightarrow(\mu, I) \\
& \hat{\mathcal{F}}_{A B C}(x) \\
& \mathcal{G}_{\mu \rho \lambda}=3 \partial_{[\mu} b_{\rho \lambda]}-f_{I J K} A^{I}{ }_{\mu} A^{J}{ }_{\rho} A^{K}{ }_{\lambda}+3 \partial_{[\mu} A^{I}{ }_{\rho} A_{\lambda] J} \\
& \mathcal{F}^{I}{ }_{\mu \nu}=\partial_{\mu} A^{I}{ }_{\nu}-\partial_{\nu} A^{I}{ }_{\mu}-f_{J K}{ }^{I} A^{J}{ }_{\mu} A^{K}{ }_{\nu} \\
& \left(D_{\mu} \mathcal{H}\right)_{I J}=\left(\partial_{\mu} \mathcal{H}\right)_{I J}+f^{K}{ }_{L I} A_{\mu}^{L} \mathcal{H}_{K J}+f^{K}{ }_{L J} A_{\mu}^{L} \mathcal{H}_{I K} .
\end{aligned}
$$

DFT Effective action

$$
\begin{aligned}
S_{\text {eff }}=\int d^{d} x \sqrt{g} e^{-2 \varphi}(& \Lambda+\mathcal{R}+4 \partial^{\mu} \varphi \partial_{\mu} \varphi-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho} \\
& -\frac{1}{4} \mathcal{H}_{I J} F^{I \mu \nu} F_{\mu \nu}^{J}+\frac{1}{8}\left(D_{\mu} \mathcal{H}\right)_{I J}\left(D^{\mu} \mathcal{H}\right)^{I J} \\
& \left.-\frac{1}{12} f_{I J K} f_{L M N}\left(\mathcal{H}^{I L} \mathcal{H}^{J M} \mathcal{H}^{K N}-3 \mathcal{H}^{I L} \eta^{J M} \eta^{K N}+2 \eta^{I L} \eta^{J M} \eta^{K N}\right)\right)
\end{aligned}
$$

$$
\mathcal{H}_{I J}(x)=\mathcal{S}_{I^{\prime}, J^{\prime}} U_{I^{I}}^{I^{\prime}}(x) U_{J}^{J^{\prime}}(x)
$$

scalars

Is there a DFT frame

$$
E_{A}(x, \mathbb{Y})=U_{A}{ }^{A^{\prime}}(x) E_{A^{\prime}}^{\prime}(\mathbb{Y})
$$

$E_{A}(x, \mathbb{Y})=U_{A}{ }^{\prime}(x) E_{A^{\prime}}^{\prime}(\mathbb{Y})$		$S U(2)_{L} \times S U(2)_{R}$
$\mathcal{L}_{E_{A}} E_{I}{ }^{M}(\mathbb{Y})=f_{I J}{ }^{K} E_{K}{ }^{M}(\mathbb{Y})$	\rightarrow	$f_{I J K} \equiv \epsilon_{I J K} \oplus \bar{\epsilon}_{I J K}$
$\mathcal{H}_{I J}(x)=\mathcal{S}_{I^{\prime} J^{\prime}} U_{I}{ }^{I^{\prime}} U_{J}{ }^{J^{\prime}}$		
$A^{I}{ }_{\mu}$	\rightarrow	$M^{a, \bar{a}}$
	\rightarrow	$A^{a}{ }_{\mu} \oplus \bar{A}^{\bar{a}}{ }_{\mu}$

$$
D=d+3=d+1+2
$$

$O(d+1, d+1) \quad A_{3} ; \bar{A}_{3}$
$O(d+1+2, d+1+2) \quad A_{3}, A^{ \pm} ; \bar{A}_{3}, \bar{A}^{ \pm}$

