Docker containers.
Building & running

9

8

2017/01/19 Roberto Innocente - <inno at sissa.it>

Hello!

I am
Roberto Innocente

| work at SISSA/ITCS and since some years | am
involved with docker containers.

| designed the first dockerization of Quantum
Espresso in Summer 2016.

New version with QE 6.0 is available at
https://hub.docker.com/r/rinnocente/qe-full-6.0.

Docker containers/1

At the end of 2013, dotCloud, Inc., a cloud service
provider, made public and opensource its tool for
managing customer apps : a client/server application
called docker.

In a few months it had a phenomenal attraction for many
developers and users.

This convinced dotCloud to make its tool the new focus of
its business and to change its name in Docker, Inc.

~ Docker containers/2

As you probably know, a docker or longshoreman is
someone who loads and unloads goods from ships on the
docks of the harbour.

Left
“On the waterfront”
Elia Kazan, 1954

Featuring Marlon'Brando

working as a docker.

~ Docker containers/3

Today, dockers have mostly to manage standardized
boxes for transferring goods called containers.

This had a tremendous
impact on shipping costs.
Almost all operations are now
automated with the help

of ad hoc machines.

Today almost no goods are
loaded/unloaded from a ship
if not in a container

5 Cloud computing and containers

Cloud computing refers to the situation in which you get a computer service from the Internet on-demand in
real-time, you don’t really care where the service is run, and you pay for how long and what you use.

The usual cloud providers like Amazon/Rackspace/lbm/Microsoft are usually lending virtual machines :

« laaS (Infrastructure as a Service) : it is then responsibility of the customer to dress it up with an OS,
middleware, libraries, data and apps

With Docker cloud computing can provide also the OS, middleware and libraries (like dotCloud was
doing) :

« PaaS(Platform as a Service) : the only responsabilities that remain on the customer’s shoulders are
the management of data and apps.

2017/01/19 Roberto Innocente - <inno at sissa.it> 6

Cloud services
2l (laaS,PaaS,SaaS) : where is Docker ?

Cloud Services

Packaged Infrastructure Platform Software .
Software (as a Service) (as a Service) (as a Service) Pic from :

International
Journal of
Cloud
Computing
ISSN:0974-
8656
satyanspubli
Servers cations

Storage

Applications

Data

Runtime

Micldleware Miclelleware

=
1]
=]
-5
ué.
e
=
<
]
=
(=
=]

/5 O/5

You manage

Virtualization Virtualization

Servers

opuan Aq pabeuepy

Storage

I0pUaA AT paSauBial

Metworking | Metworking

1

Virtualization
methods

2017/01/19 Roberto Innocente - <inno at sissa.it>

P Full/lightweight virtualization

Probably you are aware of Virtual Machines and the way to use them.

The usual virtual machines depend on a program called hypervisor that
pretends to be a bare machine to the upper software, so that you can mount an
OS on it. Of course this implies a performance penalty.

There is another more lightweight virtualization or os-level virtualization,
that reached maturity later on Linux, in which the OS encapsulates an
environment by means of software barriers. This insulated environment is called
a container. It is more efficient because container processes are simply host
processes.

Important fact :
* a container starts/stops in hundredths of milliseconds
« a virtual machine starts/stops in tens of seconds (~ 100x)

Full virtualization/
OS-level virtualization

5

OS-level virtualization
Containers

F
\V u
i
r |
t
u
Hyper-V, a
VMware jﬁt';»
M u
q @
C I
h i
i y4
n @
e t
Virtual | s ! _
Box 0
n

Type 1 Hypervisor

Type 2 Hypervisor

Linux cgroups

Containers don’t exist inside the linux kernel.
They are runtime creatures that are generated
using two important features added to the Linux
kernel from 2006 on :

« Control groups

« Namespaces

2017/01/19 Roberto Innocente - <inno at sissa.it> 11

cgroups/1

cgroups (= control groups) : is a Linux kernel feature that limits, accounts and isolates resources
used by a set of processes.

Added to the Linux kernel initially by Google engineers Paul Menage and Rohit Seth in 2006
and named process containers.

Renamed control groups to avoid confusion with other entities, appeared in official kernel 2.6.24
in 2008

(this version is now called cgroups-v1).

Development and maintenance passed thento Tejun Heo, who rewrote and redesigned
cgroups from 2013 on.

This rewrite is now called cgroups-v2 and its documentation appeared in linux 4.5 on March,14
2016.

cgroups/2

Ubuntu resource groups :

Processes in linux are organized » blkio

hierarchically : a single tree (all « cpu,cpuacct

processes are born out of the initial . c

s : , puset

init process and inherit resources ,

from the parents) * devices
 freezer

cgroups are similar, just are - hugetlb

organized as a forest (multiple

trees) where there is also the memory

inheritance from parents * net _cls,net prio
» perf_event
* pids

« name=systemd

cgroups/3

Software that use cgroups (= control

_ groups) :
They provide control of some resources over
a set of processes (a cgroup) « Docker
« Limit : can limit memory, cpu, io, .. * Linux Containers (LXC)
« Accounting : report use of resource by * libvirt
cgroups « systemd
* Priority : can change sharing of - Open Grid Scheduler/Grid Engine

resources of some cgroups vs other

» Control : freezing, checkpoint, restarting
of cgroups

Google's Imctfy (“let me contain that for
you”), now merged with Docker
libcontainer library.

