

Advanced Molecular Dynamics. Thermostats, Barostats and Nuclear Quantum Effects

Michele Ceriotti - http://cosmo.epfl.ch

Materials Simulations using Quantum Espresso, Jan 2017

Outline

- Efficient constant-temperature sampling:
 - White and colored-noise Langevin dynamics
 - Multiple time stepping, replica exchange
- Sampling different ensembles: barostats
- Path integral molecular dynamics: accurate modelling of quantum nuclear fluctuations
- Examples

Checklist of approximations

 Classical dynamics of a system of atoms with positions q and momenta p, described by the Hamiltonian

$$H(\mathbf{p}, \mathbf{q}) = K(\mathbf{p}) + V(\mathbf{q}) = \sum_{i} \frac{\mathbf{p}_{i}^{2}}{2m_{i}} + V(\mathbf{q})$$

- We assume V is given (force fields, electronic structure calculation)
- In all cases, strictly Born-Oppenheimer
- Want to generate (p, q) configurations consistent with given thermodynamic conditions
 - We focus (mostly) on the canonical (NVT) ensemble

$$P(\mathbf{p},\mathbf{q}) = e^{-eta H(\mathbf{p},\mathbf{q})} / \int \mathrm{d}\mathbf{q} \mathrm{d}\mathbf{p} \, e^{-eta H(\mathbf{p},\mathbf{q})}$$

Sampling by molecular dynamics

Hamilton's equations can be used to generate a trajectory

$$\dot{\mathbf{p}} = -\partial V/\partial \mathbf{q}, \qquad \dot{\mathbf{q}} = \mathbf{p}/m$$

• Fulfills the *necessary*, "global" condition for sampling the canonical ensemble,

$$\int d\mathbf{q} \, P(\mathbf{q}, \mathbf{p}) \, \rho(\mathbf{q}, \mathbf{p} \to \mathbf{q}', \mathbf{p}') = P(\mathbf{q}', \mathbf{p}') \,.$$

Clean proof with a Liouville operator formalism. The ingredients are:

Conservation of probability density

$$\frac{dP}{dt} \propto e^{-\beta H} \frac{dH}{dt}, \qquad \frac{dH}{dt} = \frac{\partial H}{\partial \mathbf{p}} \cdot \dot{\mathbf{p}} + \frac{\partial H}{\partial \mathbf{q}} \cdot \dot{\mathbf{q}} = -\frac{\partial H}{\partial \mathbf{p}} \cdot \frac{\partial H}{\partial \mathbf{q}} + \frac{\partial H}{\partial \mathbf{q}} \cdot \frac{\partial H}{\partial \mathbf{p}} = 0$$

Conservation of phase-space volume (symplectic property)

Ergodicity of sampling

 Underlying assumption behind importance sampling (by MD or MC) is ergodicity:

$$\lim_{M\to\infty}\frac{1}{M}\sum_{i}A(\mathbf{q}_{i})=\int\mathrm{d}\mathbf{q}\,P(\mathbf{q})\,A(\mathbf{q})$$

- This is an additional condition, that is very hard to prove in practice.
- We always have a finite *M*, so the question is: *how much* ergodic is the trajectory? How can we "measure" ergodicity?
- The key tool to assess the ergodicity of a trajectory for computing $\langle A \rangle$ is the autocorrelation function

$$c_{AA}(t) = \langle A(0) A(t) \rangle$$

ullet Direct link with the error in the mean of a trajectory of length T

$$\epsilon_{A}^{2}(T) = \frac{\sigma_{A}^{2}}{T} \int_{-T}^{T} d\Delta c_{AA}(\Delta) \left(1 - \frac{|\Delta|}{T}\right)$$

- Plain, Hamiltonian MD conserves energy and is not ergodic
- Must modify the dynamics to model the interaction with a heat bath (thermostats)
- Andersen thermostat: randomize atomic velocities every now and then
 - Exploits factorization of the canonical partition function
 - Simple, physically sound and effective

- Plain, Hamiltonian MD conserves energy and is not ergodic
- Must modify the dynamics to model the interaction with a heat bath (thermostats)
- Andersen thermostat: randomize atomic velocities every now and then
 - Exploits factorization of the canonical partition function
 - Simple, physically sound and effective

