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 The Kohn-Sham problem 
 
● Want to solve the Kohn-Sham equations: 
 
 

● Note that self-consistent solution necessary, as H 
depends on solution:  

 
● Convention (most of the time, in this talk):  
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 Kohn-Sham Equations in a Basis 

•  Can choose to expand wavefunctions in a basis set: 
 

•  Now obtain a matrix equation: 
 

                               Σβ  Hαβ ciβ =  εi ciα

•  Solving ⇔ Have to diagonalize a matrix of size Nb x Nb 
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 Some possible basis sets 

•  Various possible choices of basis: 
    - Plane waves eiK•r 
 

    - Localized sets: 
      e.g., Gaussians 
      e.g.,atomic orbitals 
 
    - Mixed basis 
    - Augmented basis 
 

•  Choose so that calculation is fast, accurate, convenient. 
-  Would like Nb to be small (within reason)?  
-  Would like form of fα(r) to be simple? 
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 Advantages of a Plane Wave Basis 

● Simple: Easy to take derivatives, etc.⇒ Coding is easy! 

● Orthonormal: No overlap integrals. 

●  Independent of atomic positions ⇒ No “Pulay forces”; 
easy to calculate forces for structural relaxation & 
molecular dynamics. 

● Unbiased: No assumption about where charge 
concentrated. (But ∴ also wasteful?) 

● Easy to control convergence w.r.t. size of basis: only one 
parameter Ecut.(energy cut-off for planewaves) 

● Can easily take advantage of FFT’s : r-space ↔ k-space 
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 Advantages of a Plane Wave Basis 

Convenient use of FFTs: 

f̃(k) =
N�1�

n=0

fn e�2�ikn/N

Very practical to calculate convolutions, solve 
Poisson's equation, etc. 

V (r) =
�

dr� n(r�)
|r� r�|

Ṽ (G) = 4�
ñ(G)
G2
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 Disadvantages of a Plane Wave Basis 
● Often need a HUGE number of plane waves  
    to get an adequate expansion,  
    i.e., Nb can be very large! (~105 per atom) 
   (Will discuss… 
    solution = introduction of pseudopotentials.) 
 
●  The set of plane waves is discrete only if the system is 

periodic! 
     (Will discuss solution = introduction of artificial supercell 

or periodic approximat.) 
 
● Sometimes (chemical) interpretation harder.  
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 Some popular plane wave codes 

•  Quantum ESPRESSO (PWscf) 

•  VASP 

•  ABINIT 

•  CASTEP 

•  CPMD 
 

(there are others too…) 
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Periodic Systems  

•  Periodic systems are characterized by a lattice of 
     -  lattice vectors R in real (r-) space 
     -  reciprocal lattice vectors G in reciprocal (k-) space 
 
 
 
 
 
 

•  Spacing of R’s inversely proportional to spacing of G’s 

kx 

ky 

x 

y 
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Periodic Systems & Bloch’s Theorem 

•  For a periodic system, recall Bloch’s Theorem: 

•  uk(r) has the periodicity of the system, i.e., 

•  As for all lattice-periodic functions, only certain plane 
waves will appear in the Fourier expansion of uk(r) : 
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Plane Waves & Periodic Systems  

•  So, for a periodic system: 

•  The plane waves that appear in this expansion can 
be represented as a grid in k-space: 
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where G = reciprocal 
lattice vector 

kx 

ky • Only true for periodic 
systems that grid is 
discrete. 
•  In principle, still need 

infinite number of 
plane waves. 
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Truncating the Plane Wave Expansion 

•  In practice, the contribution from higher Fourier 
components (large |k+G|) is small. 
•  So truncate the expansion at some value of |k+G|. 
•  Traditional to express this cut-off in energy units: 
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Truncating the Plane Wave Expansion 

•  Beware: charge density and orbitals have different 
cutoffs! 
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Truncating the Plane Wave Expansion 

•  Beware: charge density and orbitals have different 
cutoffs! 

 cut
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è if the orbitals are represented with a cutoff Ecut, then 
     the charge density is represented with a cutoff of 4 Ecut. 
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Matrix elements of (non-)local operators 

Given a general non-local operator                .  O(r, r�)

If                is a local operator, then:  O(r, r�)
O(r, r�) = O(r)�(r� r�)