CGroup*s

5 cgroups/5

With docker usually you will not need to access cgroups directly.

Resource limits and accounting will be established by :

- Docker daemon cgroup/ulimit options
* dockerd --parent-cgroup ... # will be the parent cgroup of all containers

» dockerd --default-ulimit=[] # Default ulimits for all containers

- Docker run options :

» docker run --blkio-weight value # Block 1O (relative weight), between 10 and 1000

--cpu-shares int # CPU shares (relative weight up to 1024)
--cpuset-cpus string # CPUs in which to allow execution (0-3, 0,1)
--memory string # Memory limit

--ulimit value # Ulimit options (default [])

2017/01/19

LinuXx
namespaces

Roberto Innocente - <inno at sissa.it>

16

}f} Namespaces/1

Or better Linux Namespaces. They are a linux kernel feature (for the mnt namespace [chroot] appeared in 2002 but

most of the work appeared recently in kernel 3.8) that isolates and virtualizes resources of a collection of processes (cgroups):

» Filesystems : mnt

* Pid : pid : . .
Every process is associated with a namespace

* Network : net and it can see only the resources associated

with that namespace.

Namespaces can be created and joined.

* Ipc . ipc After boot all processes belong to a single

namespace.

* Userid s user

* Cgroup rootdir :cgroup

* Host/Domainname : uts

Linux namespaces were inspired by the more general implementation in Bell Lab Plan9 O.S.

ls -1 /proc/[pid]/ns/

2017/01/19 Roberto Innocente - <inno at sissa.it>

Namespaces/2

5

inno@geist:~$ Is -I /proc/$PPID/ns

total O

Irwxrwxrwx 1 inno inno 0 Mar 25 11:47 ipc -> ipc:[4026531839]
[rwxrwxrwx 1 inno inno 0 Mar 25 11:47 mnt -> mnt:[4026531840]
[rwxrwxrwx 1 inno inno 0 Mar 25 11:47 net -> net:[4026531957]
Irwxrwxrwx 1 inno inno 0 Mar 25 11:47 pid -> pid:[4026531836]
Irwxrwxrwx 1 inno inno 0 Mar 25 11:47 user -> user[4026531837]
Irwxrwxrwx 1 inno inno 0 Mar 25 11:47 uts -> uts:[4026531838]
root@geist:~# readlink /proc/$PPID/ns/user

user:[4026531837]

For each namespace kind every process is
assigned a symbolic link in /proc/<pid>/ns.

The link points to an inode that is the same for
every process in the same namespace.

When a namespace is not referenced it is deleted
automatically. References are :

* A process belonging to the ns

* An open file descriptor pointing to the ns
symlink

* Abind mount of ns symlink

2017/01/19 Roberto Innocente - <inno at sissa.it> 18

Namespaces

What can manage namespaces ?
3 syscalls :

e clone(2) : there are flags to specify
to which namespace to migrate the
new process

 unshare(1) : flags to specify when
the process will be migrated out of
the current namespace where to
go

e setns(2) : specifies in which
namespace to migrate

2017/01/19
it>

Linux manual clone(2) :

“ (since Linux 2.6.19)

If Is set, then create the
process in a new IPC namespace. If this flag is
not set, then (as with fork(2)), the process is
created in the same IPC namespace as the
calling process. This flag is intended for the
implementation of containers.”

Linux manual unshare(1) :

unshare [options] program [arguments]
unshares the indicated namespaces
unshare mount namespace Is /mnt

unshare network namespace ...

Roberto Innocente - <inno at sissa. 19

Inside a container : namespace

> insulation

General security features help :
« Apparmor
* Selinux

But the most important feature for multi tenant installations is :
« User namespace remapping : whatever are uid and gid inside the
container, interactions with host happens with controlled uid/gid
« Applied when server/daemon is started with -userns-
remap=default or similar

2017/01/19 Roberto Innocente - <inno at sissa.it>

20

2017/01/19

LinuXx
containers

Roberto Innocente - <inno at sissa.it>

21

Linux containers :
disambiguation

With this term we indicate :

* A subtree of linux processes encapsulated by means of the cgroup and
the namespace linux kernel features (like Ixc, docker do)

« A project started in 2008, named LXC (Linux containers), as the
tool that it produced, for the management of cgroups/namespaces to
obtain these encapsulated groups of processes

At the beginning docker used LXC as a base, but after the

opensourcing, made by google in 2014, of its libcontainer (container
library), docker used and evolved this last.

Now supported by many there is a consortium called OpenContainer
Initiative (OCI) for an open specification of the image format and
runtime env (based on docker v2 image format and coreOS appC).

2017/01/19 Roberto Innocente - <inno at sissa.it> 22

LXC (Linux Containers)

LXC is a userspace interface

to the Linux kernel container It is made up of

features. .