- Plain, Hamiltonian MD conserves energy and is not ergodic
- Must modify the dynamics to model the interaction with a heat bath (thermostats)
- Andersen thermostat: randomize atomic velocities every now and then
 - Exploits factorization of the canonical partition function
 - Simple, physically sound and effective

- Plain, Hamiltonian MD conserves energy and is not ergodic
- Must modify the dynamics to model the interaction with a heat bath (thermostats)
- Andersen thermostat: randomize atomic velocities every now and then
 - Exploits factorization of the canonical partition function
 - Simple, physically sound and effective

- Plain, Hamiltonian MD conserves energy and is not ergodic
- Must modify the dynamics to model the interaction with a heat bath (thermostats)
- Andersen thermostat: randomize atomic velocities every now and then
 - Exploits factorization of the canonical partition function
 - Simple, physically sound and effective

- Plain, Hamiltonian MD conserves energy and is not ergodic
- Must modify the dynamics to model the interaction with a heat bath (thermostats)
- Andersen thermostat: randomize atomic velocities every now and then
 - Exploits factorization of the canonical partition function
 - Simple, physically sound and effective

Getting a conserved quantity

- Having a conserved quantity is handy to monitor integration
- Thermostats implement ergodic canonical sampling, so total energy fluctuates
- Very general solution: keep track of the heat flow to the bath
 - ullet Compute kinetic energy before and after the thermostat, K_0 and K_f
 - Accumulate $\Delta H \leftarrow \Delta H + K_0 K_f$
 - Conserved quantity is $\tilde{H} = H + \Delta H$
- This works best with symmetric-split velocity Verlet
 - Apply thermostat for dt/2, keep track of ΔH
 - $oldsymbol{0}$ Symmetric-split Hamiltonian evolution of $(oldsymbol{p},oldsymbol{q})$
 - **3** Apply thermostat for dt/2, keep track of ΔH

Local and global thermostats

- "Global" thermostats enforce the correct distribution of the total kinetic energy (Berendsen¹, Nosé-Hoover, Bussi)
 - Gentle on the dynamics, but rely on the intrinsic Hamiltonian dynamics to relax internal degrees of freedom
- "Local" thermostats enforce the correct distribution of each component of the momentum (Andersen, Langevin, massive NHC)
 - More aggressive, slower collective dynamics, but also effective for poorly ergodic systems (e.g. crystals)

$$P(\mathbf{p}) \propto e^{-\beta \mathbf{p}^2/2m}$$

¹Does not give proper canonical sampling!

Deterministic and stochastic thermostats

 Nosé-Hoover thermostat: extended-Lagrangian approach, deterministic equations of motion

$$\dot{q} = \frac{p}{m}, \quad \dot{p} = -\frac{\partial V}{\partial q} - p\frac{p_s}{Q}, \quad \dot{p}_s = \frac{p^2}{m} - \frac{1}{\beta}, \quad \dot{s} = \frac{p_s}{Q}$$

- Not ergodic, must introduce chains to make the dynamics chaotic
- The local version is not rotationally invariant
- Integration is not straightforward, must use multiple time step
- Langevin-style thermostats: intrinsically stochastic dynamic

$$\dot{q} = \frac{\rho}{m}, \quad \dot{p} = -\frac{\partial V}{\partial q} - \gamma \rho + \sqrt{2m\gamma/\beta}\xi, \quad \langle \xi(t)\xi(0)\rangle = \delta(t)$$

- Ergodic, very natural model for coupling to a heat bath
- Linear equations, very stable and easy to integrate
- Require some care with the random number generator (parallelism!)

