

Thermal Lens Spectrometry and Microscopy

Analytical Chemist's Approach

Mladen Franko University of Nova Gorica

WINTER COLLEGE ON OPTICS: Advanced Optical Techniques for Bio-imaging ICTP, Trieste: February 13th -24th, 2017

Requirements for analytical methods in bio-chemical analysis

- Sensitivity
- Selectivity
- Cost efficiency
- High sample throughput
 - Conventional (certified, rearguard) analytical methods are labour intensive, time consuming and costly
 - quick answers and analysis of large numbers of samples (and large number of compounds screening) for low cost – vanguard methods (frequently semi-quantitative or just binary YES/NO response)

Transmission techniques how to improve sensitivity?

A=-logT=-log(I/I_0)

for low absorbances:

Basics of thermal lens effect

- During non-radiative relaxation of excited species temperature in the sample increases (10⁻⁴ 10⁻³ K)
- a temperature gradient is generated with maximum temperature at the axis of the excitation beam
- the resulting refractive index gradient acts as a lens (mostly: dn/dT < 0, diverging lens)
- laser beam is defocused (single beam or pump/probe (collinear, crossed beam) configuration)
- beam radius and its intensity at the beam axis changes
- relative change in the beam intensity is proportional to the absorbance of the sample and to the power of the excitation beam.

TLS - advantages

- High sensitivity
 - signal proportional to excitation laser power
 - absorbances as low as 10⁻⁷ can be measured
- Enables On-line detection
 - fast response of TLS signal (on µs to ms time scale)
- Capability of measuring small samples
 - sub-pL volumes can be probed
 - detection in microfluidic systems

TLS – drawbacks and solutions

- Sensitivity still needs improvement
 - Higher laser power? (photo-labile compounds)
 - Modify solvents
- Limited availability of laser sources
 - Coloring reactions, indirect detection
- Poor selectivity
 - Single wavelength measurements
 - Coupling to separation techniques (HPLC, IC, CE)
- Photodegradation
 - Measure in flowing systems

HPLC-TLS degtermination of

$$\frac{\partial T(r,t)}{\partial t} = D\nabla^2 T(r,t) - v_x \frac{\partial T(r,t)}{\partial x} + \frac{1}{\rho C_p} Q(r,t)$$

- T(r,t)..... temperature
- *D*......thermal diffusivity
- *ρ*..... Density
- C_pheat capacity
- $\dot{Q}(r,t)$source term ("heat")
- v_xvelocity of the medium in x direction

By solving nonsteady the thermal diffusion equation, changes in refractive index and related TLS signal can be calculated for different beam geometries and excitation regimes (pulsed, cw)

Pulsed and cw excitation with a Gaussian beam

- Assuming complete conversion of absorbed energy into heat, source terms are:
- Pulsed: $Q(r,t) = \frac{2\alpha E_0}{\pi a^2 t_0} \exp\left[-2(x^2 + y^2)/a^2\right]$ • cw: $Q(r,t) = \frac{2\alpha P_{av}}{\pi a^2} \left\{ \exp\left[-2(x^2 + y^2)/a^2\right] \right\} \times (1 + \cos \omega t)$

 E_0 pulse energya....pump laser beam radius t_0 pulse width P_{av} ...cw laser average power αabsorbance (cm⁻¹) ωmodulation frequency²

Thermal lens signal

$$s(t) = \frac{w_2^2(t) - w_2^2(0)}{w_2^2(0)}$$

- $w_2(0)$radius of an unperturbed probe beam at the detector site
- $w_2(t)$time dependent radius of a probe beam perturbed by the thermal lens
- w_0radius of the probe beam at its waist

$$w_2^2(t) = w_0^2 \left[\left(1 - \frac{z_2}{f(t)} \right)^2 + \frac{1}{z_0^2} \left(z_1 + z_2 - \frac{z_1 z_2}{f(t)} \right)^2 \right]$$