Started in 2008. e Liblxc |ibrary

Initially used by docker as a o
base. « Language bindings :
Aim is to cre

emgironment [| [| 5
as much isol Z)s but - t d
without the ane nel.
It creates an environment somewhere in a

between a chroot a full virtual
machine. N
- docker Ecosysten@ily
» Kernel namespaces

(ipc,uts,mount,pid, ...)
* Apparmor and SELinux profiles \
* Seccomp policies /
* Chroots

Roberto Innocente - <inno at sissa.it>

*« CGroups
2017/01/19

23

LXCI/2

Freeze/unfreeze container:

stroy a permanent container :
- Ixc-freeze -n mycont

IXc-create -n mycont - Ixc-unfreeze -n mycont

-l Missing all-the

Getting info :
Ixcaecute J

ycont /bln/tﬁ—x ' '
ker.-Ecosystem !!
|Xc-st0p -N mycont - Ixc-monitor -n “mycont|yourcont”
Waiting for a container :

- Ixc-wait -n mycont -s STOPPED &
IXc-cgroup -n mycont cpuset.my - PID_TO_WAIT=$!
- Ixc-execute -n mycont myapp

Setting cgroup :

IXxc-group -n mycont cpu.shares |
512 - wait $PID_TO_WAIT

2017/01/19 Roberto Innocente - <inno at sissa.it>

2017/01/19

Docker
containers

Roberto Innocente - <inno at sissa.it>

25

Docker

* Build once, configure once
* Deploy everything,
everywhere

It’s incredible but it is really so !
The developer can transmit all
his/her environment to run the
apps to the test and deployment
workgroups. (End of the “it works
on my laptop!” developers’
assertion)

s> Docker Architecture

Client } (DOCKER_HOST)

docker build --{--- 4.~ Docker daemon >
s} ———— va
/ N -. . — A,
dock 11 / f N\ i @ M
ocker pu j :Containers‘]— \.\ @:— [<
. _ N \
docker run | A, _ L é NGiMNX
/
(e ’
o -~
-
"]]M[[[[[If Redis key
T value store
H]]I[[[[[ﬂ]] Pic from :
docker.com

2017/01/19 Roberto Innocente - <inno at sissa.it> 27

O

N

- docker version

Docker , first containers :

Let's do it !

Client:
Version: 1.12.3
API version: 1.24"

Go version: gol.6.3
Git commit: 6b644ec
Built:

OS/Arch: linux/amd64
Server:

Version: 1.12.3

APl version: 1.24

Go version: gol.6.3

Git commit: 6b644ec
Built: Wed Oct 26 22:
OS/Arch: linux/amd64

Wed Oct 26 22:

« docker run hello-world #in every
cs exercise thereis 1!

 docker run -it busybox

And you are in the busybox shell.
Exit with CTRL-D or CTRL-P/CTL-Q.

Containers: 0

Running: 0

Paused: O

Stopped: 0

Images: 62

Server Version: 1.12.3

Storage Driver: aufs

Root Dir: /var/lib/docker/362144.362144/aufs
Backing Filesystem: extfs

Dirs: 75

Dirperm1l Supported: true

Logging Driver: json-file

Cgroup Driver: cgroupfs

Plugins:

Volume: local

Network: null host bridge overlay
Swarm: inactive

Runtimes: runc

Default Runtime: runc

Security Options: apparmor seccomp
Kernel Version: 4.8.0-29-generic
Operating System: Ubuntu 16.10
OSType: linux

Architecture: x86 64

CPUs: 4

Total Memory: 7.549 GiB

Name: geist

ID: A4Z4:17V2:XYOP:NQYQ:HRG..........
Docker Root Dir: /var/lib/docker/362144.362144
Debug Mode (client): false

Debug Mode (server): false
Username: rinnocente

Registry: https://index.docker.io/v1/
WARNING: No swap limit support
Insecure Registries:

127.0.0.0/8

pa CTRL-D or CTRL-P, CTRL-Q ~?

When the PID 1 of a container is a shell (the command specified on the
CMD or ENTRYPOINT line of the dockerfile or in the docker run command) :

 If you exit the shell with CTRL-D or exit the shell dies and the container
dies when PID 1 dies

« Exiting with CTRL-P, CTRL-Q will keep the shell alive and therefore the
same for the containers

2017/01/19 Roberto Innocente - <inno at sissa.it> 29

Docker: which containers
exist?

b

$ docker ps
Running containers.

roberto@geist:~% docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS MAMES
b3edBO5efafd rinnocente/qe-full-6.8@ "/usr/sbin/sshd -D" 18 minutes ago Up 18 minutes 22/tcp pedantic_kalam
2af250fcddze busybox "sh" 2 hours ago Up 2 hours high yalow
329891c244ab busybox "sh" 2 hours ago Up 2 hours romantic_pike

roberto@geist:~$ []

$ docker ps -a
All containers not yet removed.

roberto@geist:~% docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS MAMES
b3ed6osefafd rinnocente/ge-full-6.8 "/usr/sbin/sshd -D" 22 minutes ago Up 22 minutes 22/tcp pedantic_kalam
c8362b41d3a5 busybox "sh" 2 hours ago Exited (@) About an hour age evil kare
24f250fcddz0 busybox "sh" 2 hours ago Up 2 hours high yalow
329891c244ab busybox "sh" 2 hours ago Up 2 hours romantic pike
0e49144f0af2 busybox "sh" 2 hours ago Exited (@) 2 hours ago trusting lovelace
cBfBedaffasd busybox "sh" 2 hours ago Exited (8) 2 hours ago high torvalds
debB1c5bbha3 rinnocente/ge-full-6.8 "/usr/sbin/sshd -D" 2 hours ago Exited (255) 2 hours ago serene_mclean
d508f8bdands ubuntu "/bin/bash" 2 hours agoe Exited (8) 2 hours ago trusting rosalind

$ docker rm [-f] container-id # remove container/even if running
2017/01/19 Roberto Innocente - <inno at sissa.it> 30

5 Docker: which images

exist?