Generalized (non geometric) frame

$$
\begin{aligned}
E_{\overline{1}}^{\prime} & =\cos \left(2 y^{L} / R_{s d}\right) t^{1}+\sin \left(2 y^{L} / R_{s d}\right) t^{2} \\
E_{2}^{\prime} & =-\sin \left(2 y^{L} / R_{s d}\right) t^{1}+\cos \left(2 y^{L} / R_{s d}\right) t^{2} \\
E_{\overline{3}}^{\prime} & =d y^{L} \\
E_{1}^{\prime} & =\cos \left(2 y^{R} / R_{s d}\right) t^{3}+\sin \left(2 y^{R} / R_{s d}\right) t^{4} \\
E_{2}^{\prime} & =-\sin \left(2 y^{R} / R_{s d}\right) t^{3}+\cos \left(2 y^{R} / R_{s d}\right) t^{4} \\
E_{3}^{\prime} & =d y^{R}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}_{E_{A}^{\prime}} E_{B}^{\prime}=\frac{1}{2}\left[E_{A}^{\prime}{ }^{P} \partial_{P} E_{B}^{\prime}{ }^{M}-E_{B}^{\prime}{ }^{P} \partial_{P} E_{A}^{\prime M}+\eta^{M N} \eta_{P Q} \partial_{N} E_{A}^{\prime}{ }^{P} E_{B}^{\prime}{ }^{Q}\right] D_{M} \\
& D_{M}=\left(t^{1}, t^{2}, d y^{L}, t^{3}, t^{4}, d y^{R}\right)^{T} \\
& \partial_{P}=\left(0,0, \partial_{y^{L}}, 0,0, \partial_{y^{R}}\right) \\
& {\left[E_{i}, E_{j}\right]=\quad \mathcal{L}_{E_{i}} E_{j}=\frac{1}{\sqrt{\alpha^{\prime}}} \epsilon_{i j k} E_{k}} \\
& {\left[\bar{E}_{i}, \bar{E}_{j}\right]=\mathcal{L}_{\bar{E}_{i}} \bar{E}_{j}=\frac{1}{\sqrt{\alpha^{\prime}}} \epsilon_{i j k} \bar{E}_{k} \quad \mathcal{J}_{i}^{\prime}=E_{i}^{\prime}, \quad \overline{\mathcal{J}}_{i}^{\prime}=\bar{E}_{i}^{\prime} .} \\
& {\left[E_{i}, \bar{E}_{j}\right]=\left[\bar{E}_{i}, E_{j}\right]=0}
\end{aligned}
$$

Reproduces the needed $s u(2)_{L} \times \operatorname{su}(2)_{R} \quad$ algebra

Scalars

$$
E(x, y)=U E^{\prime}
$$

scalars matrix $\quad \mathcal{H}_{I J}(x)=\mathcal{S}_{I^{\prime} J^{\prime}} U_{I} I^{\prime} U_{J}{ }^{J^{\prime}} \quad \in \quad \frac{O(d+3, d+3)}{O(d+3) \times O(d+3)}$

$$
\left(\begin{array}{cccc}
1_{d} & 0 & 0 & 0 \\
0 & U_{1}^{i j} & -U_{2}^{i j} & 0 \\
0 & -U_{3}^{i j} & U_{4}^{i j} & \\
0 & 0 & 0 & 1_{d}
\end{array}\right)
$$

$$
\mathcal{H}_{\mathcal{C}}=\left(\begin{array}{cc}
1_{3} & -M \\
-M^{T} & 1_{3}
\end{array}\right)
$$

$$
M^{i j} \quad 9 \text { scalars }
$$

DFT Effective action

$$
\begin{aligned}
S_{e f f}=\int d^{d} x & \sqrt{g} \\
& e^{-2 \varphi}\left(\Lambda+\mathcal{R}+4 \partial^{\mu} \varphi \partial_{\mu} \varphi-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}\right. \\
& -\frac{1}{4} \mathcal{H}_{I J} F^{I \mu \nu} F_{\mu \nu}^{J} \\
& +\frac{1}{8}\left(D_{\mu} \mathcal{H}\right)_{I J}\left(D^{\mu} \mathcal{H}\right)^{I J} \\
& \left.-\frac{1}{12} f_{I J K} f_{L M N}\left(\mathcal{H}^{I L} \mathcal{H}^{J M} \mathcal{H}^{K N}-3 \mathcal{H}^{I L} \eta^{J M} \eta^{K N}+2 \eta^{I L} \eta^{J M} \eta^{K N}\right)\right)
\end{aligned}
$$

Gauge kinetic terms

$$
-\frac{1}{4} \mathcal{H}_{I J} F^{I \mu \nu} F_{\mu \nu}^{J}
$$

Gauge kinetic terms

$$
-\frac{1}{4} \mathcal{H}_{I J} F^{I \mu \nu} F_{\mu \nu}^{J}
$$

$$
\mathcal{H}_{I J}=\left(\begin{array}{cc}
\delta_{i j} & M_{i j} \\
M_{j i} & \delta_{i j}
\end{array}\right)
$$

