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he Kohn-Sham problem

® Want to solve the Kohn-Sham equations:

_ %vz Vo (0) + V, [(0)]+ Vi (0] (1) = p,(r)
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® Note that self-consistent solution necessary, as H
depends on solution:

W,y —=n(r)—H

® Convention (most of the time, in this talk):
e=h=m, =1




Kohn-Sham Equations in a Basis

« (Can choose to expand wavefunctions in a

v, =Y ¢, ful)

* Now obtain a matrix equation:
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« Solving < Have to diagonalize a matrix of size




Some possible basis sets

Various possible :
- Plane waves ¢/&* /VWV\
- Localized sets:
e.g., Gaussians
e.g.,atomic orbitals

- Mixed basis
- Augmented basis

Choose so that calculation is fast, accurate, convenient.
Would like N, to be small (within reason)?
Would like form of f_(r) to be simple?




Advantages of a Plane Wave Basis

® Simple: Easy to take derivatives, etc.= Coding is easy!

® Orthonormal: No overlap integrals.

® Independent of atomic positions = No “Pulay forces”;
easy to calculate forces for structural relaxation &
molecular dynamics.

® Unbiased: No assumption about where charge
concentrated. (But ... also wasteful?)

® Easy to control convergence w.r.t. size of basis: only one
parameter E_ .(energy cut-off for planewaves)

® Can easily take advantage of FFT's : r-space <> k-space
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Advantages of a Plane Wave Basis

Convenient use of FFTs:

N-—1
f(k) _ Z fn 6—27Tikn/N
n=0

Very practical to calculate convolutions, solve
Poisson's equation, etc.

V(r) = / ar’ ‘:Jf';?,‘

‘N/(G) A ﬁ((;(j)




Disadvantages of a Plane Wave Basis

® Often need a HUGE number of plane waves
to get an adequate expansion,
i.e., N, can be very large! (~10° per atom)
(Will discuss...
solution = introduction of pseudopotentials.)

® The set of plane waves is discrete only if the system is
periodic!
(Will discuss solution = introduction of artificial supercell
or periodic approximat.)

® Sometimes (chemical) interpretation harder.




Some popular plane wave codes

Quantum ESPRESSO (PWscf)

VASP

ABINIT

CASTEP

CPMD

(there are others too...)




Periodic Systems

» Periodic systems are characterized by a lattice of
- lattice vectors R in real (r-) space

- in reciprocal (k-) space
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« Spacing of R’s inversely proportional to spacing of




Periodic Systems & Bloch’s Theorem

® For a periodic system, recall Bloch’s Theorem:

Y (1) = eik.ruk (r)

® u,(r) has the periodicity of the system, i.e.,

u, (r) =1, (r +R),

whereR = |attice vector

@ As for all lattice-periodic functions, only certain plane
waves will appear in the Fourier expansion of u,(r) :

1

Uy (l‘) = 5

iIGer
D, Cuce

where G = reciprocal
lattice vector
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Plane Waves & Periodic Systems

® So, for a periodic system:

Y, (r)= é Z Ck,-

® The plane waves that appear in this expansion can
be represented as a grid in k-space:

where G = reciprocal
lattice vector

@ Only true for periodic
systems that grid is
discrete.

k ® In principle, still need
infinite number of
plane waves.

Q00000 .....:\<N‘
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Truncating the Plane Wave Expansion

® In practice, the contribution from higher Fourier
components (large |k+GlJ) is small.

® So truncate the expansion at some value of |k+G|.
® Traditional to express this cut-off in energy units:

:
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Truncating the Plane Wave Expansion

® Beware: charge density and orbitals have different
cutoffs!

n) = 3 U i)
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Truncating the Plane Wave Expansion

¢ charge density and orbitals have different

cutoffs! 5 5
hdk+G)

2m

e

<FE

cut

n(r) = Z Y (r)

>. >‘ ¥ (G (G — G

ap
2!
|

=>» if the orbitals are represented with a cutoff E_;, then
the charge density is represented with a cutoff of 4 E

cut-
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Matrix elements of (non-)local operators

Given a general non-local operator O(r, r’) .

Its matrix elements in the plane-wave basis read:

~

Ok +Gk+G)= /dr dr’ ¢'®+G)T O(p, /) e~ k+G)

If O(r, 1) is a local operator, then:
O(r,r') = O(r)o(r — r')

~

Ok+G,k+G') = / dr dr' &G Oy, p/) ¢~ i(kTG)

— /dr ei(G_G/)'rO(r)

~

- 0(G-G)
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Kohn-Sham equations in plane wave basis

® Eigenvalue equation is now:

Zc;f Hk+G,k+G’Ci,k+Gf — €iC{ k+G

® Matrix elements are:

Lk + G*gar + Vien(k + G, k + G') + Vg(G — G') + Vxc(G — G)

® Nuclear (— ionic) potential given by:

Vior(G) = 2..8a(G)Va(G);  Sa(G) = >y exp(iG - Ry)
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Nuclear Potential

« Electrons experience a Coulomb potential due to the
nuclei.