$ docker images
Local images.

$ docker search busybox #standared repo
Images at standard registry index.docker.io

$ docker rmi [-f]

2017/01/19

iIimage-id # remove image/even if container
is using it

Roberto Innocente - <inno at sissa.it>

31

s docker cleaning

Cleaning line scripts :

$ docker images -aq

$ docker ps -aq

$ docker rm -f
$ docker rmi -f

2017/01/19

“docker ps -aq
“docker images -aq’

Roberto Innocente - <inno at sissa.it>

32

Inside a container : namespace insulation

M -oberto@geist:~$
roberto@geist:~S$S docker -it ubuntu

.flag provided but not defined: -1it
"See 'docker --help'.

iroberto@geist:~$ docker run -it ubuntu PID, user, groups namespaces
root@eec6als5f9607: /# ps ax

PID TTY STAT TIME COMMAND
1 ? Ss ©:00 /bin/bash
I L R+ ©0:00 ps ax
‘root@eec6al5f9607:/# 1id
au1d @(root) gid=0(root) groups=0(root)
f

root@eec6alsfto6e7: f# df
Filesystem 1K-blocks Used Awvailable
303697256 229256440 58990860 ri
1893636 3] 1893636 % jdev
1893636 e 1893636 % fsys/ffs/fcgro A
303697256 229256440 58990860 % fetc/hosts Flle SyStem namespace

65536 5] 65536 % Sdev/shm
root@eec6alsTo6e7: f#

root@eecoa15f9oﬂ? f#

¢ Mounted on

root@eec5alsfo607: f# ifconfig
Feth@ Link encap:Ethernet HWaddr ©82:42:ac:11:80:82
inet addr:172.17.8.2 Bcast:9.8.0.0 Mask:255.2 d

inet6 addr: feB80::42:acff:fel1:2/64 Scope:Link |“ehNork namespace
UP BROADCAST RUMNMMIMNG MULTICAST MTU: 158006 Metri

RX packets:1253 errors:0 dropped:® overruns:8 frame:o

TH packets:538 errors:® dropped:® overruns:® carrier:e

collisions:8 txqueuelen:&

>
RX bytes:24362210 (24.3 MB) TX bytes:41589 (41.5 KB) 33

>

2017/01/19

Major components :
docker-engine

Roberto Innocente - <inno at sissa.it>

34

5> What is Docker Engine ?

Docker Engine is the Client/Server
app, once called simply Docker,
made of :

« A CLI client : the docker client
« A server: the docker daemon
« A REST API used by the client to

container image

' -
manages manages

communicate with the server

The objects (containers, images,
data volumes, networks) are all
managed by the server, according
to instructions it receives through
the REST API.

Cliiant
docks:r CLI
network data volumes
l REST API
manages server manages

docker daemon

v Pic from :

docker.com

2017/01/19 Roberto Innocente - <inno at sissa.it> 35

Universality of a docker app

The next slide will show you that the universality of a docker app is real.
A docker image can run everywhere !

That is, can run anywhere there is a docker daemon/server running, but you can run a
docker daemon natively on :

 Linux (kernel at least version 3.10)
And via a virtual machine on :
« Windows
« MacOS
Installing Docker Toolbox on Win or Mac installs also VirtualBox and on it

a Linux stripped down kernel just to run containers called boot2docker..

Docker versions

Running on host Running on VM
I —

Docker Engine
for Linux

N
. _. ———
Docker Toolbox - e o
for Win or Mac ' | boowzdocker |

Docker for Windows

Docker for Mac

2017/01/19 Roberto Innocente - <inno at sissa.it

2017/01/19

Major components :
Images/layers

Roberto Innocente - <inno at sissa.it>

38

5> Docker images

Docker images are a kind of root file system (rootfs) for

containers :
« They don't need kernels and modules (containers share the

running host kernel)

« They don't need many intialization tools or scripts

« Usually they are minimal : include only what is needed by the apps
inside (most importantly shared libraries)

They are layered, that is, not monolithic, but made of different layers
in such a way that they form a tree, reusing lower layers.

2017/01/19 Roberto Innocente - <inno at sissa.it> 39

5> Union File Systems/1

Maybe you have used an ubuntu USB live distro with persistent storage. This setup
uses a union file sytem (in particular Ubuntu uses preferably aufs).

A union file system merges at the user level the contents _

of multiple file systems.
In this simple setup the base fs (a distro ISO) is mounted Ubuntu ISO readonly
read only, the upper one is made from a file named

casper-rw and mounted read/write through a loop device driver.

