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What do we want to say about 
IR/Raman spectroscopy?

● They are both methods to measure the phonon 
spectrum

● Which phonon modes can measured by IR/Raman?
● Can we predict the relative intensity of modes?
● We’re not going to threat more advanced 

techniques: 2nd order Raman, resonant Raman



  

Which modes can be measured

● If a mode is Infrared or Raman active, depends 
only on the mode symmetry, it is printed out by 
phonon:

● It depends only on symmetry



  

Sample

What is IR spectroscopy?

● A known-wavelength and constant intensity 
light is shined through a sample, the 
outcoming light intensity is measured

MonochromatorLight source Detector



  

What is IR spectroscopy?
● A photon is absorbed to 

excite a phonon
● Energy and momentum 

must be conserved

● Photon:
● Phonon:



  

What is IR spectroscopy?
● Phonon:
● Photon:

In practice:
● Phonon: 
● Photon:

– wavelength of at least 10 μm: 

E field is constant over many unit cells



  

Response to a finite E field
● The naïve approach: add an external field:

VE(r) = e E·r
● In an infinite crystal VE diverges at long range
● The operator r is ill-defined in PBC
● The potential can cause Zener tunneling of valence 

electrons to conduction band
Gonze PRB 55, 10336 – Gonze & Lee PRB 55, 10355

Baroni, et al, Rev.Mod.Phys 73, 515



  

Response to finite E field
● We can avoid the problem with r by 

observing that:

● In this specific case we have:

● With additional terms if H is non-local



  

Response to finite E field
● The screened electric field is defined as:

E = E0 – 4π P
● The polarization P induced by the scf field E is:

● Note that P is ill-defined in PBC, because it 
depends on charge on the surface



  

Response to finite E field

● We can recast P in a form that does not 
depend on the boundaries:

● We define an auxiliary wfc



  

Response to finite E field

● We set-up a self-consistent system of eqs.

● We get the response to the screened field E



  

Dielectric constant

● The long wavelength limit of the dielectric 
tensor can be computed from these 
ingredients:



  

Variational formulation

● Gonze: variational formulation, minimize an 
approximate functional

● ph.x does not normally use this formula



  

ph.x input for epsilon

● It takes quite a bit of time!
● You do not need to compute also the phonons 

in the same run
● Not available for metals (either real or fake)



  

Optical phonons in a ionic crystal
● Let’s consider a simple ionic crystal, the atoms move 

according to a LO long-wavelength phonon:

● Coupling of charges with macroscopic polarization:
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R.P. Tulip PhD Thesis, Durham, 2004



  

Optical phonons in a ionic crystal

● We consider the electric enthalpy
(internal energy + interaction with ext.)



  

Z*ue vs. Z*eu

● ph.x can compute z* in two ways:
● Derive w.r.t the E field first

● Derive w.r.t the displacements first

Check that they give the same result!



  

ph.x input for zeu/zue



  

ph.x input for zeu/zue

● They do not cost much more than the 
phonon/epsilon calculation respectively

● They cannot be computed for metals
(either real or fake)

● They are zero in high symmetry materials



  

Non-analytical contribution to LO
● The most generic equation of motion for ions with a 

macroscopic electric field:

● Conjugate variables to u, E: force and el. induction



  

Non-analytical contribution to LO
● The most generic equation of motion for ions with a 

macroscopic electric field:

● We setup Maxwell equation w/o ext. charges



  

Non-analytical contribution to LO

● Solve for transverse/longitudinal field:



  

Computing the IR cross section
● One the effective charges are done, computing the 

IR cross section is trivial:

● In the case of molecules, or powdered crystals, the 
average I is just the square modulus

● In case of polarized light, talk with the 
experimentalist!



  

Computing the IR cross section

● dynmat.x code 
(Phonon/Doc/IPUT_DYNMAT.html)

● It reads the dynamical matrix at Gamma



  

Computing the IR cross section
● It is also possible to compute the cross section by 

hand, taking the information from the dynamical 
matrix file with a simple scripting language (matlab, 
python..)



  

Computing the IR cross section



  

What is Raman spectroscopy
● Sir Chandrasekhara

Venkata Raman 
● ~ 1928
● Nobel Prize 1930

● W/ K. S. Krishnan and 
independently by Grigory 
Landsberg and Leonid 
Mandelstam



  

What is Raman spectroscopy

● The sample is excited with a monochromatic 
light (nowadays a laser) the spectrum of the 
outcoming light is measured

SampleMonochromator Detector

LASER

Light source



  

What is Raman spectroscopy

● How can this be related to phonons?

e.g. Raman shift / Elastic peak
Image: Raman_energy_levels.svg/Wikipedia
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What is Raman spectroscopy

● Photon excites the solid to an unstable state
● The excitation relaxes:

– Directly, emitting photon on the same 
wavelength

– Indirectly, emitting a phonon and photon 
of a shifted wavelength



  