* This has a known and simple form:

| ——

nuc

« But this leads to computational problems!
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Electrons in Atoms

Electrons in atoms are arranged in shells.

Quantum numbers:
n [principal], I [angular], m,[magnetic], m [spin]

Rare gas atoms

have certain complete subshells (inert configurations):
He: 1s?2 Ne: [He], 282, 2p®  Ar: [Ne] 3s?, 3p®

Kr: [Ar], 3d'0, 452 4p® Xe: [Kr], 4d'0, 552, 5p®

Rn: [Xe], 4f14, 5d10, 6s2,6p°

Can divide electrons in any atom into core and

This division is not always clear-cut, but usually
core = rare gas configuration [+ filled d/f subshells]
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Atomic Wavefunctions

For hydrogenic atoms, recall:

Radial part &

Being eigenfunctions of a Hermitian operator, v, 's are
orthonormal.

Wavefunctions with same », different / are orthogonal
due to the nature of the

Wavefunctions with different », same [/ are orthogonal
due to the nature of the radial part of the wavefunction.
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Example: Wavefunctions for Ag atom

Ground state configuration: [Kr],

1.0

2.0

3.0
r{a.u.)

4.0

5.0

6.0

, bs’, 5pY, 5dY

Core wavefunctions
sharply peaked near
nucleus.

peaked far away from
nucleus, lots of wiggles
near nucleus.

1s, 2p, 3d, 4f,...
nodeless.
Not immediately clear

whether 4d should be

considered core /

?
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Electrons in molecules/solids

Chemical bonds between atoms are formed by sharing /
transferring electrons.

Only the participate in bonding.

can change
significantly once the bond is formed.

e.g., when Ag is a constituent of a solid, the wavefunction
may also acquire some 5p or 5d character?

Wavefunctions of core electrons change only slightly
when the bond is formed.
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Problem for Plane-\Wave Basis

Core wavefunctions:
sharply peaked near lots of wiggles near
nucleus. nucleus.

N\

High Fourier components present

l.e., need large E @

cut
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Solutions for Plane-Wave Basis

Core wavefunctions: Valence wavefunctions:
sharply peaked near lots of wiggles near
nucleus. nucleus.

N\,

High Fourier components present

l.e., need large E @

cut

Don' t solve fo|r the Remove wiggles from
core electrons! valence electrons.
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The Pseudopotential Approximation

Frozen core: remove core-electron degrees of freedom
i.e., NOT an “All-electron” calculation.

* Valence electrons see a weaker potential than the full
Coulomb potential.

* Further tailor this potential so that wavefunctions behave
‘properly’ in region of interest, yet computationally cheap.
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How the Pseudopotential Helps

(Numerical) Advantages when solving Kohn-Sham eqgns.:

* When solving using a basis (especially plane waves),
basis size drastically reduced (smaller matrices to
diagonalize).

®* Have to solve for
®* No Coulomb singularity (cusp in wavefunction) at origin.

Disadvantages:
® Can lose accuracy.
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An analogy!
“‘Dummy cops” used by some law-enforcement agencies!

Don’t care about internal structure as long as it works ~
right!

But cheaper!!

Obviously it can’t reproduce all the
functions of a real cop, but should
be convincing enough to produce

desired results....
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Wish List for a Good Pseudopotential

For accuracy:
Should reproduce scattering properties
of true potential.

. Nice to have one pseudo-
potential per element, to use in variety
of chemical environments.

Norm conserving? (will explain)
Ab initio? (no fitting to experimental data

For (computational) cheapness:
Smooth / Soft: Need smaller basis set (esp. plane waves)

‘Separable’ ? (will skip!) but ‘Ghost free’ (should not
introduce spurious states when making separable!)
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Generating an Ab Initio Pseudopotential

*For the element of interest, pick a reference
configuration.

Perform an “all-electron” calculation for this
reference configuration.

- (;5;‘7}1’?(r)7 €

nl
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All-Electron Wavefunction

all-electron wavefunction (for some reference configuration)

A\

|
|
|

o e e e
|
|
|
|

O[r)

T r—

Pick core radius r,
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Pseudowavefunction Outside r,

all-electron wavefunction pseudowavefunction

A\

"

O[r)

]/'%
Pseudowavefunction & all-electron wavefunction are
identical outside cut-off radius r, ¢i/(r) = éie(r) r = e
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Pseudowavefunction

all-electron wavefunction pseudowavefunction

4

O[r)

-_— e e e se e - ..