How it works with the file or dir name-of :

« reads : the file or dir name-of is searched in the casper-rw layer. If it is there that
one is returned. If not the rw layer is searched for .wh.name-of (whiteout file: the
file/dir was deleted in the r/w layer) and in case it exists returns file does not exist.
The search is eventually then continued on the ISO fs.

« writes : the file or dir is written after eventually being completely copied (COW :
copy-on-write) on the casper-rw layer

2017/01/19 Roberto Innocente - <inno at sissa.it> 40

& Docker Union File
Systems/2

Docker can use many different union file systems : aufs,

devicemapper, btrfs, overlayfs.

For a long time no UFS was accepted in the Linux kernel.

Docker can use what it finds :

* aufs is a stable and proven version, it is used on
ubuntu

 devicemapper is used usually on RedHat

* overlayfs is a newcomer, but it was accepted in the
official linux kernel, so expect its use will raise

2017/01/19 Roberto Innocente - <inno at sissa.it> 41

5 Union file system again

« Used by Docker for building containers rootfs from images :

- For every line in the docker file a new image layer is created, they are all read-only

2017/01/19 Roberto Innocente - <inno at sissa.it> 42

ENTRYPOINT[“node”,"avg.js”]

FROM alpine

5> Docker layered images

$ docker run -it busybox
/ # echo dock-a >dock-a
/ # echo dock-b >dock-b
/ # CTRL-P CTRL-Q

$ docker ps
$ docker diff 0c06

$ docker commit 0c06 layer-a-b

$ docker rm -f 0c06
$ docker run -it layer-a-b

/ # echo new-dock-a >dock-a

/ # echo dock-c >dock-c
/ # rm dock-b

/# CTRL-P CTRL-Q

$ docker ps

$ docker diff del

$ docker commit del layer-a-c

2017/01/19

New container r+w

Layer busybox

Roberto Innocente - <inno at sissa.it>

Link to
parent

43

Tree of images/layers : re-use
5 of layers through links

2017/01/19

Layer layer-a-d Tree is stored like it is.
* dock-a Layer-a-b has 2
 dock-d children, but only one
 .wh.dock-b copy of it is stored,

because the links are
stored with layers.

Layer busybox

Roberto Innocente - <inno at sissa.it>

Layer layer-g-I
« dock-g

« dock-|

« .wh.dock-h

44

Memory and Disk Space used by
> 100 containers/100 virtual machines

running a web server

Virtual Machines :

Containers:

Disk at least 10GB virtual disk per machine = 1,000 GB Disk 5 GB disk per container = 500 GB
Memory at least 2 GB per virt. machine = 200 GB Memory 500 MB per container = 50 GB
e Y e Y
Management burden Management burden
100 OS 1 0OS
. / \)
Roberto Innocente - <inno at sissa.it> 45

2017/01/19

5> Docker layered images

$ docker history image

$ docker save
$ docker load

$ docker export
$ docker import

2017/01/19

Roberto Innocente - <inno at sissa.it>

46

How to move around
docker images (!!not
containers !!)
Produces a tarred repository of image layers :

* $ docker save [IMAGE [IMAGE ..] >image.tar
* $ docker save -0 Image.tar IMAGE [IMAGE ..]

All layers and parent layers are saved with their tags (thatis all
layers + metadata singularly)..

Loads a tarred repository of images :

- $ docker load # from stdin
 $ docker load -l image.tar

2017/01/19 Roberto Innocente - <inno at sissa.it> 47

>

2017/01/19

Major components :
containers

Roberto Innocente - <inno at sissa.it>

48

> What goes on
when you run a container ?

$ docker run -it ubuntu /bin/bash

1.Trough the REST API the instruction is sent to the server

2.The image ubuntu is pulled : if it is found locally than that is
used otherwise it is pulled from the registry

3.Using the image the server creates a new container

4.A new file system is allocated and mounted r+w over the
layers of the image

5.A network interface / bridge is created to allow the container to
talk with the local host

6.5ets up an IP address and other parms using DHCP (usually a
private one : 168.254.x, 172.17.x.x)

7.Executes the process specified (in this case /bin/bash)

8.Captures and provides application input/output

2017/01/19 Roberto Innocente - <inno at sissa.it> 49

Docker containers
commands/states

Pic from http://docker-
saigon.github.io/

r Stop
3
— kill “ die die
—docker run -+ create docker stop restart
docker kill
H
i
el
—docker create{ create | docker stan:;; start mnnm/gtlocker restart —3» die > start
W docker start
—— docker pause
docker rm)
Yes container

process
exited

— killed by

die out-of-memary

pause paused

unpause [€———— docKker unpause

Should
restart?

[docker rm
deleted destroy <—J
No

55> How to backup/restore
docker containers

Exports in a tar the rootfs of the container :

 $ docker export CONTAINER >container.tar

 $ docker export -0 container.tar CONTAINER
A single image is saved for the rootfs of the container (unlike docker
save).

Loads a tarred container rootfs :

 $ docker import FILE|URL|- REPOSITORY[:TAG]
Can load a rootfs from a tar file, from an URL or from stdin, will store it
like an image with given name and tag.