Gauge kinetic terms

$$
-\frac{1}{4} \mathcal{H}_{I J} F^{I \mu \nu} F_{\mu \nu}^{J}
$$

$$
\begin{aligned}
& -\frac{1}{4} \delta_{i j} F^{i \mu \nu} F_{\mu \nu}^{j} \\
& -\frac{1}{4} \delta_{l m} \bar{F}^{l \mu \nu} \bar{F}_{\mu \nu}^{m} \\
& -\frac{1}{2} M_{i l} F^{i \mu \nu} \bar{F}_{\mu \nu}^{l}
\end{aligned}
$$

Gauge kinetic terms

$$
-\frac{1}{4} \mathcal{H}_{I J} F^{I \mu \nu} F_{\mu \nu}^{J}
$$

$$
\mathcal{H}_{I J}=\left(\begin{array}{cc}
\delta_{i j} & M_{i j} \\
M_{j i} & \delta_{i j}
\end{array}\right)
$$

$$
\begin{array}{r}
-\frac{1}{4} \delta_{i j} F^{i \mu \nu} F_{\mu \nu}^{j} \\
-\frac{1}{4} \delta_{l m} \bar{F}^{l \mu \nu} \bar{F}_{\mu \nu}^{m} \\
- \\
-\frac{1}{2} M_{i l} F^{i \mu \nu} \bar{F}_{\mu \nu}^{l}
\end{array}
$$

Scalars kinetic terms

$$
\begin{gathered}
\left(D_{\mu} \mathcal{H}\right)_{I J}\left(D^{\mu} \mathcal{H}\right)^{I J} \\
\left(D_{\mu} \mathcal{H}\right)_{I J}=\left(\partial_{\mu} \mathcal{H}\right)_{I J}+f^{K}{ }_{L I} A_{\mu}^{L} \mathcal{H}_{K J}+f^{K}{ }_{L J} A_{\mu}^{L} \mathcal{H}_{I K}
\end{gathered}
$$

Scalars kinetic terms

$$
\begin{gathered}
\left(D_{\mu} \mathcal{H}\right)_{I J}\left(D^{\mu} \mathcal{H}\right)^{I J} \\
\left(D_{\mu} \mathcal{H}\right)_{I J}=\left(\partial_{\mu} \mathcal{H}\right)_{I J}+f^{K}{ }_{L I} A_{\mu}^{L} \mathcal{H}_{K J}+f^{K}{ }_{L J} A_{\mu}^{L} \mathcal{H}_{I K} \\
\mathcal{H}_{I J}=\left(\begin{array}{cc}
\delta_{i j} & M_{i j} \\
M_{j i} & \delta_{i j}
\end{array}\right)
\end{gathered}
$$

Scalars kinetic terms

$$
\begin{gathered}
\left(D_{\mu} \mathcal{H}\right)_{I J}\left(D^{\mu} \mathcal{H}\right)^{I J} \\
\left(D_{\mu} \mathcal{H}\right)_{I J}=\left(\partial_{\mu} \mathcal{H}\right)_{I J}+f^{K}{ }_{L I} A_{\mu}^{L} \mathcal{H}_{K J}+f^{K}{ }_{L J} A_{\mu}^{L} \mathcal{H}_{I K} \\
\mathcal{H}_{I J}=\left(\begin{array}{cc}
\delta_{i j} & M_{i j} \\
M_{j i} & \delta_{i j}
\end{array}\right) \\
\left(D_{\mu} \mathcal{H}\right)_{i j}=\left(\partial_{\mu} M\right)_{i j}+f^{l}{ }_{i k} A_{\mu}^{k} M_{l j}+\bar{f}^{l}{ }_{j k} A_{\mu}^{k} M_{i l}
\end{gathered}
$$

