Computational aspects of SIM

ipht jena

Rainer Heintzmann,

- Leibniz Institute of Photonic Technology (IPHT),
- Friedrich Schiller University of Jena

Mitglied der Leibniz-Gemeinschaft

Trieste, 23/02/2017

Paradigm: Optimize for direct visibility

pht

Object Optics Image

E.g.: Widefield, Confocal, STED Does not necessarily optimize information content!

Examples in Medical Imaging

http://www.cis.rit.edu/htbooks/mri/images/head.gif

http://www.physics.ubc.ca/research/images/spect.gif

Structured Illumination (SIM)

Moiré Demonstration

The Moiré effect

ipht <mark>jena</mark>

Moiré fringes

Mitglied Leibniz-Gemein

Image: Wikipedia (author:Ildar Sagdejev)

Image formation in FLUORESCENCE

$$I_{em}(\mathbf{x}) = Obj(\mathbf{x}) \cdot I_{ex}(\mathbf{x})$$

$$\widetilde{\mathbf{I}}_{\text{em}}(\mathbf{k}) = \widetilde{\text{Obj}}(\mathbf{k}) \otimes \widetilde{\mathbf{I}}_{\text{ex}}(\mathbf{k})$$

Mitglied de

ipht **Jena**

Piecing Parts Together

magnitude

 $I_{em}(\mathbf{k})$

Image (k)

spatial freq

• Extract components

detectable region

Ω

- Shift into place
- Weighted average
- Apodize

Structured Illumination Micropscopy

SampleSample with structured illumination Illumination

Multiplication of sample and illumination

Structured Illumination Micropscopy

Sample

Illumination

Mitglied de Leibniz-Geme

ipht jena

Structured Illumination Micropscopy

Sample

Mitglied de Leibniz-Geme

Structured Illumina

Sample

Sample & Ilumination

ipht jena

bniz-Gemeinsch

ipht jena

Sample

Sample & Ilumination

Imaging leads to loss of high frequencies (OTF)

Mitglied de Leibniz-Gemeins

Sample

Separating the components...

Mitglied der Leibniz-Gemeinscha

Sample

Separating the components... Shifting the components...

Mitglied de Leibniz-Gemeinso

ipht jena

Sample

Separating the components... Shifting the components... Recombining the components...

Mitglied de Leibniz-Gemei

Sample

Reconstructed sample

Separating the components... Shifting the components...

Recombining the components... using the correct weights.

Image processing !

3D Structured Illumination

Microtubule cytoskeleton in HeLa cells

M.G.L Gustafsson *et al.*, Three-dimensional Resolution Doubling in Widefield Fluorescence Microscopy by Structured Illumination, *Biophys J. (BioFAST), 2008*

Reconstruct high resolution image like a puzzle

Separated puzzle pieces

ipht <mark>jena</mark>

Mitglied der Leibniz-Gemeinschaft

Separated puzzle pieces

Witglied der Leibniz-Gemeinschaft z

Proof of Principle 1999

Heintzmann & Cremer 1999 Proc. SPIE 3568, 185-196

Structured Illumination

2011

3D live video

Super-resolution 3D microscopy of live whole cells using structured illumination

Lin Shao¹, Peter Kner², E Hesper Rego^{1,3} & Mats G L Gustafsson^{1,4}

Leibniz-G

Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination

Reto Fiolka^{a,1}, Lin Shao^a, E. Hesper Rego^{a,b,2}, Michael W. Davidson^c, and Mats G. L. Gustafsson^{a,3}

The nitty gritty details Unknowns: grating constant (precise value) grating orientation local phase global phase order contrast **illumination intensity** sample position (drift)

The nitty gritty details

Unknowns: grating constant (precise value) grating orientation local phase global phase order contrast **illumination intensity** sample position (drift)

The nitty gritty details

wrong grating constant

correct grating constant

intensity beating, splitting of structures Cave! Hard to distinguish from real data

Rainer Heintzmann, 2012

The nitty gritty details

Same information: Use overlap and cross correlation

SNR-weighted cross correlation for best results (assume contant variance in Fourer space) typically iterative (3 iterations)

The nitty gritty details

Unknowns: grating constant (precise value) grating orientation local phase global phase order contrast **illumination intensity** sample position (drift)

correct phases

Global phase: Correlation needs to be real valued

Collaboration: Dithmar, Ach, Best, Cremer (Heidelberg University) Algorithm: Kai Wicker

The nitty gritty details

Global phase errors:

destructive "interference" in Fourier space

The nitty gritty details

Order contrast errors: Part of the matrix M

How steiners the orem Determine order strength from overlap:

order 0 pixel value

Doing it faster? Phase of a single image by peaks in weighted autocorrelation

The nitty gritty details

Single image autocorr. optimization

Collaboration: Dithmar, Ach, Best, Cremer (Heidelberg University) K.Wicker, Opt. Expr. 2013