Õ(k + G,k + G⇥) =
�

dr dr⇥ ei(k+G)·r O(r, r⇥) e�i(k+G�)·r�

=
�

dr ei(G�G�)·r O(r)

= Õ(G�G⇥)

Its matrix elements in the plane-wave basis read:  

Õ(k + G,k + G⇥) =
�

dr dr⇥ ei(k+G)·r O(r, r⇥) e�i(k+G�)·r�
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Kohn-Sham equations in plane wave basis 
 

•  Eigenvalue equation is now: 
 
 
 

• Matrix elements are: 
 
 
 

•  Nuclear (→ ionic) potential given by: 
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Nuclear Potential 

•  Electrons experience a Coulomb potential due to the 
nuclei. 

•  This has a known and simple form: 

•  But this leads to computational problems! 

r
ZVnuc −=
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Electrons in Atoms 

•  Electrons in atoms are arranged in shells. 
 

•  Quantum numbers:  
     n [principal], l [angular], ml [magnetic], ms [spin] 
 

•  Rare gas atoms 
     have certain complete subshells (inert configurations): 
    He: 1s2     Ne: [He], 2s2, 2p6     Ar: [Ne] 3s2, 3p6  
    Kr: [Ar], 3d10, 4s2,4p6    Xe: [Kr], 4d10, 5s2, 5p6 

    Rn: [Xe], 4f14, 5d10, 6s2,6p6 
 

•  Can divide electrons in any atom into core and valence. 
 

•  This division is not always clear-cut, but usually 
    core = rare gas configuration [+ filled d/f subshells] 
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Atomic Wavefunctions 

•  For hydrogenic atoms, recall: 

•  Radial part & Angular Part. 

•  Being eigenfunctions of a Hermitian operator, ψlm’s are 
orthonormal. 

•  Wavefunctions with same n, different l are orthogonal 
  due to the nature of the angular part of the wavefunction. 
•   Wavefunctions with different n, same l are orthogonal 

due to the nature of the radial part of the wavefunction. 

),()(),()()( 1 φθφφθψψ lmllmllm YrrYr −==r
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Example: Wavefunctions for Ag atom 

• Core wavefunctions 
sharply peaked near 
nucleus. 

•  Valence wavefunctions 
peaked far away from 
nucleus, lots of wiggles 
near nucleus. 

•  1s, 2p, 3d, 4f,…  
nodeless. 

• Not immediately clear 
whether 4d should be 
considered core / 
valence? 

 
 

•  Ground state configuration: [Kr], 4d10, 5s1, 5p0, 5d0 

φ(r) 
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Electrons in molecules/solids 

•  Chemical bonds between atoms are formed by sharing / 
transferring electrons. 

•  Only the valence electrons participate in bonding. 

•  Wavefunctions of valence electrons can change 
significantly once the bond is formed. 

•  e.g., when Ag is a constituent of a solid, the wavefunction 
may also acquire some 5p or 5d character? 

•  Wavefunctions of core electrons change only slightly 
when the bond is formed. 
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Problem for Plane-Wave Basis 

    Core wavefunctions: 
sharply peaked near 
nucleus. 

 

High Fourier components present 

i.e., need large Ecut   L 

    Valence wavefunctions: 
lots of wiggles near 
nucleus. 
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Solutions for Plane-Wave Basis 

    Core wavefunctions: 
sharply peaked near 
nucleus. 

 

High Fourier components present 

i.e., need large Ecut   L 

    Valence wavefunctions: 
lots of wiggles near 
nucleus. 

 

Don’t solve for the 
core electrons! 

Remove wiggles from 
valence electrons. 
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The Pseudopotential  Approximation 

•  Frozen core: remove core-electron degrees of freedom 
    i.e., NOT an “All-electron” calculation. 
 
•  Valence electrons see a weaker potential than the full 

Coulomb potential. 
 Vnuc(r) → Vion(r) 

 
•  Further tailor this potential so that wavefunctions behave 
    ‘properly’ in region of interest, yet computationally cheap. 
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How the Pseudopotential Helps 

(Numerical) Advantages when solving Kohn-Sham eqns.: 
•  When solving using a basis (especially plane waves), 

basis size drastically reduced (smaller matrices to 
diagonalize). 