EG: $ docker import busybox.tar busybox-2:latest

2017/01/19 Roberto Innocente - <inno at sissa.it> 51

> docker commit

$ docker commit CONTAINER REPOSITORY[:TAG]

To commit changes made inside the r/w layer of a container into a new
image.

It builds a new image from a container.

By default it pauses the container till the image is committed (like a db

snapshot).

You can change some metadata like :
$ docker commit -a “ Author author
$ docker commit -m “commit message”

77

And some dockerfile entries like ENV, CMD, ENTRYPOINT, EXPOSE, ...
EG: $ docker commit -change “ENV DEBUG TRUE” ...

2017/01/19 Roberto Innocente - <inno at sissa.it> 52

5> docker copy from/to container

Copy from host to container :
« $ docker cp SOURCE PATH|- CONTAINER:DEST PATH

Equivalent to cp -a (or cp -dT -preserve-all).
Copies a single file or recusively a directory to the DEST PATH or gets
a tar from stdin (if the first option is -) and untars it in the DEST PATH.

Copy from container to host:
« $ docker cp CONTAINER:SOURCE _PATH DEST PATH|-

Opposite of above.
EG: $ tar cf - ./html | docker cp - CONTAINER:/var/iwww/

2017/01/19 Roberto Innocente - <inno at sissa.it> 53

2017/01/19

Major components :
volumes
(sharing host directories)

Roberto Innocente - <inno at sissa.it>

54

Volumes/
Sharing host directories

Union filesystem are usually inefficient. Sharing the host ~Ige subdir of your home with the

, Ishared-qe dir of the container :
That's why | recommend you to use a volume to

read/write large files. . $ mkdir ~Ige
This volume can be a directory on your host. . $cd~Ige
It can be shared in a very simple way when you .
type the » $touch ge-file
« docker run -v * $ docker run -v lhome/USER/qe:Ishared-ge
-it busybox

command (-v for volume)

> $lIs -l Ishared-qe

2017/01/19 Roberto Innocente - <inno at sissa.it> 55

2017/01/19

Major components :
linking containers
(docker-compose)

Roberto Innocente - <inno at sissa.it>

56

5> linking containers

$ docker run -itd --name cont-a busybox

$ docker run -itd --name cont-b -link=cont-a:origin busybox
Will set variable ORIGIN_NAME=/dock-b/dock-a in the dock-b container
and will add an entry for it in the /etc/hosts file : dock-a 172.17.0.2

$ docker attach cont-b

$ set

$ tail /etc/hosts

In this way the destination container can easily reach the origin over
the bridged network.

2017/01/19 Roberto Innocente - <inno at sissa.it> 57

5> docker-compose

Running multi-container apps manually can be done, but in complicate
situations is a pain.

Luckily a tool that does this automatically was devised : docker-compose.
docker-compose reads a .yml file and start containers in order and with the
proper environment variables.

$ docker-compose wikipedia.yml

2017/01/19 Roberto Innocente - <inno at sissa.it>

58

2017/01/19

Major components :
registries/repos

Roberto Innocente - <inno at sissa.it>

59

5> Docker Registries

Web Interface to the General public repository
Https://Hub.docker.com

Web Interface to the New Trusted and
enterprise ready containers :
https://store.docker.com

General registry used by pull/push :
https://index.docker.io
How to use a private registry ?

$ docker pull ubuntu

$ docker tag 0345829347592435 mylocalregistry:myport/ubuntu
$ docker push mylocalregistry:myport/ubuntu

$ curl http://mylocalregistry:myport/v2/ catalog

2017/01/19 Roberto Innocente - <inno at sissa.it> 60

https://Hub.docker.com/
https://store.docker.com/
https://index.docker.io/

5> Docker Local Registry

We can run a private Docker Registry via a docker container.
$ docker run -d -p 5000:5000 -restart always -name registry registry:2

This will run a container from the image registry version 2 and will map port 5000 on the container to
port 5000 on all host interfaces. It can only be used from localhost because it misses tls certificates and
this is outside the scope of this introduction.

Download some images :

$ docker pull hello-world

$ docker pull busybox

$ docker pull ubuntu

Tag them for the push :

$ docker tag hello-world localhost:5000/hello-world

$ docker tag busybox localhost:5000/busybox

$ docker tag ubuntu localhost:5000/ubuntu

Push them on the localhost registry :

$ docker push localhost:5000/hello-world

$ docker push localhost:5000/busybox

$ docker push localhost:5000/ubuntu

Search local registry :

$ curl http://localhost:5000/v2/ catalog # still under development v2 registry interface

2017/01/19 Roberto Innocente - <inno at sissa.it>

61

http://localhost:5000/v2/_catalog

2017/01/19

Docker on the
cloud

Using the VMs provided by the clouds : Amazon AWS, Microsoft
Azure, generic OpenStack

Roberto Innocente - <inno at sissa.
it>

62

<> Amazon AWS credentials/1

Support ~

(T Services ~ Resource Groups ~ %
Dashboard ~ Account Settings
Bills
Account Id: 185834837802

Cost Explorer
Account Name:

Budget
uegEtE Password:

Reports

S TS -

roberto innocente

EkkEE

Services -~ Resource Groups -~ *

* Your Security Credentials

raberto innocente ~

To learn more about the types of AWS credentials and how they're used, see AWS Security Credentials in AWS General Reference.

