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Electronic excitations … what's that? 

 End of self-consistent calculation 
 
          k = 0.0000 0.0000 0.0000 (  8440 PWs)   bands (ev): 
 
   -29.5187 -13.9322 -11.7782 -11.7782  -8.8699  -1.8882  -1.8882  -0.2057 
     0.9409   1.0554 
 
     highest occupied, lowest unoccupied level (ev):    -8.8699   -1.8882 
 
!    total energy              =     -43.17760726 Ry 



Why single-particle states? 

è concept of quasi-particles 
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Ab-initio approaches to excited states: 

TDDFT (Time-dependent density functional theory): Neutral excitations  

Many-body perturbation theory:  
 

 è GW (charged excitations) 
 
            è BSE (Bethe Salpeter equation) (neutral excitations) 



Rules of thumb for using TDDFT 



Framework: What is TDDFT all about? 

1964: Hohenberg and Kohn: Density Functional Theory (DFT) 

           work in terms of electron density (instead of many-particle wavefunctions) 

           DFT is a ground state theory 

1984: Runge and Gross: Time-Dependent Density Functional Theory (TDDFT) 

       like DFT, TDDFT is formally exact 



Recall: Basic ground-state DFT 

For practical calculations: Kohn-Sham framework 

The density is written in terms of Kohn-Sham orbitals which satisfy  



The Runge-Gross Theorem 

There exists a one-to-one correspondence between the external v(r,t) and the 
electron density n(r,t), for systems evolving from a fixed many-body state.  

Generalizing the HK theorem to time-dependent systems 

Proof: 

Step 1: Different potentials v and v’ yield different current densities j and j’ 

Step 2: Different current densities j and j’ yield different densities n and n’ 



Using TDDFT in practice 

Finding an equivalent of the Kohn-Sham formalism 

With a time-dependent Hamiltonian: 

Density and potentials are now defined like: 



Which functional to use ? 

The easiest and probably most widely used functional is the 

Adiabatic Local Density Approximation (ALDA) 



TDDFT in real time: 
(1996:Bertsch; 2001: Octopus code ) 

•   Consider a general time-dependent perturbation: 

•   Obtain orbitals, charge density, and potentials by solving 
   the Schrödinger equation explicitly in real time: 

(Nonlinear TD Schrödinger equation) 

•   Can be used for linear response calculations, or for general  
   TD non-linear problems. 



A first application: Photochemistry 

•   Recent experimental progress made it possible to produce 
   ultra-short intense laser pulses (few fs) 
•   This allows one to probe bond breaking/formation, charge  
    transfer, etc. on the relevant time scales 

•   Nonlinear real-time TDDFT calculations can be a valuable tool 
   to understand the physics of this kind of probe. 

•   Visualizing chemical bonds: Electron localization function 



Nonlinear optical response 

•   Electron localization function: 



Example: Ethyne C2H2 



Example: Ethyne C2H2 



How can we calculate optical spectra? 

Consider a perturbation δV applied to the ground-state system: 

Consider the perturbation due to an electric field: 

The induced dipole is given by the induced charge density: 



How can we calculate optical spectra? 

The dipole susceptibility is then given by: 

The experimentally measured strength function S is related to the 
Fourier transform of α: 

In practice: We take an E-field pulse Eext = E0 δ(t), calculate d(t), and obtain  
the spectrum S(ω) by calculating 



A typical dipole-function d(t) … 
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… and the resulting spectrum 



Linear response formalism in TDDFT: 

•   Calculate the system’s ground state using DFT 

•   Consider a monochromatic perturbation: 

•   Linear response: assume the time-dependent response: 

•   Put these expressions into the TD Schrödinger equation 



Linear response formalism in TDDFT: 

Now define the following linear combinations: 

c 

c 



With the following definitions: 



Linear response TD-DFT essentially means solving a non-hermitean 
eigenvalue equation of dimension 2 Nv × Nc . 

Standard way to proceed (Casida's equations): 
 
•  Solve the time-independent problem to completely diagonalize the   
ground-state Hamiltonian.  

[Some computer time can be saved by limiting the diagonalization to the 
lower part of the spectrum] 

•  Obtain as many eigenstates/frequencies  of the TD-DFT problem as 
needed (or as possible).  

[Some computer time can be saved by transforming the non-hermitean 
problem to a hermitean one (e.g. Tamm-Dancoff approx.)] 



