Plane-Waves, pseudopotentials, k-points, FFTs and all that

Ralph Gebauer

slides courtesy of Shobhana Narasimhan

The Kohn-Sham problem

Want to solve the Kohn-Sham equations:

$$\left[-\frac{1}{2}\nabla^2 + V_{nuc}(\mathbf{r}) + V_H[n(\mathbf{r})] + V_{XC}[n(\mathbf{r})]\right]\psi_i(\mathbf{r}) = \varepsilon_i\psi_i(\mathbf{r})$$

H

Note that self-consistent solution necessary, as H
depends on solution:

$$\{\psi_i\} \rightarrow n(r) \rightarrow H$$

Convention (most of the time, in this talk):

$$e = \hbar = m_e = 1$$

Kohn-Sham Equations in a Basis

Can choose to expand wavefunctions in a basis set:

$$\psi_i(\mathbf{r}) = \sum_{\alpha=1}^{N_b} c_{i\alpha} f_{\alpha}(\mathbf{r})$$

Now obtain a matrix equation:

$$\Sigma_{\beta} H_{\alpha\beta} c_{i\beta} = \varepsilon_{i} c_{i\alpha}$$
Matrix element Eigenvalue Eigenvector

• Solving \Leftrightarrow Have to diagonalize a matrix of size $N_{\nu} \times N_{b}$

Size of basis

Some possible basis sets

- Various possible choices of basis:
 - Plane waves $e^{iK \cdot r}$
 - Localized sets:
 - e.g., Gaussians
 - e.g., atomic orbitals

- Augmented basis

- Choose so that calculation is fast, accurate, convenient.
- Would like N_b to be small (within reason)?
- Would like form of $f_{\alpha}(\mathbf{r})$ to be simple?

Advantages of a Plane Wave Basis

- Simple: Easy to take derivatives, etc.⇒ Coding is easy!
- Orthonormal: No overlap integrals.
- Independent of atomic positions ⇒ No "Pulay forces"; easy to calculate forces for structural relaxation & molecular dynamics.
- Unbiased: No assumption about where charge concentrated. (But : also wasteful?)
- Easy to control convergence w.r.t. size of basis: only one parameter E_{cut} (energy cut-off for planewaves)
- Can easily take advantage of FFT's: r-space ↔ k-space

Advantages of a Plane Wave Basis

Convenient use of FFTs:

$$\tilde{f}(k) = \sum_{n=0}^{N-1} f_n e^{-2\pi i k n/N}$$

Very practical to calculate convolutions, solve Poisson's equation, etc.

$$V(\mathbf{r}) = \int d\mathbf{r}' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

$$\tilde{V}(\mathbf{G}) = 4\pi \frac{\tilde{n}(\mathbf{G})}{\mathbf{G}^2}$$

Disadvantages of a Plane Wave Basis

Often need a HUGE number of plane waves to get an adequate expansion, i.e., N_b can be very large! (~10⁵ per atom) (Will discuss... solution = introduction of pseudopotentials.)

- The set of plane waves is discrete only if the system is periodic!
 - (Will discuss solution = introduction of artificial supercell or periodic approximat.)
- Sometimes (chemical) interpretation harder.

Some popular plane wave codes

- Quantum ESPRESSO (PWscf)
- VASP
- ABINIT
- CASTEP
- CPMD

(there are others too...)

Periodic Systems

- Periodic systems are characterized by a lattice of
 - lattice vectors **R** in real (r-) space
 - reciprocal lattice vectors G in reciprocal (k-) space

Spacing of R's inversely proportional to spacing of G's

Periodic Systems & Bloch's Theorem

For a periodic system, recall Bloch's Theorem:

$$\psi_{\mathbf{k}}(r) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{\mathbf{k}}(\mathbf{r})$$

 $u_{\mathbf{k}}(\mathbf{r})$ has the periodicity of the system, i.e.,

$$u_{k}(\mathbf{r}) = u_{k}(\mathbf{r} + \mathbf{R}),$$
 where $\mathbf{R} =$ lattice vector

As for all lattice-periodic functions, only certain plane waves will appear in the Fourier expansion of $u_{\mathbf{k}}(\mathbf{r})$:

$$u_{\mathbf{k}}(\mathbf{r}) = \frac{1}{\Omega} \sum_{\mathbf{G}} c_{\mathbf{k},\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{r}}$$
 where \mathbf{G} = reciprocal lattice vector