Inside ., @/ (#) = £ (#)
I vr\

Choose to get desired properties
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Norm-Conservation

all-electron wavefunction pseudowavefunction

@/ (r) — # )

/
O[r) E __________________________

* Norm conservation:

[P*E " (Pydr = [¢*" ()¢" (r)dr

0 0

« Imposing norm conservation improves transferability!
(Hamann, Schliiter, Chiang, 1979)
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Pseudowavefunction — Pseudopotential

* Invert the radial Schrodinger equation to get a
“screened” potential for each /, V" ()

* This “screened” potential includes Hartree and
XC contributions; “unscreen” to get
pseudopotential.

ViP3(r) = Vi* (r) — Ve[p*™(r)] — Vxclp"™(r)]
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What does a pseudopotential look like?

Example for Mo:

Weaker than full
Coulomb potential

No singularity at =0

b Different

z{,‘ pseudopotential
for each [/ (example of
semilocal

pseudopotential)

| '
=100 it 000

4 12 20 28 36 44 Willbe V',
R (a.u) (replacing
Hamann, Schluter & Chiang, 1979. nuclear potential)
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Dealing with the non-locality

Vps_leC+§‘ S‘ im) 6V (Im)|

m=—I

This non-local operator has (N
(must be avoided!)

ow)’ matrix elements

Solution: Kleinman-Bylander representation

’5‘/lwlm wlm5‘/2’
s — Voc +
p l Z wlm’(ﬂ/l’wlm>

W,y IS an eigenstate of the pseudo-Hamiltonian, acting as reference state.
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Some Popular Pseudopotentials: BHS

Bachelet, Hamann, Schluter, PRB 26, 4199 (1982).
“Pseudopotentials that work: from H to Pu”

< >so good transferability (?)

Semilocal V,(r) [local in radial coordinates, nonlocal in
angular coordinates]

Parametrized form: chosen to give nice analytical
expressions with many basis sets, 9 parameters,
tabulated for all elements.

Non-linear fitting procedure, caution needed!

Fairly hard pseudopotentials since smoothness not built
in explicitly, frequently need@
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How to Make Softer?

Increase radial cut-off »c?? Softer, but transferability
suffers.

4 Computational expense: Np,,

/ Smaller r,
O
Larger r(./l

® Smooth cutoff functions

Accuracy

David Vanderbilt
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Soft / Smooth Pseudopotentials

Want to lower E_, (cut-off for plane wave basis).

Various strategies:

- Optimize so as to minimize error in KE introduced by
truncating basis (Rappe, Rabe, Kaxiras & Joannopoulos,
[RRKJ] 1990)

- Make smooth near origin (Troullier & Martins, 1991)

Cut-offs lowered considerably, but still higher than we
would like, especially for

> first row elements (1s, 2p nodeless)

> transition metals (3d nodeless)

> rare-earths (4f nodeless)
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Need lower E_ , with soft pseudopotentials

e.g. Cu: localized d orbitals —

high cut-off needed with BHS pseudopotential

Relative Total Energy (V)

Troullier-Martins
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FIG. 8. The calculated total energy of fec Cu plotted against
the cutoff energy of the plane-wave basis set for the four pseudo-
potentials shown in Fig. 7. The total energy for all four curves
are referenced to the total energy calculated at a cutofl’ energy
of 225 Ry. The squares, circles, and triangles are the calculated
data points and the curves are obtained from a spline interpola-

tion.
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FIG. 3. Atomic (solid lines) and foc solid (dots) total ener-
gies as a function of cutoff energy for copper in the HSC and
present approaches. The zero of atomic total energy for each
pseudopotential was chosen to be the total atomic encrgy at a
cutoff energy of 324 Ry. The zero of solid total energy was
chosen for each pseudopotential so that the atomic and solid to-
tal energies coincide at a cutoff energy of 80 Ry.
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Nodeless Wavefunctions & Norm Conservation

Cut-offs still higher than we would like, especially for
> first row elements (1s, 2p nodeless)
> transition metals (3d nodeless)
> rare-earths (4f nodeless)
This is because of the constraint of norm conservation...

O 2p wavefunction (nodeless!)

Overshoot required by
Norm conservation

\

' [ a.u.
1.0 2.0

David Vanderbilt
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Ultrasoft Pseudopotentials

David Vanderbilt, phys. Rev. B 41 7892 (1990).

Can make ¢S extremely soft!

Drastically reduces E_ ,, especially
for “difficult” elements.

New separable form.

Choose multiple energy references
(to improve transferability).
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POPULAR Pseudopotentials!

