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Electronic excitations ... what's that?

End of self-consistent calculation
k =0.0000 0.0000 0.0000 ( 8440 PWs) bands (ev):

-29.5187 -13.9322 -11.7782 -11.7782 -8.8699 -1.8882 -1.8882 -0.2057
0.9409 1.0554

highest occupied, lowest unoccupied level (ev): -8.8699 -1.8882

I total energy = -43.17760726 Ry







Excitations: Charged vs Neutral

Charged Excitations Neutral Excitations
N -> N+1 (or N-1) N->N
(Photoemission Spectroscopy) (Optical and Dielectric
Spectroscopy)
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Excitations: Charged vs Neutral

Charged Excitations
N -> N+1 (or N-1)
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Ab-initio approaches to excited states:

TDDFT (Time-dependent density functional theory): Neutral excitations

Many-body perturbation theory:
= GW (charged excitations)

= BSE (Bethe Salpeter equation) (neutral excitations)



Rules of thumb for using TDDFT

RPA

Energy Loss ok
Isolated

Optical Prop ok but..

Energy Loss ok

Solid
OHES Optical Prop no

ALDA

ok

ok but..

ok

no



Framework: What is TDDFT all about?

1964: Hohenberg and Kohn: Density Functional Theory (DFT)

work in terms of electron density (instead of many-particle wavefunctions)
DFT is a ground state theory

1984: Runge and Gross: Time-Dependent Density Functional Theory (TDDFT)
(1ven \\If (1 = ())> Vir.t) < n(r.t)

like DFT, TDDFT is formally exact



Recall: Basic ground-state DFT

For practical calculations: Kohn-Sham framework

No
Ne(r) = Z‘()w(’l’)‘

The density is written in terms of Kohn-Sham orbitals which satisfy

V?
——+ z.*é‘s [, n ] (7)] GigT) = €i00i(T)

Flny,n = Tsnr.n)| + Efartree + Exe [0, 1]
| : () n(r')
EHartree _ ‘_/(]3', /([3,/” n

| — 7|
B = [dPrn(r)e™ (ny(r).n(r))




The Runge-Gross Theorem

Generalizing the HK theorem to time-dependent systems

There exists a one-to-one correspondence between the external v(r,t) and the
electron density n(r,t), for systems evolving from a fixed many-body state.

PrOOf |\I] | f” | — |\I] ,|:: f” ' f— |\I/ 0
n(r.ty) = n'(r.ty) =n"(r)

jlr.ty) = j'(r.ty) = 3"(r)

Step 1: Different potentials v and v’ yield different current densities j and j’

Step 2: Different current densities j and j’ yield different densities n and n’

vir.t) # o'(r t) + oft) = nir.t) # n'(r. t)



Using TDDFT in practice

Finding an equivalent of the Kohn-Sham formalism
lcT*r;lfT(’r t) — Hixs(rf f)'PiO("'.- f)

With a time-dependent Hamiltonian:
9

J

Hpo(r,t) = —— + vy [ng, ny)(r, 1)

Density and potentials are now defined like:

ne(r,t) = Z\Ymrz‘

5, n(r',t)

‘1’58[”’% 71-_[](7', 1’-) — -I’QO_(T’ f) + /d r — ‘l??c

v

| [72-'|- ) nll;](’r? ZL)



Which functional to use ?

The easiest and probably most widely used functional is the

Adiabatic Local Density Approximation (ALDA)

0

~xc ALDA
e (7, 1) o

t

o _unifyg
[71-» Exc (llvl-, 12, |_)]
Na=neq(7.t)



TDDFT in real time:
(1996:Bertsch; 2001: Octopus code )

« Consider a general time-dependent perturbation:
“'DEN‘( r.t)

« Obtain orbitals, charge density, and potentials by solving
the Schrodinger equation explicitly in real time:

_1‘,.-‘\']‘ (f + A) = exp (—j[—[(j un T)A) ‘(:"’j (1‘)

_—

(Nonlinear TD Schrodinger equation)

« Can be used for linear response calculations, or for general
TD non-linear problems.



A first application: Photochemistry

Recent experimental progress made it possible to produce
ultra-short intense laser pulses (few fs)

This allows one to probe bond breaking/formation, charge
transfer, etc. on the relevant time scales

Nonlinear real-time TDDFT calculations can be a valuable tool
to understand the physics of this kind of probe.