Stochastic differential equations

- Stochastic differential equations e.g. $\dot{x}=a(x,t)+b(x,t)\,\xi$, where $\xi(t)$ is a "Gaussian white noise" term can be integrated with some rigor using Ito/Stratonovich calculus
- They are best understood in terms of the associated Fokker-Planck equation for the time evolution of the probability distribution

$$\frac{\partial}{\partial t}P(x,t|x_0,t_0) = -\frac{\partial}{\partial x}\left[a(x,t)P\right] + \frac{1}{2}\frac{\partial^2}{\partial x^2}\left[b(x,t)^2P\right]$$

Langevin equation in atomistic simulations

Langevin dynamics models the interaction with a thermal bath

$$\dot{q} = \frac{p}{m}, \quad \dot{p} = -\frac{\partial V}{\partial q} - \gamma p + \sqrt{2m\gamma k_B T} \xi, \quad \langle \xi(t) \xi(0) \rangle = \delta(t)$$

- Can be used in molecular dynamics to sample configurations consistent with constant temperature
- Crucial aspect: how efficient is that? Use autocorrelation time $\tau_V = \int_0^\infty \langle V(t) \ V(0) \rangle \ \mathrm{d}t$

Langevin equation in atomistic simulations

Langevin dynamics models the interaction with a thermal bath

$$\dot{q} = \frac{\rho}{m}, \quad \dot{p} = -\frac{\partial V}{\partial q} - \gamma \rho + \sqrt{2m\gamma k_B T} \xi, \quad \langle \xi(t) \xi(0) \rangle = \delta(t)$$

- Can be used in molecular dynamics to sample configurations consistent with constant temperature
- Crucial aspect: how efficient is that? Use autocorrelation time $\tau_V = \int_0^\infty \langle V(t) V(0) \rangle dt$

Sampling efficiency of Langevin dynamics

- Sampling efficiency: the intrinsic time scale divided by the correlation time $\kappa=2/\tau\omega$. The efficiency κ is smaller than one
- $\gamma \ll \omega$: underdamping; $\gamma \gg \omega$: overdamping; $\gamma \approx \omega$: critical damping
- PB: atomistic simulations involve vibrational modes spanning multiple time scales how can we pick just one value of γ ?

Sampling efficiency of Langevin dynamics

- Sampling efficiency: the intrinsic time scale divided by the correlation time $\kappa=2/\tau\omega$. The efficiency κ is smaller than one
- $\gamma \ll \omega$: underdamping; $\gamma \gg \omega$: overdamping; $\gamma \approx \omega$: critical damping
- PB: atomistic simulations involve vibrational modes spanning multiple time scales how can we pick just one value of γ ?

- Langevin equation: modify Newton's equations with a viscous friction and white-noise force term.
 - A GLE framework based on colored noise
 - Markovian formulation dynamics and sampling can be estimated analytically
 One can tune the parameters based on these estimates, and obtain all sorts of useful effects

$$\dot{q} = p/m \quad \dot{p} = f(q)$$

- Langevin equation: modify Newton's equations with a viscous friction and white-noise force term.
 - A GLE framework based on colored noise
 - Markovian formulation dynamics and sampling can be estimated analytically
 One can tune the parameters based on these estimates, and obtain all sorts of useful effects

$$\dot{q} = p/m$$
 $\dot{p} = f(q) - \gamma p + \sqrt{2m\gamma k_B T} \xi$ $\langle \xi(t) \xi(0) \rangle = \delta(t)$

- Langevin equation: modify Newton's equations with a viscous friction and white-noise force term.
 - A GLE framework based on colored noise
 - Markovian formulation dynamics and sampling can be estimated analytically
 - One can tune the parameters based on these estimates, and obtain all sorts of useful effects

$$\dot{p}(t) = f(q) - \int_0^\infty K(s) \, p(t-s) \, \mathrm{d}s + \sqrt{2mk_BT} \zeta(t), \, \langle \zeta(t) \zeta(0) \rangle = K(t)$$

- Langevin equation: modify Newton's equations with a viscous friction and white-noise force term.
 - A GLE framework based on colored noise
 - Markovian formulation dynamics and sampling can be estimated analytically
 - One can tune the parameters based on these estimates, and obtain all sorts of useful effects

- Revisit the problem of canonical sampling of a system with many normal modes
- Start off with a random (bad!) choice of colored-noise parameters
- Iteratively optimize. . .

- Revisit the problem of canonical sampling of a system with many normal modes
- Start off with a random (bad!) choice of colored-noise parameters
- Iteratively optimize. . .