Scalars kinetic terms

$$
\begin{gathered}
\left(D_{\mu} \mathcal{H}\right)_{I J}\left(D^{\mu} \mathcal{H}\right)^{I J} \\
\left(D_{\mu} \mathcal{H}\right)_{I J}=\left(\partial_{\mu} \mathcal{H}\right)_{I J}+f^{K}{ }_{L I} A_{\mu}^{L} \mathcal{H}_{K J}+f^{K}{ }_{L J} A_{\mu}^{L} \mathcal{H}_{I K} \\
\mathcal{H}_{I J}=\left(\begin{array}{cc}
\delta_{i j} & M_{i j} \\
M_{j i} & \delta_{i j}
\end{array}\right) \\
\left(D_{\mu} \mathcal{H}\right)_{i j}=\left(\partial_{\mu} M\right)_{i j}+f^{l}{ }_{i k} A_{\mu}^{k} M_{l j}+\bar{f}^{l}{ }_{j k} A_{\mu}^{k} M_{i l}
\end{gathered}
$$

Scalar potential

$$
-\frac{1}{12} f_{I J K} f_{L M N}\left(\mathcal{H}^{I L} \mathcal{H}^{J M} \mathcal{H}^{K N}-3 \mathcal{H}^{I L} \eta^{J M} \eta^{K N}+2 \eta^{I L} \eta^{J M} \eta^{K N}\right)
$$

Scalar potential

$$
-\frac{1}{12} f_{I J K} f_{L M N}\left(\mathcal{H}^{I L} \mathcal{H}^{J M} \mathcal{H}^{K N}-3 \mathcal{H}^{I L} \eta^{J M} \eta^{K N}+2 \eta^{I L} \eta^{J M} \eta^{K N}\right)
$$

$$
\mathcal{H}_{I J}=\left(\begin{array}{cc}
\delta_{i j} & M_{i j} \\
M_{j i} & \delta_{i j}
\end{array}\right)
$$

Scalar potential

$$
\begin{aligned}
& -\frac{1}{12} f_{I J K} f_{L M N}\left(\mathcal{H}^{I L} \mathcal{H}^{J M} \mathcal{H}^{K N}-3 \mathcal{H}^{I L} \eta^{J M} \eta^{K N}+2 \eta^{I L} \eta^{J M} \eta^{K N}\right) \\
& \mathcal{H}_{I J}=\left(\begin{array}{cc}
\delta_{i j} & M_{i j} \\
M_{j i} & \delta_{i j}
\end{array}\right) \\
& -\operatorname{det} M+\text { const. }
\end{aligned}
$$

Scalar potential

$$
\begin{aligned}
& -\frac{1}{12} f_{I J K} f_{L M N}\left(\mathcal{H}^{I L} \mathcal{H}^{J M} \mathcal{H}^{K N}-3 \mathcal{H}^{I L} \eta^{J M} \eta^{K N}+2 \eta^{I L} \eta^{J M} \eta^{K N}\right) \\
& \mathcal{H}_{I J}=\left(\begin{array}{cc}
\delta_{i j} & M_{i j} \\
M_{j i} & \delta_{i j}
\end{array}\right) \\
& -\operatorname{det} M+\text { const. }
\end{aligned}
$$

Scalar potential

$$
\begin{aligned}
& -\frac{1}{12} f_{I J K} f_{L M N}\left(\mathcal{H}^{I L} \mathcal{H}^{J M} \mathcal{H}^{K N}-3 \mathcal{H}^{I L} \eta^{J M} \eta^{K N}+2 \eta^{I L} \eta^{J M} \eta^{K N}\right) \\
& \mathcal{H}_{I J}=\left(\begin{array}{cc}
\delta_{i j} & M_{i j} \\
M_{j i} & \delta_{i j}
\end{array}\right) \\
& -\operatorname{det} M+\text { const. }
\end{aligned}
$$

DFT effective action

String effective action ($\left.R=\tilde{R}=\sqrt{\alpha^{\prime}}\right)$

Summary and Outlook

- Analysis of string amplitudes in $\mathrm{D}=\mathrm{d}+1$, to identify key ingredients for a DFT description.
- Built up a consistent DFT that captures winding information and reproduces string effective action at self dual point.
- Level matching is satisfied but not the strong constraint. An explicit dependence in y and \tilde{y} is needed to achieve enchancing.
- $\frac{O(d+3, d+3)}{O(d+3) \times O(d+3)}$
- Hints for an internal geometry
- Higher dimensional compactifications ?
- Symmetry breaking at DFT level?
- Interactions involving massive states in String Theory and DFT

Thank you

- Higher dimensional compactifications ?
- Symmetry breaking at DFT level?
- Interactions involving massive states in String Theory and DFT

Thank you

HAPPY BIRTHDAY