Simplifications for usual far field experimental configuration

- $z_2 >> z_1, z_2 >> z_0 = \pi w_0^2 / \lambda$
- $f(t) >> z_1, f(t) >> z_0$
- (a) $t = 0, f(0) = \infty$
 - $-\lambda$, w_0 probe beam wavelength and waist
 - $-z_0$confocal distance
 - $-z_1$ probe beam waist to sample distance
 - $-z_2$sample-to-detector distance

$$\mathbf{s}(\mathbf{t}) = -\frac{2\mathbf{z}_1}{\mathbf{f}(\mathbf{t})}$$

Refractive index change and focal distance of thermal lens

$$n(x, y, t) = n_0 + \left(\frac{\partial n}{\partial T}\right)_{T_A} \times T(x, y, t)$$

 n_0 unperturbed refractive index at ambient temperature T_A

collinear:

transversal:

$$\frac{1}{f} = -\frac{\partial n}{\partial T} \ell \left(\frac{\partial^2 T}{\partial r^2} \right) \qquad \qquad \frac{1}{f} = -\frac{\partial n}{\partial T} \int_{-\infty}^{\infty} \left(\frac{\partial^2 T}{\partial x^2} \right) dy$$

- f....thermal lens focal length
- *l*....interaction length

TLS signal for collinear configuration

Pulsed:
$$(t_0 \rightarrow 0)$$

 $s(t) = -\frac{4AE_0 z_1(\partial n / \partial T)}{\pi ka^2 t_c} \frac{1}{(1 + 2t / t_c)^2}$
cw:
 $s(t) = -\frac{2AP z_1(\partial n / \partial T)}{\pi ka^2} \frac{1}{(1 + t_c / 2t)}$
 $- t_c....time constant = a^2 \rho c_p / 4k = 4a^2 D$
 $- k....thermal conductivity of the sample$

E - Enhancement factor in TLS

$$\frac{\Delta I}{I} = \frac{2.303P \left(-dn/dT\right)A}{\lambda k} \operatorname{arctg}\left(1/\sqrt{3}\right) = 2.303EA$$

Solvent	$-dn/dT (10^4 \text{ K}^{-1})$	$k \left(W m^{-1} K^{-1} \right)$	$E (10^{-3} \text{ W}^{-1})$
H ₂ O	0.91	0.607	0.12
CCl ₄	5.9	0.103	4.74
acetone	5.42	0.190	2.36

 $E = (-dn/dT)/(1.91 \ \lambda k)$ is calculated for $\lambda = 632.8 \text{ nm}$

Thermo-optical properties of solvents for TLS measurements

	Solvent	Thermal conductivity, k mWcm ⁻¹ K ⁻¹	10 ⁴ (dn/dT) K ⁻¹	$-\frac{10^4(dn/dT)}{k}$ cm mW ⁻¹
Γ	CO _{2 (SC)}	0.7	-100	143
	CCl_4	1.03	-5.9	5.73
	Benzene	1.24	-6.4	5.16
	C_8MImTf_2N	n.d.	n.d.	4.55
	cyclohexane	1.24	-5.4	4.35
	BMImBF ₄	1.78	-7.54	4.24
	n-heptane	1.26	-5.0	3.97
	BMImTf ₂ N	1.06	-4.0	3.78
	dioxane	1.39	-4.6	3.31
	EMImTf ₂ N	n.d.	n.d.	2.37
	methanol	2.20	-4.7	2.14
	water	6.11	-0.8	0.13

Calc. values (except CO2) taken from Chieu D. Tran and T. A. Van Fleet, Anal. Chem. <u>60</u>, (1988) 2478

Temperature dependent TLS signal in

water

The effect of photosensitivity on TLS signal (case of Cr-DPC)