Plane Waves & Periodic Systems

So, for a periodic system:

$$\psi_{\mathbf{k}}(\mathbf{r}) = \frac{1}{\Omega} \sum_{\mathbf{G}} c_{\mathbf{k},\mathbf{G}} e^{i(\mathbf{k}+\mathbf{G}) \cdot \mathbf{r}}$$

where **G** = reciprocal lattice vector

The plane waves that appear in this expansion can be represented as a grid in k-space:

- Only true for periodic systems that grid is discrete.
- In principle, still need infinite number of plane waves.

Truncating the Plane Wave Expansion

- In practice, the contribution from higher Fourier components (large |k+G|) is small.
- So truncate the expansion at some value of $|\mathbf{k}+\mathbf{G}|$.
- Traditional to express this cut-off in energy units:

Truncating the Plane Wave Expansion

Beware: charge density and orbitals have different cutoffs!

$$\frac{\hbar^2 |\mathbf{k} + \mathbf{G}|^2}{2m_e} \le E_{cut}$$

$$n(\mathbf{r}) = \sum_{i} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r})$$

Truncating the Plane Wave Expansion

Beware: charge density and orbitals have different cutoffs!

$$\frac{\hbar^2 |\mathbf{k} + \mathbf{G}|^2}{2m_e} \le E_{cut}$$

$$n(\mathbf{r}) = \sum_{i} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r})$$

$$\tilde{n}(\mathbf{G}) = \sum_{i} \sum_{\mathbf{G}'} \tilde{\psi}_{i}^{*}(\mathbf{G}') \tilde{\psi}_{i}(\mathbf{G} - \mathbf{G}')$$

→ if the orbitals are represented with a cutoff E_{cut}, then the charge density is represented with a cutoff of 4 E_{cut}.

Matrix elements of (non-)local operators

Given a general non-local operator $O(\mathbf{r}, \mathbf{r}')$.

Its matrix elements in the plane-wave basis read:

$$\tilde{O}(\mathbf{k} + \mathbf{G}, \mathbf{k} + \mathbf{G}') = \int d\mathbf{r} d\mathbf{r}' \ e^{i(\mathbf{k} + \mathbf{G}) \cdot \mathbf{r}} O(\mathbf{r}, \mathbf{r}') e^{-i(\mathbf{k} + \mathbf{G}') \cdot \mathbf{r}'}$$

If $O(\mathbf{r}, \mathbf{r}')$ is a local operator, then:

$$O(\mathbf{r}, \mathbf{r}') = O(\mathbf{r})\delta(\mathbf{r} - \mathbf{r}')$$

$$\tilde{O}(\mathbf{k} + \mathbf{G}, \mathbf{k} + \mathbf{G}') = \int d\mathbf{r} d\mathbf{r}' \ e^{i(\mathbf{k} + \mathbf{G}) \cdot \mathbf{r}} O(\mathbf{r}, \mathbf{r}') e^{-i(\mathbf{k} + \mathbf{G}') \cdot \mathbf{r}'}$$

$$= \int d\mathbf{r} \ e^{i(\mathbf{G} - \mathbf{G}') \cdot \mathbf{r}} O(\mathbf{r})$$

$$= \tilde{O}(\mathbf{G} - \mathbf{G}')$$

Kohn-Sham equations in plane wave basis

Eigenvalue equation is now:

$$\sum_{\mathbf{G}'} H_{\mathbf{k}+\mathbf{G},\mathbf{k}+\mathbf{G}'} c_{i,\mathbf{k}+\mathbf{G}'} = \epsilon_i c_{i,\mathbf{k}+\mathbf{G}}$$

Matrix elements are:

$$\frac{1}{2}|k+G|^2\delta_{G,G'} + V_{ion}(k+G,k+G') + V_H(G-G') + V_{XC}(G-G')$$

Nuclear (→ ionic) potential given by:

$$V_{ion}(\mathrm{G}) = \sum_{lpha} \mathbf{S}_{lpha}(\mathrm{G}) \mathbf{v}_{lpha}(\mathrm{G}); \quad \mathbf{S}_{lpha}(\mathrm{G}) = \sum_{\mathtt{I}} \exp(\mathrm{i} \mathrm{G} \cdot \mathrm{R}_{\mathtt{I}})$$

Nuclear Potential

- Electrons experience a Coulomb potential due to the nuclei.
- This has a known and simple form:

$$V_{nuc} = -\frac{Z}{r}$$

But this leads to computational problems!