- Revisit the problem of canonical sampling of a system with many normal modes
- Start off with a random (bad!) choice of colored-noise parameters
- Iteratively optimize. . .

- Revisit the problem of canonical sampling of a system with many normal modes
- Start off with a random (bad!) choice of colored-noise parameters
- Iteratively optimize. . .

- Revisit the problem of canonical sampling of a system with many normal modes
- Start off with a random (bad!) choice of colored-noise parameters
- Iteratively optimize. . . until we get constant sampling efficiency

- It is possible to generalize further the GLE framework, by breaking the fluctuation-dissipation theorem: $K(t) \neq \langle \zeta(t) \zeta(0) \rangle$
- Simple non-eq. example: two thermostats at different temperature and different coupling curves
 - A steady state will be reached with frequency-dependent 7

- It is possible to generalize further the GLE framework, by breaking the fluctuation-dissipation theorem: $K(t) \neq \langle \zeta(t) \zeta(0) \rangle$
- Simple non-eq. example: two thermostats at different temperature and different coupling curves
 - A steady state will be reached with frequency-dependent 7

- It is possible to generalize further the GLE framework, by breaking the fluctuation-dissipation theorem: $K(t) \neq \langle \zeta(t) \zeta(0) \rangle$
- Simple non-eq. example: two thermostats at different temperature and different coupling curves
 - A steady state will be reached with frequency-dependent 7

- It is possible to generalize further the GLE framework, by breaking the fluctuation-dissipation theorem: $K(t) \neq \langle \zeta(t) \zeta(0) \rangle$
- Simple non-eq. example: two thermostats at different temperature and different coupling curves
 - ullet A steady state will be reached with frequency-dependent T

A δ -thermostat

 Thermalize the normal modes in a narrow frequency window, keep all the others frozen. No need to know normal modes in advance! Work in progress to extend this approach to model more physically excitations over a constant-T background

A δ -thermostat

 Thermalize the normal modes in a narrow frequency window, keep all the others frozen. No need to know normal modes in advance! Work in progress to extend this approach to model more physically excitations over a constant-T background

Selective NM excitation in hexagonal ice. Comparison of the NVE density of states and that obtained by targeted δ -thermostats. Atomic displacements have been magnified for clarity.

Multiple time stepping

- Can we make force evaluation cheaper?
- Idea: multiple time stepping: if we can break the potential into a cheap short-range part and an expensive long-range part $V = V_{\rm sr} + V_{\rm lr}$ we can use different time steps for the two components
- Simmetric splitting preserves important symmetries and is most stable

$$e^{i\mathcal{L}\Delta t} \approx e^{i\mathcal{L}_{lr}\Delta t/2} \left[e^{i\mathcal{L}_{sr}\Delta t/2M} e^{i\mathcal{L}_{q}\Delta t/M} e^{i\mathcal{L}_{sr}\Delta t/2M} \right]^{M} e^{i\mathcal{L}_{lr}\Delta t/2}$$

Multiple time stepping

- Can we make force evaluation cheaper?
- Idea: multiple time stepping: if we can break the potential into a cheap short-range part and an expensive long-range part $V = V_{\rm sr} + V_{\rm lr}$ we can use different time steps for the two components
- Simmetric splitting preserves important symmetries and is most stable

$$e^{i\mathcal{L}\Delta t} pprox e^{i\mathcal{L}_{lr}\Delta t/2} \left[e^{i\mathcal{L}_{sr}\Delta t/2M} e^{i\mathcal{L}_{q}\Delta t/M} e^{i\mathcal{L}_{sr}\Delta t/2M}
ight]^{M} e^{i\mathcal{L}_{lr}\Delta t/2}$$

- Can we make force evaluation cheaper?
- Idea: multiple time stepping: if we can break the potential into a cheap short-range part and an expensive long-range part $V = V_{\rm sr} + V_{\rm lr}$ we can use different time steps for the two components
- Simmetric splitting preserves important symmetries and is most stable

$$e^{i\mathcal{L}\Delta t}\approx e^{i\mathcal{L}_{lr}\Delta t/2}\left[e^{i\mathcal{L}_{sr}\Delta t/2M}e^{i\mathcal{L}_{q}\Delta t/M}e^{i\mathcal{L}_{sr}\Delta t/2M}\right]^{M}e^{i\mathcal{L}_{lr}\Delta t/2}$$

$$\rho \leftarrow \rho + f_{lr} \frac{\Delta t}{2} \\
\rho \leftarrow \rho + f_{sr} \frac{\Delta t}{2M} \\
\vdots$$