Visualizing chemical bonds: Electron localization function



Nonlinear optical response

* Electron localization function:

1

ELF(r.t) =- — —
L+ [Dy(r.t)/ D7, t)]°

= _E[VIIU(TIL)]_)_J;;(TT)
Dg(r.t) =75(7.1) 1 ngrd)  ng(r.0)




Example: Ethyne C,H,




Intensity [10"° W cm™]
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How can we calculate optical spectra®

Consider a perturbation 6V applied to the ground-state system:
on(r,t) = / d>r'dt’ x(r,r';t — ") SV (1, t)
The induced dipole is given by the induced charge density:
d(t) = / &r 8n(r, )7

Consider the perturbation due to an electric field:

5V (r,t) = —eEegs(t) - 7



How can we calculate optical spectra®

The dipole susceptibility is then given by:
d(t) = / dt' a(t — ') Eony(t)

The experimentally measured strength function S is related to the
Fourier transform of o

2m
S(w) = 5y W Im a(w)

In practice: We take an E-field pulse E_,; = E, 3(t), calculate d(t), and obtain
the spectrum S(w) by calculating
o0

d(w) = / dt €™ 0t d(¢)

0




Dipole [103 a.u.]

A typical dipole-function d(t) ...
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... and the resulting spectrum

Optical absorption
Benzene

2 —— TDDFT
—— Experiment

abs. strength [arb. units]

0 10 20 30
Energy [eV]




Linear response formalism in TDDFT:

« Calculate the system’ s ground state using DFT

« Consider a monochromatic perturbation:
Viert(r, 1) = Vio(7) (expliwt) + exp(—iwt))

* Linear response: assume the time-dependent response:
(1) = et ( ;Y YR Y _,—'wat)
Wilt) =« z_.]+m,,J< +()I,J(,

() = b (1) + b ()

(5 " (:r_. IL) = ‘;)ert (:'r_. f) —+ (5 ‘:S,{C 2 ( T )("iwt -+ ) ‘:Sv_Cv F ( T)("_iwt

« Put these expressions into the TD Schrodinger equation



Linear response formalism in TDDFT:

woty (r) = (Hgs =€) 00, + Po (0Vsor(r) + Vien(m)) ¢
(His =€) 00 + o (Vscr(r) + Vyen(r))

—wo, (1)

Now define the following linear combinations:

| — | —

— (00} (r) 4+ 010, (1))

— (640 () — o0

. (7))

o(T)

0f
v(T")
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With the following definitions:

Dl|x) = {(H[['\g — 62') i(r 'Il}

- () SR I , f AONRLY, A
K|z) = {(HI\’S — ) rir) + ()T [dr' fraelr v Yoo .'}
J

0 D ZC_wZU
K 0 y | Y



Linear response TD-DFT essentially means solving a non-hermitean
eigenvalue equation of dimension 2 N, x N, .

Standard way to proceed (Casida's equations):

 Solve the time-independent problem to completely diagonalize the
ground-state Hamiltonian.

[Some computer time can be saved by limiting the diagonalization to the
lower part of the spectrum]

« Obtain as many eigenstates/frequencies of the TD-DFT problem as
needed (or as possible).

[Some computer time can be saved by transforming the non-hermitean
problem to a hermitean one (e.g. Tamm-Dancoff approx.)]



Eigenstates of very large matrices: Davidson methods

Let H be a hermitean matrix, or large dimension, and we look for few low-lying eigenstates.

1. Select a set of trial eigenvectors {bz }(typically 2x the number of desired eigenstates)

—> 2. Calculate the representation of H in the space of trial vectors:
Gi; = (bi|H|bj)
3. Diagonalize G (M is the number of desired eigenstates):

Gaf = \FaF, k=1,2,--- . M
4. Create new trial vectors c:
Cl€ = E Oész
)
5. Calculate the residue r:
rk:Z(H—)\k)ck
T .
6. Using an approximationH for H, calculate the correction vectors :

oF = ()\k — I:I>_1 r”

=——7. Orthoganalize the{ék’} to the {b; }and get new trial eigenvectors.




Example: Benzene molecule

#

Benzene

— absorption spectrum from Lanczos
— First 40 excitations (Davidson)

0.5 1 1.5 2 25 3
energy [eV]

Energy(Ry)
0.38112073E+00
0.41924668E+00
0.41936205E+00
0.43614131E+00
0.47779248E+00
0.47796122E+00
0.47839553E+00
0.47973541E+00
0.49171128E+00
0.49213150E+00
0.50060722E+00
0.50062231E+00
0.50216495E+00
0.50225774E+00
0.50474444E+00
0.51163438E+00
0.51165089E+00
0.51361736E+00

total

0.28954952E-06
0.24532963E-08
0.91804138E-08
0.14279507E-04
0.45835218E-01
0.69172881E-05
0.30424303E-02
0.41971527E-07
0.56778070E-08
0.26186798E-08
0.35194127E+00
0.35154654E+00
0.20407694E-07
0.85588290E-07
0.14963819E-08
0.69570326E-05
0.20331996E-06
0.46846540E-02



Advantages:

One obtains not only the frequency (and oscillator strength), but the fulll
eigenvector of each elementary excitation.