The Wiener Filter Problem

as assumed to the second seco Wiener Filtering assumes

$$V(\vec{k}) = \frac{\tilde{h}_{wn}(\vec{k})\langle |\tilde{S}(\vec{k})|^2 \rangle}{\tilde{h}_{wn}^2(\vec{k})\langle |\tilde{S}(\vec{k})|^2 \rangle + \langle |\tilde{n}(\vec{k})|^2 \rangle}$$

noise variance is proportional to signal spectrum is unknown 46

fast SIM

fast SIM setup

49 Foerster, R., et al., *Optics Express* 22, 20663-20677 (2014)

High-Speed SIM: Freely diffusing 100nm beads

62 raw frames/s, Orca FLASH 4V2

Hui-Wen Lu-Walter

50 Foerster, R., et al., *Optics Express* 22, 20663-20677 (2014)

Problem: Rolling shutter readout

Typical: Two rolling shutters per camera

http://www.matrix-vision.com/glossar.html

sCMOS Cameras: rolling shutter

52

scmos cameras

sCMOS rolling shutters

53 http://en.wikipedia.org/wiki/File:CMOS_rolling_shutter_distortion.pgr Heintzmann, 2012

Solution: Synchronised partial frames

Song et al., Measurement Science Technology 27,066401 (2016)

Solution: Synchronised partial frames

Rate: 714 fps (raw) 79 fps (SIM)

FWHM= 108nm

ong et al., Measurement Science Technology 27,066401 (2016) iner Heintzmann, 2012

- Introduction: Resolution, Fourier and Abbe
- Superresolution
 - Structured Illumination
 - Circumventing the limit: Nonlinearity

Non-linearity

In Reciprocal Space

In Real Space

57

Photoswitchable Proteins

IrisFP (Tetrameric) (Ulrich Nienhaus, Susan Böhme, Elisabeth Ehler)

Nonefficient SI Data: Enno Oldewurtel

Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution

E. Hesper Rego^{a,b,1,2}, Lin Shao^b, John J. Macklin^b, Lukman Winoto^c, Göran A. Johansson^d, Nicholas Kamps-Hughes^d, Michael W. Davidson^e, and Mats G. L. Gustafsson^{b,3}

PNAS | January 17, 2012 | vol. 109 | no. 3 | E135-E143

Nuclear Pores (Nup98):

TIRF

NL-SIM on biological objects using saturated switching (Dronpa)

2011

59

Science 28 August 2015: vol. 349 no. 6251 DOI: 10.1126/science.aab3500 Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics

et al. (Betzig lab

evolution of cortical f-actin in a COS-7 cell at 23°C transfected with Skylan-NS-Lifeact, mApple-F-tractin (purple) and the focal adhesion protein mEmerald-paxillin (green) in a U2OS cell (reamer Reintzmann, 2012

Overview

High-res modes: SIM

Blind: PSF, illumination estimation

ipht <mark>jena</mark>

Mitglied de

Blind deconvolution (illumination)

- always slightly underdetermined (like blind source separation)
- sum of all illumination is assumed constant (also for 200 speckle patterns)
 - tiny Fourier-space support

Π

Jen

pht

bhhiteeonstruction

Blind-SIM: experimental TIRF-SIM data

Image courtesy Philipp von Olshausen / Alexander Rohrbach, Freiburg

Π

Jen

Ipht

Principle of the *thick slice* deconvolution:

- 2-beam illumination
- Single-slice acquisition at $z = z_0$
- 3D blind-SIM deconvolution using 3D PSF and extended stack

BlindSIM: Aurélie Jost

Experimental thick samples:

WHF 31DV decion regelution

Elyra result

BlindSIM Aurélie Jost Image courtesy Elena Tolstik Data acquired on therelynai(Brbeam)12

67

Experimental thick samples: Yeast, csiLSFM set-up (SIM-SPIM)

3D WF deconv 2D blind-SIM

I *Thick slice* blind-SIM

standard SIM

Data information

Π

pht

Sample: yeast mitochondiral GFP label Excitation: 488 nm Emission: 509 nm Pixel size: 57,6 nm NA: 1,0 (water-imm.) n: 1,33 Grating: 307,2 nm

Reconstruction parameters Reconstructed Slices: 8 Scale z PSF: 200 nm Good's roughness penalty $\lambda = 0.02$ Number of iterations: 30

Image Data: Bo-Jui Chang Ernst Stelzer, Frankfurt

Image Data: Bo-Jui Chang Thick slice reconstruction: Ernst Stelzer, Frankfurt slice by slice, Aurélie Jost

Jena

ipht

Summary

Linear fluorescence microscopy methods (structured illumination) can

- Enhance resolution (2x limit frequency)
- Increase HF detection

Non-linear methods are unlimited in resolution (NL-SIM, STED)

Collaborations

- Research: Ondrej Mandula, Susan Cox, Rolf Beutel, Y. Matsumura
- Ideas: Anne Sentenac
- Images: Mats Gustafsson, Alexander Rohrbach, Ernst Stelzer, Bo-Jui Chang
- Samples: Christopher Williams, James Moneypenny, Gareth Jones, Jürgen Rybak, Rolf Beutel, Y. Matsumura
- Probes: Ullrich Nienhaus, Susan Böhme
- Airy Scan Slides: Allex Sossic, Uros Krzic, Chris Power

+ DFG, JSMC, KCL, Zeiss

Many modes of microscopy exist

Linear methods yield a factor of 2

Light-sheet microscopy makes cool images

Computer-based imaging has great potential

ipht <mark>jena</mark>