Dashboard
Groups
Users +
Roles +
Policies

+

ldentity providers

2017/01/19

Password

Multi-Factor Authenti

Access Keys |

(MFA)

and Secret Access Key)

Roberto Innocente - <inno at sissa.it>

Global ~

Support ~

Uze this page to manage the credentials for your AWS account. To manage credentials for AWS ldentity and Access Management (AN} users, use the LAM Console .

63

<> Amazon AWS credentials/2

Resource Groups -~ * L_l roberto innocente * Global * | Support ~

Your security Lredenuals PS
Se - 1

Use this page to manage the credentials for your AWS account. To manage credentials for AWS ldentity and Access Management (lAM) users, use the 1AM Console.
Dashboard To learn more about the types of AWS credentials and how they're used, see AWS Security Credentiale in AWS General Reference.
Groups + Password
Users : .

+ Multi-Factor Authentication (MFA)
Roles
ool — Access Keys (Access Key ID and Secret Access Key)
olicies

identity providers ou Use access keys to sign programmatic requests to AWS services. To learn how to 2ign reguests using vour access keys, see the =igning documentation . For your

) " i
Account settings protection, store your access keys securely and do not share them. In addition, AWS recommends that you rotate your access keys every 90 days.

Note: You can have a maximum of two access keys (active or inactive) at a time.
Credential report

Created Deleted Create Access Key
Jan 6th 2017 ARl

Encryption keys
Aug 26th 2016 = AKLE

Your access key (access key ID and secret access key) has been created successfully.

Download your key file now, which containg your new access key ID and secret access key. If you do not
download the key file now, you will not be able to retrieve your secret access key again.

To help protect your security, store yvour secret acce securely and do not share it.
F Show Access Key

L ile || Close

2017/01/19 Roberto Innocente - <inno at sissa. 64

5 docker-machine over
Amazon AWS

This example uses the AWS
credentials (access-key/secret-key)
to provide a VM on which it installs
docker engine and the ssh keys it
generates for the machine. At this
point it provides the env variables
needed to point the docker CLI at
the remote host.

The example is run on Windows.

PS C:\> docker-machine create --driver
amazonec?2

--amazonec2-access-key AKI***
--amazonec2-secret-key w3J***

--amazonec2-region eu-central-1 aws51

2017/01/19

Running pre-create checks...
Creating machine...
(aws51) Launching instance...

Waiting for SSH to be available...

Provisioning with ubuntu(systemd)...
Installing Docker...

PS C:\> & docker-machine env aws51

Run this command to configure your shell:

& docker-machine env aws51 | Invoke-Expression
PS C:\> & docker-machine env aws51 | Invoke-
Expression

PS C:\> docker-machine ssh aws51

Welcome to Ubuntu 16.04.1 LTS (GNU/Linux 4.4.0-43-
generic x86_64

Jbuntu@aw551:~$ logout
PS C:\> docker ps
PS C:\> docker run -it hello-worlid

Roberto Innocente - <inno at sissa.it> 65

http://file:///../C:/Users/C:/

docker-machine over
5 generic OpenStack cloud

$ docker-machine create -d openstack \
--openstack-tenant-name ...
--openstack-username ...
--openstack-password ..
--openstack-auth-url
URL.
--openstack-flavor-name \ :identify the flavor that
will be used for the machine.
--openstack-image-name ... \ :dentify the image that
will be used for the machine.
vmoOl :machine name

\
\
\
\ :keystone service base

2017/01/19 Roberto Innocente - <inno at sissa.it> 66

docker-machine over
> a local VM

$ docker-machine create -d virtualbox

--virtualbox-memory=512 vbhO1l

2017/01/19 Roberto Innocente - <inno at sissa.it>

67

2017/01/19

Major components :
networking

Roberto Innocente - <inno at sissa.it>

68

o Docker containers
networking/1

$ docker network Is
Available modes are bridge, host, none.
Default network configuration is bridge (when you don't specify anything).

$ docker run -net=bridge -it busybox

This is the default networking about which | will speak more in next slide.
$ docker run -net=host -it busybox

In this case the container simply uses the host network stack.

Container has therefore same IP addr of host. (eg nginx as a reverse proxy for the host
web)

ifconfig run in the container will give the host address.

Does'nt work if usernamespaces are enabled.

$ docker run -net=container:CONTAINER_ID busybox

Runs container using the network stack of another container.

$ docker run -net=none -it busybox

No network is configured. Container can't be reached over the network.
Ifconfig run in the container will show only the /o interface.

2017/01/19 Roberto Innocente - <inno at sissa.it> 69

o Docker containers
networking/2

When the docker daemon starts it configures a virtual interface docker0O with a private
network address e.g 172.17.0.1. Try on the host: $ ifconfig docker0O

Let's start 3 backgrounded containers with busybox in bridge mode :

$ docker run -network=bridge -itd busybox

$ docker run -network=bridge -itd busybox

$ docker run -network=bridge -itd busybox

The host dhcp server will give them 3 different addresses from the network set up for
docker0 and will configure their gateway as 172.17.0.1.