•  Have to solve  for fewer eigenvalues. 
•  No Coulomb singularity (cusp in wavefunction) at origin. 

Disadvantages: 
•  Can lose accuracy. 
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An analogy! 

•  “Dummy cops” used by some law-enforcement agencies! 

•  Don’t care about internal structure as long as it works ~ 
right! 

•  But cheaper!! 

•  Obviously it can’t reproduce all the 
    functions of a real cop, but should 
    be convincing enough to produce 
    desired results…. 
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Wish List for a Good Pseudopotential 

For accuracy: 
•  Should reproduce scattering properties  
    of true potential. 
•  Transferable: Nice to have one pseudo- 
     potential per element, to use in variety  
     of chemical environments. 
• Norm conserving? (will explain) 
•  Ab initio? (no fitting to experimental data) 

For (computational) cheapness: 
•  Smooth / Soft: Need smaller basis set  (esp. plane waves) 
•  ‘Separable’’? (will skip!) but  ‘Ghost free’ (should not 

introduce spurious states when making separable!) 
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Generating an Ab Initio Pseudopotential 

• For the element of interest, pick a reference 
configuration. 

• Perform an “all-electron” calculation for this 
reference configuration. 
→  
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All-Electron Wavefunction 

φl(r) 

r→ 
Pick core radius rc 

all-electron wavefunction (for some reference configuration) 
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Pseudowavefunction Outside rc 

φl(r) 

all-electron wavefunction pseudowavefunction 

•   Pseudowavefunction & all-electron wavefunction are 
       identical outside  cut-off radius rc 

r→ 
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Pseudowavefunction  

φl(r) 

all-electron wavefunction pseudowavefunction 

•  Inside rc ,  
       

r→ 
)()( rfrPS

l =φ

Choose  to get desired properties 
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Norm-Conservation 

•  Norm conservation: 

•  Imposing norm conservation improves transferability! 
      (Hamann, Schlüter, Chiang, 1979) 

all-electron wavefunction 

φl(r) 

r→ 

pseudowavefunction 
)(rPS

lφ)(rAE
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drrr AE
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Pseudowavefunction → Pseudopotential 

•  Invert the radial Schrödinger equation to get a 
“screened” potential for each l,  

•  This “screened” potential includes Hartree and 
XC contributions; “unscreen” to get 
pseudopotential. 
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What does a pseudopotential look like? 

Example for Mo: 

Hamann, Schluter & Chiang, 1979. 

•  Weaker than full 
  Coulomb potential 
•  No singularity at r=0 
•  Different  
  pseudopotential  
  for each l (example of  
  semilocal 
  pseudopotential) 
•  Will be Vion 
   (replacing 
   nuclear potential) 
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Dealing with the non-locality 

Vps = Vloc +
�

l

l�

m=�l

|lm⇥�Vl�lm|

This non-local operator has (Npw)2 matrix elements 
(must be avoided!) 

Solution: Kleinman-Bylander representation 
 

Vps = Vloc +
�

lm

|�Vl⇥lm⇥ �⇥lm�Vl|
�⇥lm|�Vl|⇥lm⇥

ψlm is an eigenstate of the pseudo-Hamiltonian, acting as reference state. 
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Some Popular Pseudopotentials: BHS 

•  Bachelet, Hamann, Schlüter, PRB 26, 4199 (1982). 
 

•  “Pseudopotentials that work: from H to Pu” 
 

•  Ab initio, norm conserving, so good transferability (?) 
 

•  Semilocal Vl(r) [local in radial coordinates, nonlocal in 
angular coordinates] 

 

•  Parametrized form: chosen to give nice analytical 
expressions with many basis sets, 9 parameters, 
tabulated for all elements. 

 

•  Non-linear fitting procedure, caution needed! 
 

•  Fairly hard pseudopotentials since smoothness not built 
in explicitly, frequently need high cut-off. 
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How to Make Softer? 

•  Increase radial cut-off rc?? Softer, but transferability 
suffers. 

David Vanderbilt 
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Soft / Smooth Pseudopotentials 

• Want to lower Ecut (cut-off for plane wave basis). 
 