Eigenstates of very large matrices: Davidson methods 

Let H be a hermitean matrix, or large dimension, and we look for few low-lying eigenstates. 

{bi}1. Select a set of trial eigenvectors             (typically 2x the number of desired eigenstates)     

2. Calculate the representation of H in the space of trial vectors: 

Gij = �bi|H|bj⇥
3. Diagonalize G (M is the number of desired eigenstates): 

G�k = ⇥k�k, k = 1, 2, · · · ,M
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4. Create new trial vectors c: 

5. Calculate the residue r: 

6. Using an approximation     for    , calculate the correction vectors : 

7. Orthoganalize the         to the        and get new trial eigenvectors. 

H̃ H

{bi}{�k}



Example: Benzene molecule 

0 0.5 1 1.5 2 2.5 3
energy [eV]

absorption spectrum from Lanczos
First 40 excitations (Davidson)

Benzene

#        Energy(Ry)          total 
      0.38112073E+00      0.28954952E-06 
      0.41924668E+00      0.24532963E-08 
      0.41936205E+00      0.91804138E-08 
      0.43614131E+00      0.14279507E-04 
      0.47779248E+00      0.45835218E-01 
      0.47796122E+00      0.69172881E-05 
      0.47839553E+00      0.30424303E-02 
      0.47973541E+00      0.41971527E-07 
      0.49171128E+00      0.56778070E-08 
      0.49213150E+00      0.26186798E-08 
      0.50060722E+00      0.35194127E+00 
      0.50062231E+00      0.35154654E+00 
      0.50216495E+00      0.20407694E-07 
      0.50225774E+00      0.85588290E-07 
      0.50474444E+00      0.14963819E-08 
      0.51163438E+00      0.69570326E-05 
      0.51165089E+00      0.20331996E-06 
      0.51361736E+00      0.46846540E-02 
 



Advantages: 

One obtains not only the frequency (and oscillator strength), but the fulll 
eigenvector of each elementary excitation. 

[Info can be used for spectroscopic assignments, to calculate forces, etc] 

Disadvantages: 

One obtains not only the frequency (and oscillator strength), but the fulll 
eigenvector of each elementary excitation. 

[Info is often not needed, all the information is immediately destroyed after 
computation] 

Computationally extremely demanding (large matrices to be diagonalized) 



Time-dependent density functional 
perturbation theory (TDDFPT) 

Remember: The photoabsorption is linked to the dipole polarizability α(ω) 

If we choose  , then knowing d(t) gives us α(t) and thus α(ω).   

Therefore, we need a way to calculate the observable d(t), given the electric 
field perturbation             . 



Consider an observable A: 

Its Fourier transform is: 



Recall: 

Therefore: 

Thus in order to calculate the spectrum, we need to calculate one given  
matrix element of                    .   



In order to understand the method, look at the hermitian problem:  

Build a Lanczos recursion chain: 
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Recall: 

Therefore: 

Use a recursion to represent L as a tridiagonal matrix: 

Back to the calculation of spectra: 



And the response can be written as a 
continued fraction! 



How does it work? 
Benzene spectrum 

Plum: 1000  
Red:  2000  
Green: 3000  

Black: 6000  



Spectrum of C60 

Black: 4000 

Blue:   3000 

Green: 2000 



Spectrum of C60: Ultrasoft pseudopotenitals 

Black: 2000 

Red:   1000 
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Speeding up convergence:  
Looking at the Lanczos coefficients 
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Speeding up convergence:  
Looking at the Lanczos coefficients 



Effect of the terminator: 

No terminator: 
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Effect of the terminator: 
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Effect of the terminator: 
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Effect of the terminator: 

No terminator: Terminator: 
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Effect of the terminator: 

No terminator: Terminator: 
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Analyzing the spectrum 

Example of a squaraine dye: 

Can we analyze given features of the spectrum in terms of the electronic structure? 

YES! 

It is possible to compute the response charge density for any given frequency  
using a second recursion chain. 
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converged spectrum
500 Lanczos iterations
1000 Lanczos iterations
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Convergence of the TDDFPT spectrum 

Isolated squaraine molecule 



Charge response at main absorption peak: 



Conclusions 
•  TDDFT as a formally exact extension of ground-state DFT for 
electronic excitations  

•  Allows to follow the electronic dynamics in real time 

•  Using TDDFT in linear response allows one to calculate spectra 
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