Access them and check it :

$ docker attach container

$ ifconfig ethO

$ ip route

For every virtual ethO in the containers the host will create a virtual veth..
inside itself (the other end of the pipe). Try inside the host :

$ docker network inspect bridge

2017/01/19 Roberto Innocente - <inno at sissa.it> 70

5> Docker networking/3

Containers :

.17.0.101

(/',

o’
docker0 \é

Outside network

R al
' N

2017/01/19 Roberto Innocente - <inno at sissa.it> 71

Accessing containers
from outside

You need to map and open ports from the host to the container.

Containers by default get a private address that is not routable over
the Internet.

There are two ways :
- Map all exposed ports of the container to free and unprivileged
ports of

the host :
« docker run -P ...

- Map some free host ports to some of the container ports
« docker run -p 8080:80 -p 4430:443 ...

If you don’t have any privilege on the host you can’t map privileged ports of the
host (<1024 like the ssh=22 or web=80)

2017/01/19 Roberto Innocente - <inno at sissa.it> 72

5> Docker clustering

Docker can be clustered in
different ways:

 Native Docker Swarm : a
clustering method that in the last
versions of Docker is natively
implemented. Very easy to set up
for small/medium clusters.
Implements load balancing.

 Kubernetes : the Google
clustering tool, derived from the kU bernetes
internal Korg tool. For large
clusters, has some complexity.

« Apache/Mesos

2017/01/19 Roberto Innocente - <inno at sissa.it> 73

Mayor components :

¥ Dockerfiles

2017/01/19

Roberto Innocente - <inno at sissa.it>

74

5> Docker image creation

From another image :

« $ docker commit container-id Image-name

From a Dockerfile :

Notice
- $ mkdir new-image-dir The dot !!
* $cd new-image-dir
* $vi Dockerfile

« $ docker build -t image-name

2017/01/19 Roberto Innocente - <inno at sissa.it>

75

55 Dockerfile

base image debian

FROM debian

MAINTAINER inno@sissa.it

apt-get some tools

RUN apt update && apt install curl

copy URL, very useful cmd

RUN curl -0 http://people.sissa.it/~inno/hello
RUN chmod a+x hello

CMD ./hello

2017/01/19 Roberto Innocente - <inno at sissa.it> 76

> Dockerfile for a web server

Dockerfile

FROM ubuntu:16.10

MAINTAINER Roberto Innocente "inno@sissa.it"
RUN apt -yqg update

RUN apt -yg install nginx

RUN echo '<hl>Web server 1n user container</hl>'
>/var/www/html/index.html

RUN echo 'Nice to meet you !' \
>>/var/www/html/index.html

EXPOSE 80

CMD [“/usr/sbin/nginx”, "-g",”"daemon off;"”]

2017/01/19 Roberto Innocente - <inno at sissa.it>

\

77

Cloud offerings to run
» directly Docker containers

Google Cloud Platform Container Engine https://cloud.google.com/container-engine/
“Container Engine Features
Run Docker containers on Google Cloud Platform, powered by Kubernetes.
Docker support

Container Engine supports the common Docker container format.
Private container registry

Google Container Registry makes it easy to store and access your private
Docker images.”
Amazon EC2 Container Services https://aws.amazon.com/ecs/
“Amazon EC2 Container Service (ECS) is a highly scalable, high performance
container management service that supports Docker containers and allows you
to easily run applications on a managed cluster of Amazon EC2 instances.
Amazon ECS eliminates the need for you to install, operate, and scale your own
cluster management infrastructure.”

2017/01/19 Roberto Innocente - <inno at sissa.it> 78

https://cloud.google.com/container-engine/
https://aws.amazon.com/ecs/

x} Docker and Microservices

We have already mentioned that a big difference between containers and virtual machines is
the short time in which containers start/stop (~ 1/100 of a vm = ~ 100/200 ms).

This enforces their role in the expansion of the microservice pattern.

Applications are reduced to many small services performing just one task and communicating
between them through a REST API (using http with json) like the docker app does.

2017/01/19 Roberto Innocente - <inno at sissa.it>

79

Pic from
eugenedvorkin.com

- | O

- O° O O
MONOLTTHIC/LAYERED MICRO SERVICES

Opposite to monolithic app. Develop a Microservice 2
single application as a set of small

independent services (processes)
communicating each other only trough a /

lightweight mechanism (like an http API)

Microservices are language and tool
independent

Mic cel

Microservices

2017/01/19 Roberto Innocente - <inno at sissa.it> 80

Info on docker installation
for running QE

More info on docker installation on various platforms for running
QE is available at

http://people.sissa.it/%7Einno/pubs/easiest way to run_ge.html

2017/01/19 Roberto Innocente - <inno at sissa.it>

81

http://people.sissa.it/%7Einno/pubs/easiest_way_to_run_qe.html

75 Thanks!

Any questions ?

You can find me at
<inno at sissa.it>

	Slide 1
	Slide 2
	Instructions for use
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	You can also split your content
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