Electrons in Atoms

- Electrons in atoms are arranged in shells.
- Quantum numbers:

```
n [principal], l [angular], m_l [magnetic], m_s [spin]
```

Rare gas atoms

have certain complete subshells (inert configurations):

He: 1s² Ne: [He], 2s², 2p⁶ Ar: [Ne] 3s², 3p⁶

Kr: [Ar], 3d¹⁰, 4s²,4p⁶ Xe: [Kr], 4d¹⁰, 5s², 5p⁶

Rn: [Xe], 4f¹⁴, 5d¹⁰, 6s²,6p⁶

- Can divide electrons in any atom into <u>core</u> and <u>valence</u>.
- This division is not always clear-cut, but usually core = rare gas configuration [+ filled d/f subshells]

Atomic Wavefunctions

For hydrogenic atoms, recall:

$$\psi_{lm}(\mathbf{r}) = \psi_l(r) Y_{lm}(\theta, \phi) = r^{-1} \phi_l(r) Y_{lm}(\theta, \phi)$$

- Radial part & Angular Part.
- Being eigenfunctions of a Hermitian operator, ψ_{lm} 's are orthonormal.
- Wavefunctions with same n, different l are orthogonal due to the nature of the angular part of the wavefunction.
- Wavefunctions with different n, same l are orthogonal due to the nature of the radial part of the wavefunction.

Example: Wavefunctions for Ag atom

Ground state configuration: [Kr], 4d¹⁰, 5s¹, 5p⁰, 5d⁰

- Core wavefunctions sharply peaked near nucleus.
- Valence wavefunctions peaked far away from nucleus, lots of wiggles near nucleus.
- 1s, 2p, 3d, 4f,... nodeless.
- Not immediately clear whether 4d should be considered core / valence?

Electrons in molecules/solids

- Chemical bonds between atoms are formed by sharing / transferring electrons.
- Only the valence electrons participate in bonding.
- Wavefunctions of valence electrons can change significantly once the bond is formed.
- e.g., when Ag is a constituent of a solid, the wavefunction may also acquire some 5p or 5d character?
- Wavefunctions of core electrons change only slightly when the bond is formed.

Problem for Plane-Wave Basis

Core wavefunctions: sharply peaked near nucleus.

Valence wavefunctions:

lots of wiggles near nucleus.

i.e., need large E_{cut}

Solutions for Plane-Wave Basis

Core wavefunctions: sharply peaked near nucleus.

Valence wavefunctions:

lots of wiggles near nucleus.

High Fourier components present

i.e., need large E_{cut}

Don't solve for the core electrons!

Remove wiggles from valence electrons.

The Pseudopotential Approximation

- Frozen core: remove core-electron degrees of freedom i.e., NOT an "All-electron" calculation.
- Valence electrons see a weaker potential than the full Coulomb potential.

$$V_{nuc}(r) \rightarrow V_{ion}(r)$$

• Further tailor this potential so that wavefunctions behave 'properly' in region of interest, yet computationally cheap.

How the Pseudopotential Helps

(Numerical) Advantages when solving Kohn-Sham eqns.:

- When solving using a basis (especially plane waves), basis size drastically reduced (smaller matrices to diagonalize).
- Have to solve for fewer eigenvalues.
- No Coulomb singularity (cusp in wavefunction) at origin.

Disadvantages:

Can lose accuracy.

An analogy!

- "Dummy cops" used by some law-enforcement agencies!
- Don't care about internal structure as long as it works ~ right!
- But cheaper!!
- Obviously it can't reproduce all the functions of a real cop, but should be convincing enough to produce desired results....

Wish List for a Good Pseudopotential

For accuracy:

- Should reproduce scattering properties of true potential.
- Transferable: Nice to have <u>one</u> pseudopotential per element, to use in variety of chemical environments.
- Norm conserving? (will explain)
- Ab initio? (no fitting to experimental data)

For (computational) cheapness:

- Smooth / Soft: Need smaller basis set (esp. plane waves)
- 'Separable''? (will skip!) but 'Ghost free' (should not introduce spurious states when making separable!)