Degradation of photolabile analytes

Adjustable beam size/position TLM

New theoretical model of thermal lens in TLM

$$S_{tl} = \sum_{i=1}^{N} \frac{\left|E_2(r_2, z_1(i) + z_2, t = n/f + 1/(2f))\right|^2 - \left|E_2(r_2, z_1(i) + z_2, t = n/f)\right|^2}{\left|E_2(r_2, z_1(i) + z_2, t = 0)\right|^2}$$

Effective sample length

T(inf)

T(fin)

600

12.5 mm

500

Optimization of pump beam radius and power density

With 1/10 or 1/20 power density of that at the diffraction limit, 1.36 times higher (l=100µm) or 2.3 times higher (l=300µm) TL signal is obtained at the optimum optical configuration – **important for photosensitive compounds** !

Effect of photodegradation in a microfluidic system

Incoherent light source (ILS)-excited TLM

Liu M., Franko M.: *Appl.Phys.Lett.*, **100**, 2012, 121110.

Thermal lens extends beyond the boundaries of microchannel

Sensitivity enhancement in ILS-TLM in layered samples

LOD: 5×10⁻⁷ M at *P*=1.05 mW and *l*=100 µm for ferroin ~ 2.2×10⁻⁵ AU

Liu M., Franko M.: *Adv. Mat. Res.*, **503-504**, 2012, 1480-1483. Liu M., Korte D., Franko M.: *J. Appl. Phys.*, **111**, 2012, 033109.

Thermal Lens Spo

Mladen Franko

Laboratory of Environmente of Nova Gorica, Nova Gorica

Chieu D. Tran

Department of Chemistry, Milwaukee, WI, USA

1 Introduction

2 Theory

3 Instrumentation

- 3.1 Single-beam Instruments
- 3.2 Dual-beam Instruments
- 3.3 Differential Thermal Le
- 3.4 Multiwavelength and Tu Lens Spectrometers
- 3.5 Circular Dichroism TLS
- 3.6 Miniaturization of Therr Instruments

Encyclopedia of Analytical Chemist Copyright © 2010 John Wiley & So

PHOTOTHERMAL SPECTROSCOPY METHODS FOR **CHEMICAL ANALYSIS**

Stephen E. Bialkowski

Volume 134 in Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications

etric Detection in Flow Injection eparation Techniques

den Franko

thermal

aphy)

ffects

S co

y for Environmental Research, P.O.Box 301,

w injection analysis, liquid chromatography,

lens spectrometry in liquid illary electrophoresis and flow TLS measurements in Thermal Lens Microscopy and Microchip Chemistry

ori, et al., Anal. Chem. 76, 52A-60A (2004)

- S.E. Bialkowski, *Photothermal Spectroscopy Methods for Chemical Analysis*, John Whiley & Sons, Inc., New York, 1996.
- C.D. Tran , M. Franko, "*Thermal Lens Spectroscopy*" in: Encyclopedia of Analytical Chemistry, (Ed. R.A. Meyers), John Wiley: Chichester., 2010. DOI: 9780470027318.
- M. Franko, *"Bioanalytical Applications of TLS"*, in: Thermal wave physics and related photothermal techniques: Basic principles and recent developments, ISBN 978-81-7895-401-1 (Ed. E. Marin), Research Signpost Press, 2009
- M. Franko, Thermal Lens Spectrometric Detection in Flow Injection Analysis and Separation Techniques, *Appl. Spectrosc. Rev.* **43**, 2008, 358-388.

- Kitamori, T., Tokeshi, M., Hibara, A. and Sato, K., Thermal lens microscopy and microchip chemistry. *Anal. Chem.*, 76, 2004, 52A-60A.
- M. Franko, C.D. Tran, Analytical Thermal Lens Instrumentation, *Rev. Sci. Instrum.* **67**, 1996, 1-18.
- Liu M., Franko M.: Progress in thermal lens spectrometry and its application in microscale analytical devices, *Crit. Rev. Anal. Chem.* **44**, 2014, 328-353.