•  Various strategies: 
     - Optimize so as to minimize error in KE introduced by  
       truncating basis (Rappe, Rabe, Kaxiras & Joannopoulos,   
       [RRKJ] 1990) 
     - Make smooth near origin (Troullier & Martins, 1991) 
 

•  Cut-offs lowered considerably, but still higher than we  
    would like, especially for 
      > first row elements (1s, 2p nodeless) 
      > transition metals (3d nodeless) 
      > rare-earths (4f nodeless) 
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Need lower Ecut with soft pseudopotentials 
e.g. Cu: localized d orbitals →  
        high cut-off needed with BHS pseudopotential 

Troullier-Martins RRKJ 
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Nodeless Wavefunctions  & Norm Conservation 

Cut-offs still higher than we would like, especially for 
      > first row elements (1s, 2p nodeless) 
      > transition metals (3d nodeless) 
      > rare-earths (4f nodeless) 
This is because of the constraint of norm conservation... 

David Vanderbilt 
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Ultrasoft Pseudopotentials 

•  David Vanderbilt, Phys. Rev. B 41 7892 (1990). 
 

•  Do away with norm conservation!! 
 

•  Can make ψPS extremely soft! 
 

•  Drastically reduces Ecut, especially 
    for “difficult” elements. 
 

•  New separable form. 
 

•  Choose multiple energy references 
    (to improve transferability).  
 

Vanderbilt 

Laasonen, Car, Lee & Vanderbilt 



POPULAR Pseudopotentials! 
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•  AM Rappe, KM Rabe, E Kaxiras and J Joannopoulos, 
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Cited: 1,011. 
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Transferability 
• Condition that pseudoatom reproduces behavior of all-
electron atom in wide variety of chemical environments.. 

•   Recall, pseudopotential derived for reference config.  
    (atom with given occ of levels), using ref eigenvalue. 

•    When eigenvalue changes from  reference one: 
  - do scattering properties of potential change correctly? 
(Look at log derivatives) 

• When the filling changes: 
   - do eigenvalues shift correctly?  
     (look at chemical hardness) 
   - do scattering properties change correctly? 
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Transferability: log derivatives 
•    Log derivatives guaranteed 
    to match at reference energy, 
check how log derivatives 
change with energy . 
  

Log derivatives don’t match L 

Ag 

Has ghost L 
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Transferability: Occupation Changes 

• See how eigenvalues change with occupation     
        Chemical Hardness matrix:                    [Teter, 1993] . 
 
• See how 'tail norms'                                   change with 
occupation:             should be reproduced 

e.g.: check transferability 
of a pseudopotential for 
Ag with 4d in core: 

∫
∞

=
cr

ii drN 2||φ
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Non-Linear Core Correction 

• Working only with ρval corresponds to linearizing the XC 
    potential, but  VXC(ρval+ρcore) ≠ VXC(ρval)+Vxc(ρcore) 
• This is particularly a problem when there is significant 
overlap between ρval

 and ρcore 

• Correction: [Louie, Froyen & Cohen, Phys. Rev. B 26 1738 (1982)]: 

      - When unscreening, subtract out VH(ρval) 
       and VXC(ρval+ρcore) 
    - Store ρcore from atomic calculation 
    - Use VXC(ρval+ρcore) in all calculations 
    - Okay to just use partial ρcore (in region of overlap) 
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Recall (from a quantum mechanics course?): 
•  Scattering properties of a potential described by phase 

shift ηl . 
•   Related to logarithmic derivatives: [see, e.g. Eq. J.6, Martin] 

 
 
•  Weaker potentials will have fewer bound states. 
•  In the pseudopotential approximation: want to make the 

potential weak enough that the valence electron is the 
lowest bound state (with that l), while reproducing log 
derivatives to the extent possible.... 

Extra Stuff: Scattering 
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• By construction, log derivatives satisfy: 
 
• In addition, if we impose norm conservation: 
 

    

    then from the identity (see e.g. pg. 214 of Martin for derivation): 
 
 

   we have* 
                                                     
    

    i.e., if energy is shifted slightly from that of reference 
eigenvalue, log derivatives ~ unchanged → 
    improved transferability! 
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Extra Stuff: Norm Conservation & Transferability 
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Terminology: Local, Semilocal, Separable, etc. 
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David Vanderbilt 
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Extra Stuff: Relativistic Pseudopotentials 

50 
David Vanderbilt 