Generating an Ab Initio Pseudopotential

- •For the element of interest, pick a reference configuration.
- •Perform an "all-electron" calculation for this reference configuration.

$$\rightarrow \phi_{nl}^{AE}(\mathbf{r}), \epsilon_{nl}^{AE}$$

All-Electron Wavefunction

all-electron wavefunction (for some reference configuration)

Pseudowavefunction Outside r_c

all-electron wavefunction

pseudowavefunction

Pseudowavefunction & all-electron wavefunction are identical outside cut-off radius r_c $\phi_{l,ref}^{AE}(r) = \phi_{l,ref}^{PS}(r)$ $r \geq r_c$

Pseudowavefunction

all-electron wavefunction

pseudowavefunction

 $r \rightarrow$

• Inside
$$r_c$$
, $\phi_l^{PS}(r) = f(r)$

Choose to get desired properties

Norm-Conservation

pseudowavefunction

all-electron wavefunction

Norm conservation:

$$\int_{0}^{r_c} \phi^{*AE}(r) \phi^{AE}(r) dr = \int_{0}^{r_c} \phi^{*PS}(r) \phi^{PS}(r) dr$$

• Imposing norm conservation improves transferability! (Hamann, Schlüter, Chiang, 1979)

Pseudowavefunction → Pseudopotential

- Invert the radial Schrödinger equation to get a "screened" potential for each l, $V_l^{scr}(r)$
- This "screened" potential includes Hartree and XC contributions; "unscreen" to get pseudopotential.

$$V_l^{PS}(r) = V_l^{scr}(r) - V_H[
ho^{val}(r)] - V_{XC}[
ho^{val}(r)]$$

What does a pseudopotential look like?

Example for Mo:

Hamann, Schluter & Chiang, 1979.

- Weaker than full Coulomb potential
- No singularity at r=0
- Different
 pseudopotential
 for each l (example of
 semilocal
 pseudopotential)
- Will be V_{ion} (replacing nuclear potential)

Dealing with the non-locality

$$V_{ps} = V_{loc} + \sum_{l} \sum_{m=-l}^{l} |lm\rangle \delta V_l \langle lm|$$

This non-local operator has $(N_{pw})^2$ matrix elements (must be avoided!)

Solution: Kleinman-Bylander representation

$$V_{ps} = V_{loc} + \sum_{lm} \frac{|\delta V_l \psi_{lm}\rangle \langle \psi_{lm} \delta V_l|}{\langle \psi_{lm} |\delta V_l | \psi_{lm}\rangle}$$

 ψ_{lm} is an eigenstate of the pseudo-Hamiltonian, acting as reference state.

Some Popular Pseudopotentials: BHS

- Bachelet, Hamann, Schlüter, PRB 26, 4199 (1982).
- "Pseudopotentials that work: from H to Pu"
- Ab initio, norm conserving, so good transferability (?)
- Semilocal $V_l(r)$ [local in radial coordinates, nonlocal in angular coordinates]
- Parametrized form: chosen to give nice analytical expressions with many basis sets, 9 parameters, tabulated for all elements.
- Non-linear fitting procedure, caution needed!
- Fairly hard pseudopotentials since smoothness not built in explicitly, frequently need high cut-off.

How to Make Softer?

• Increase radial cut-off rc?? Softer, but transferability suffers.

Soft / Smooth Pseudopotentials

- Want to lower E_{cut} (cut-off for plane wave basis).
- Various strategies:
 - Optimize so as to minimize error in KE introduced by truncating basis (Rappe, Rabe, Kaxiras & Joannopoulos, [RRKJ] 1990)
 - Make smooth near origin (Troullier & Martins, 1991)
- Cut-offs lowered considerably, but still higher than we would like, especially for
 - > first row elements (1s, 2p nodeless)
 - > transition metals (3d nodeless)
 - > rare-earths (4f nodeless)

Need lower E_{cut} with soft pseudopotentials

e.g. Cu: localized d orbitals → high cut-off needed with BHS pseudopotential

Troullier-Martins

FIG. 8. The calculated total energy of fcc Cu plotted against the cutoff energy of the plane-wave basis set for the four pseudopotentials shown in Fig. 7. The total energy for all four curves are referenced to the total energy calculated at a cutoff energy of 225 Ry. The squares, circles, and triangles are the calculated data points and the curves are obtained from a spline interpolation.