GB Bachelet, DR Hamann and M. Schluter, “Pseudopotentials
that Work- From H to Pu”, Phys. Rev. B, 1982. Times Cited:
2,723.

N. Troullier and JL Martins, “Efficient Pseudopotentials for
Plane-Wave Calculations”, Phys. Rev. B, 1991. Times Cited:
9,640.

AM Rappe, KM Rabe, E Kaxiras and J Joannopoulos,
“Optimized Pseudopotentials”, Phys. Rev. B, 1990, Times
Cited: 1,011.

D. Vanderbilt: “Soft Self-Consistent Pseudopotentials in a
Generalized Eigenvalue Formalism”, Phys. Rev. B, 1990. Times

Cited: 12,784. 42



Transferability

®Condition that pseudoatom reproduces behavior of all-
electron atom in wide variety of chemical environments.

® Recall, pseudopotential derived for reference config.
(atom with given occ of levels), using ref eigenvalue.
®* When eigenvalue changes from reference one:

- do scattering properties of potential change correctly?
(Look at log derivatives)

*When the filling changes:
- do eigenvalues shift correctly?
(look at chemical hardness)
- do scattering properties change correctly?
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Transferability: log derivatives

log derivatives , d local

|
N
&
o

* Log derivatives guaranteed 20.0 .

to match at reference energy,>  °°| i
check how log derivatives 5 2007
. g -400 ¢

change with energy . T oo |
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Transferability: Occupation Changes

See how eigenvalues change with ogcupation
Chemical Hardness matrix: n.-,-=-;~-§— [Teter, 1993] .

J

2
See how 'tail norms' N, = [ | @ |" dr change with

l

occupation: 8N; should b 'reproduced
8fj

3.70

®—@ All-electron

3.65 o ® TM pseudopotl, with 4d in core

3.60

3.55

e, [eV]

3.50
3.45

e.g.: check transferability ~ s«
of a pseudopotential for >
Ag with 4d in core: azs

3.20
0.0 0.2 04 0.6 0.8 1.0
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Non-Linear Core Correction

Working only with corresponds to linearizing the XC
potential, but V(0" “'+p) £ Vyp )+ Vxe(por)

This is particularly a problem when there is significant
overlap between and peore

Correction:
- When unscreening, subtract out V(o)
and V(0 +pere)
- Store p«¢ from atomic calculation
- Use IV, (p""+p) in all calculations
- Okay to just use partial p« (in region of overlap)
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Extra Stuff. Scattering

Recall (from a quantum mechanics course?):

« Scattering properties of a potential described by phase
shift n),.

* Related to logarithmic derivatives: [see, e.g. Eq. J.6, Martin]

Di(e, ) = riiny(e,r) = rLin(¢i(e, 7)/7)

« Weaker potentials will have fewer bound states.

* In the pseudopotential approximation: want to make the
potential weak enough that the valence electron is the
lowest bound state (with that /), while reproducing log
derivatives to the extent possible....
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Extra Stuff: Norm Conservation & Transferability

By construction, log derivatives satisfy:
Di*"(e,re) = D% (e, 1)
*In addition If we impose norm Conservation
0 *AE(T’)quE(’I“)dT — 0 *PS(T)quS(’I“)d’I“
then from the identity (see e.q. pg. 214 of Martin for derivation):

ZDi(e, me) = 7 Jo " drldu(re)]®

|<f>l(7"0)
we have”
A PS
%Dl E(e, re) = %Dl (e, 7c)

l.e., if energy is shifted slightly from that of reference
eigenvalue, log derivatives ~ unchanged —

improved transferability!
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Terminology: Local, Semilocal, Separable, etc.

Local PSP
Vos = Vis(r)  (local in 7, 6, ¢)
Semilocal PSP

Vos = ZVP(;)(T') P (local in 7, nonlocal in 6, ¢)

l

Nonlocal separable PSP (e.g., Kleinman-Bylander)
VIOC(T) + Z D; I ﬁlm Blm |

General nonlocal separable PSP
- Vloc('r) + Z Z D'rr’l | IB’rlm ) ( Br’l

! Im

(Note: All are spherically symmetric.)

David Vanderbilt

(57-1 (2)
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Extra Stuff: Relativistic Pseudopotentials

e Do all-electron calculation on free atom using Dirac equation
e Obtain Ynj(r) for j=1+5and j=1—3
e Invert Schrédinger equation to get V;>"(r)

e For “scalar relativistic” target calc., use j-averaged PSPs:

ps 1 ps ps
Vi) = g DV IV

e For spin-orbit interactions, keep also

SO 1 ps ps
Ve =g Vg ~ Vil

and use, schematlcally speaking,
le ) [V (r) + V*°(r) L- 8] (1]

David Vanderbilt