What is Raman spectroscopy

Image from Horiba scientific



  

What is Raman spectroscopy

Image: Anupan Misra, HIGP, Honolulu



  

Computing the Raman x section

● The intensity is proportional to:

● Where the tensor A is the response w.r.t one 
phonon and two electric fields

Porezag&Pederson PRB 54, 7830 (1996) – Lazzeri&Mauri PRL 90, 036401 (2003)



  

Computing the Raman tensor

● Simpler approach: 
– finite derivation of the dielectric matrix 

● Advantages: readily available, does not 
require a super-cell

● Disadvantages: bad scaling, very expensive 
for large systems



  

Computing the Raman tensor

● Smarter approach:
– Density matrix
– Energy derivative

– Vext does not change with an ext E field



  

Computing the Raman tensor
● We still need the 2nd derivative of ρ

● We have all the ingredients, except ηλμ, the second 
derivative of Ψ in the parallel transport gauge



  

Computing the Raman tensor

● Solving with a Green function method



  

Computing the Raman tensor

● In periodic boundary condition, the r 
operator can be expressed as a derivative 
w.r.t the wavevector

● We can compute ε with the Gonze formula



  

Computing the Raman tensor

● One critical component of the calculation in 
practice is the convergence with the k-points grid

● Convergence of this method is usually much 
faster than the finite differences method

● Check that ε computed with the two formulas is 
consistent (finite difference derivative w.r.t the 
wavevector)



  

Computing the Raman tensor

● If you are familiar with Berry phase 
formalism, you will notice that we are using 
more or less the same “ingredients”

● This theory can be also formulated in terms 
of Berry phase (see Gonze)

● It is possible to do finite differences w.r.t E 
using the modern theory of polarization



  

Computing the Raman tensor



  

Computing the Raman tensor

● Some important limitations:
– Only norm-conserving pseudopotentials
– Only LDA (PBE wip?)
– Limited support for spin-polarization
– Not for metals (you could enable it for 

semimetals at your own risk)



  

Computing the Raman tensor

● You do not need to compute the phonons in 
the same run 
– only the derivative of the external potential 

w.r.t the harmonic perturbation is needed
– But you will have to re-assemble the 

dynamical matrix file by hand



  

Computing the Raman X section

● dynmat.x can read the dynamical matrix file 
and compute the cross section if A is available

● It uses the non-polarized formula (e.g. good for 
molecule, powder samples)

● LR_Modules/dynmat_sub.f90



  

Computing the Raman X section



  

Special cases for Raman

● As seen here, Raman can only measure 
phonons at Γ

● In second order Raman, two phonons are 
emitted with opposite momentum

● Raman can be resonant, when the laser 
frequency is tuned (willingly or not) to the 
energy of some transition



  

Phonon linewidth
● In reality a Raman spectrum looks more like this:

Joe Trodhal - Raman-Workshop-Lecture-1-Notes.pdf



  

Phonon linewidth

● Each peak is not a perfect energy delta
● In the best case it is a narrow Lorentzian

– its FWHM is temperature dependent
● In the case of anharmonic materials the main 

peaks can have satellites
● These features can appear/disappear with T



  

Phonon linewidth

● We expand the total energy around its 
minimum as a function of a perturbation 
(harmonic phonons)

● We will treat the orders beyond the 2nd as a 
perturbation on top of harmonic phonons



  

Phonon linewidth



  

Phonon linewidth

● These features are due to the breakdown of 
the quasi-particle of phonons



  

Phonon linewidth

● The Tadpole diagram is treated in QHA (T0 = 
internal coords, TA = cell volume)

● The Loop diagram only contributes a shift to 
the phonon frequency

● The Bubble diagram is responsible for the 
lineshift+linewidth



  

Phonon linewidth



  

Phonon linewidth

● The phonon linewidth (HWHM=γ) is the 
Imaginary part of ΠB:

● With a bit of algebra we recast it as a sort of 
Fermi golden-rule



  

Third derivative of total energy
● It can be compute from the first variation of 

the wfc using the 2n+1 theorem

● +many additional terms (metals, psp, gga)



  

Phonon linewidth



  

Strongly anharmonic case
● We can drop completely the quasiparticles and compute 

the spectral width directly:

● It is wrong to include the lineshift from B while ignoring that 
from T and L!

● It falls back to the previous case when ΠB is constant in ω



  

Strongly anharmonic case

● Example: Palladium Hydride



  

Combining X section with SPF

● At least in the case of moderate anharmonicity 
 weight the contribution of each mode with →

its harmonic cross section
● Also in the case of strong anharmonicity, it is an 

unjustified but useful approach
● In any case, the complexity of the experimental 

conditions must be taken in account



  

Afternoon session

● Computing the IR and Raman cross sections 
for a Co2 molecule

● And for Aluminum Arsenide (AlAs)
● If there is time: we will see a script to 

compute the Raman tensor by finite 
differences, compare its convergence with 
DFPT



  

Thank you!
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