RRKJ

FIG. 3. Atomic (solid lines) and fcc solid (dots) total energies as a function of cutoff energy for copper in the HSC and present approaches. The zero of atomic total energy for each pseudopotential was chosen to be the total atomic energy at a cutoff energy of 324 Ry. The zero of solid total energy was chosen for each pseudopotential so that the atomic and solid total energies coincide at a cutoff energy of 80 Ry.

Nodeless Wavefunctions & Norm Conservation

Cut-offs still higher than we would like, especially for

- > first row elements (1s, 2p nodeless)
- > transition metals (3d nodeless)
- > rare-earths (4f nodeless)

This is because of the constraint of norm conservation...

Ultrasoft Pseudopotentials

- David Vanderbilt, Phys. Rev. B 41 7892 (1990).
- Do away with norm conservation!!
- Can make ψ^{PS} extremely soft!
- Drastically reduces E_{cut} , especially for "difficult" elements.
- New separable form.
- Choose multiple energy references (to improve transferability).

FIG. 1. Oxygen 2p radial wave function (solid line), and corresponding pseudo-wave-functions generated using HSC (dotted line) and current (dashed line) methods.

Vanderbilt

FIG. 1. Total energy of ground-state oxygen atom vs planewave -cutoff for Bachelet-Hamann-Schlüter pseudopotential (open circles) and for Vanderbilt pseudopotential with $r_c = 1.2$ a.u. (solid squares) and $r_c = 1.8$ a.u. (open triangles).

Laasonen, Car, Lee & Vanderbilt

POPULAR Pseudopotentials!

- GB Bachelet, DR Hamann and M. Schluter, "Pseudopotentials that Work- From H to Pu", Phys. Rev. B, 1982. Times Cited: 2,723.
- N. Troullier and JL Martins, "Efficient Pseudopotentials for Plane-Wave Calculations", Phys. Rev. B, 1991. Times Cited: 9,640.
- AM Rappe, KM Rabe, E Kaxiras and J Joannopoulos, "Optimized Pseudopotentials", Phys. Rev. B, 1990, Times Cited: 1,011.
- D. Vanderbilt: "Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism", Phys. Rev. B, 1990. Times

Cited: 12,784.

Transferability

- Condition that pseudoatom reproduces behavior of allelectron atom in wide variety of chemical environments.
- Recall, pseudopotential derived for reference config.
 (atom with given occ of levels), using ref eigenvalue.
- When eigenvalue changes from reference one:
- do scattering properties of potential change correctly?
 (Look at log derivatives)
- •When the filling changes:
 - do eigenvalues shift correctly?
 (look at chemical hardness)
 - do scattering properties change correctly?

Transferability: log derivatives

• Log derivatives guaranteed to match at reference energy, check how log derivatives change with energy.

<u>Ag</u>

Has ghost ⊗

Log derivatives don't match ⊗

Transferability: Occupation Changes

See how eigenvalues change with occupation Chemical Hardness matrix: $\eta_{ij} = \frac{1}{2} \frac{\partial \epsilon_i}{\partial f_i}$ [Teter, 1993].

See how 'tail norms' $N_i = \int_r^\infty |\phi_i|^2 \, dr$ change with occupation: $\frac{\partial N_i}{\partial f_j}$ should be reproduced

e.g.: check transferability of a pseudopotential for Ag with 4d in core:

Non-Linear Core Correction

Working only with ρ^{val} corresponds to linearizing the XC potential, but $V_{XC}(\rho^{val}+\rho^{core}) \neq V_{XC}(\rho^{val})+V_{XC}(\rho^{core})$

This is particularly a problem when there is significant overlap between ρ^{val} and ρ^{core}

Correction: [Louie, Froyen & Cohen, Phys. Rev. B 26 1738 (1982)]:

- When unscreening, subtract out $V_H(\rho^{val})$ and $V_{XC}(\rho^{val}+\rho^{core})$
- Store ρ^{core} from atomic calculation
- Use $V_{XC}(\rho^{val}+\rho^{core})$ in all calculations
- Okay to just use partial ρ^{core} (in region of overlap)

Extra Stuff: Scattering

Recall (from a quantum mechanics course?):

- Scattering properties of a potential described by phase shift η_{7} .
- Related to logarithmic derivatives: [see, e.g. Eq. J.6, Martin]

$$D_l(\epsilon,r) = r rac{d}{dr} ext{ln} \psi_l(\epsilon,r) = r rac{d}{dr} ext{ln} (\phi_l(\epsilon,r)/r)$$

- Weaker potentials will have fewer bound states.
- In the pseudopotential approximation: want to make the potential weak enough that the valence electron is the lowest bound state (with that l), while reproducing log derivatives to the extent possible....

Extra Stuff: Norm Conservation & Transferability

By construction, log derivatives satisfy:

$$D_l^{AE}(\epsilon, r_c) = D_l^{PS}(\epsilon, r_c)$$

•In addition, if we impose norm conservation:

$$\int_0^{r_c} \phi^{*AE}(r) \phi^{AE}(r) dr = \int_0^{r_c} \phi^{*PS}(r) \phi^{PS}(r) dr$$

then from the identity (see e.g. pg. 214 of Martin for derivation):

$$\frac{\partial}{\partial \epsilon} D_l(\epsilon, r_c) = -\frac{r_c}{|\phi_l(r_c)|^2} \int_0^{r_c} dr |\phi_l(r_c)|^2$$

we have*

$$\frac{\partial}{\partial \epsilon} D_l^{AE}(\epsilon, r_c) = \frac{\partial}{\partial \epsilon} D_l^{PS}(\epsilon, r_c)$$

i.e., if energy is shifted slightly from that of reference eigenvalue, log derivatives ~ unchanged →

improved transferability!

Terminology: Local, Semilocal, Separable, etc.

Local PSP

$$\hat{V}_{\mathrm{ps}} = V_{\mathrm{ps}}(r)$$
 (local in r , $heta$, ϕ)

Semilocal PSP

$$\hat{V}_{\mathrm{ps}} = \sum_{l} V_{\mathrm{ps}}^{(l)}(r) \, \hat{P}_{l}$$
 (local in r , nonlocal in θ , ϕ)

Nonlocal separable PSP (e.g., Kleinman-Bylander)

$$\hat{V}_{ ext{ps}} = V_{ ext{ps}}^{ ext{loc}}(r) + \sum_{lm} D_l \, |\, eta_{lm} \,
angle \langle \, eta_{lm} \, | \,$$

General nonlocal separable PSP

$$\hat{V}_{
m ps} = V_{
m ps}^{
m loc}(r) + \sum_{ au au'} \sum_{lm} D_{ au au'l} \, |\, eta_{ au lm} \,
angle \langle \, eta_{ au'l} \, |\,$$

(Note: All are spherically symmetric.)

Extra Stuff: Relativistic Pseudopotentials

- Do all-electron calculation on free atom using Dirac equation
- ullet Obtain $\psi_{nlj}(r)$ for $j=l+rac{1}{2}$ and $j=l-rac{1}{2}$
- Invert Schrödinger equation to get $V_{lj}^{\mathrm{ps}}(r)$
- For "scalar relativistic" target calc., use *j*-averaged PSPs:

$$V_l^{
m ps}(r) = rac{1}{2l+1}[(l+1)\,V_{l,l+rac{1}{2}}^{
m ps} + l\,V_{l,l-rac{1}{2}}^{
m ps}]$$

For spin-orbit interactions, keep also

$$V_l^{\text{so}}(r) = \frac{1}{2l+1} \left[V_{l,l+\frac{1}{2}}^{\text{ps}} - V_{l,l-\frac{1}{2}}^{\text{ps}} \right]$$

and use, schematically speaking,

$$\hat{V}_{ ext{ps}} = \sum_{l} |\, l\,
angle \, \left[\, V_l^{ ext{ps}}(r) + V_l^{ ext{so}}(r) \, \mathbf{L} \cdot \mathbf{S} \,
ight] \, \left\langle\, l\, |\,
ight.$$

David Vanderbilt