[Info can be used for spectroscopic assignments, to calculate forces, etc]

Disadvantages:

One obtains not only the frequency (and oscillator strength), but the fulll
eigenvector of each elementary excitation.

[Info is often not needed, all the information is immediately destroyed after
computation]

Computationally extremely demanding (large matrices to be diagonalized)



Time-dependent density functional
perturbation theory (TDDFPT)

Remember: The photoabsorption is linked to the dipole polarizability o(w)

d(t) = / dt'a(t — t"HE(t)

If we choose £(t') = £yd(t'), then knowing d(t) gives us a(t) and thus o(w).

Therefore, we need a way to calculate the observable d(t), given the electric
field perturbation £yd(t) .



Consider an observable A:

A(t) = ((ovit)

A

A

L

69+ (02 Al sv(1))

Its Fourier transform is:
Aw) = (¥ A 5w (w)) + (v |A
23 (0] ] )

2(a,0|x,y)

OV (w >)
i (W)



‘i@u) = 2:(KL¢‘A_df;(¢)>4—<cy‘ﬂ
2 Z <t£? ’\’ r(w }>

2(a, 0]z, y)

01 ‘.f \/ '>)

Recal: (w—L)|x,y)=|0,v)
Therefore:

Alw) =2(a.0|w—£)""0,v)

Thus in order to calculate th_e1 spectrum, we need to calculate one given
matrix element of (w — L) .



In order to understand the method, look at the hermitian problem:
-1
(v[(w—H) " [v)

Build a Lanczos recursion chain:
P-1
Po

(¢n+1|¢n+1) = 1

0

|
=
S~










Back to the calculation of spectra:

Recal: (w—L)|x,y) =10, v)

Therefore:

~

Alw) =2(a.0|w—£)""|0.v)

Use a recursion to represent L as a tridiagonal matrix:

(a; by 0 \
¢y as bo

L=10 ¢ ay by
' b N—1

\ CN_-1 UN )



And the response can be written as a
continued fraction!

/:Jiz
&

= 2(a.0|(w—£)7"0,v)

1
w — ay + by L

w'—(l2+- -
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How does it work?
Benzene spectrum

Energy [eV]

Plum: 1000

Red: 2000
Green: 3000

Black: 6000



Intensity [arb. units]
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Spectrum of Cg,: Ultrasoft pseudopotenitals
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Speeding up convergence:
Looking at the Lanczos coefficients

JUSIOLJO0D)
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Speeding up convergence:
Looking at the Lanczos coefficients
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Effect of the terminator:

No terminator:

Absorption strength

had 1LYV
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Energy [eV]



Effect of the terminator:

No terminator:

Absorption strength

=— 500 iterations
— 1000 iterations
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Effect of the terminator:

No terminator:

Absorption strength

s 10 15 20 25
Energy [eV]



Effect of the terminator:

No terminator:

Absorption strength

=— 500 iterations
— 1000 iterations
—— 1500 iterations
— 2500 iterations

s 10 15 20 25
Energy [eV]



Effect of the terminator:

No terminator:

Absorption strength

=— 500 iterations
— 1000 iterations
—— 1500 iterations
— 2500 iterations

| ‘ |
5 10 15
Energy [eV]

Terminator:

Absorption strength

=— 500 iterations
— 2500 iterations
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Energy [eV]



Effect of the terminator:

No terminator:

Absorption strength

=— 500 iterations
— 1000 iterations
—— 1500 iterations
— 2500 iterations

| ‘ |
5 10 15
Energy [eV]

Terminator:

Absorption strength

— 800 iterations
— 2500 iterations
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Analyzing the spectrum

Example of a squaraine dye:

Can we analyze given features of the spectrum in terms of the electronic structure?

YES!

It is possible to compute the response charge density for any given frequency
using a second recursion chain.



Convergence of the TDDFPT spectrum

Isolated squaraine molecule
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Conclusions

« TDDFT as a formally exact extension of ground-state DFT for
electronic excitations

* Allows to follow the electronic dynamics in real time

» Using TDDFT in linear response allows one to calculate spectra
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