- Can we make force evaluation cheaper?
- Idea: multiple time stepping: if we can break the potential into a cheap short-range part and an expensive long-range part $V = V_{\rm sr} + V_{\rm lr}$ we can use different time steps for the two components
- Simmetric splitting preserves important symmetries and is most stable

$$e^{i\mathcal{L}\Delta t}\approx e^{i\mathcal{L}_{lr}\Delta t/2}\left[e^{i\mathcal{L}_{sr}\Delta t/2M}e^{i\mathcal{L}_{q}\Delta t/M}e^{i\mathcal{L}_{sr}\Delta t/2M}\right]^{M}e^{i\mathcal{L}_{lr}\Delta t/2}$$

$$\vdots$$

$$q \leftarrow q + \frac{p}{m} \frac{\Delta t}{M}$$

$$p \leftarrow p + f_{sr} \frac{\Delta t}{2M}$$

$$p \leftarrow p + f_{sr} \frac{\Delta t}{2M}$$

$$\vdots$$

Tuckerman, Berne, Martyna, JCP (1992)

- Can we make force evaluation cheaper?
- Idea: multiple time stepping: if we can break the potential into a cheap short-range part and an expensive long-range part $V = V_{\rm sr} + V_{\rm lr}$ we can use different time steps for the two components
- Simmetric splitting preserves important symmetries and is most stable

$$e^{i\mathcal{L}\Delta t}\approx e^{i\mathcal{L}_{lr}\Delta t/2}\left[e^{i\mathcal{L}_{sr}\Delta t/2M}e^{i\mathcal{L}_{q}\Delta t/M}e^{i\mathcal{L}_{sr}\Delta t/2M}\right]^{M}e^{i\mathcal{L}_{lr}\Delta t/2}$$

$$\vdots$$

$$q \leftarrow q + \frac{\rho}{m} \frac{\Delta t}{M}$$

$$p \leftarrow \rho + f_{sr} \frac{\Delta t}{2M}$$

$$p \leftarrow \rho + f_{sr} \frac{\Delta t}{2M}$$

$$\vdots$$

Tuckerman, Berne, Martyna, JCP (1992)

- Can we make force evaluation cheaper?
- Idea: multiple time stepping: if we can break the potential into a cheap short-range part and an expensive long-range part $V = V_{\rm sr} + V_{\rm lr}$ we can use different time steps for the two components
- Simmetric splitting preserves important symmetries and is most stable

$$e^{i\mathcal{L}\Delta t}\approx e^{i\mathcal{L}_{lr}\Delta t/2}\left[e^{i\mathcal{L}_{sr}\Delta t/2M}e^{i\mathcal{L}_{q}\Delta t/M}e^{i\mathcal{L}_{sr}\Delta t/2M}\right]^{M}e^{i\mathcal{L}_{lr}\Delta t/2}$$

$$\vdots$$

$$q \leftarrow q + \frac{p}{m} \frac{\Delta n}{M}$$

$$p \leftarrow p + f_{sr} \frac{\Delta n}{2M}$$

$$p \leftarrow p + f_{lr} \frac{\Delta t}{2}$$

- Can we make force evaluation cheaper?
- Idea: multiple time stepping: if we can break the potential into a cheap short-range part and an expensive long-range part $V = V_{sr} + V_{lr}$ we can use different time steps for the two components
- Simmetric splitting preserves important symmetries and is most stable

$$e^{i\mathcal{L}\Delta t}\approx e^{i\mathcal{L}_{lr}\Delta t/2}\left[e^{i\mathcal{L}_{sr}\Delta t/2M}e^{i\mathcal{L}_{q}\Delta t/M}e^{i\mathcal{L}_{sr}\Delta t/2M}\right]^{M}e^{i\mathcal{L}_{lr}\Delta t/2}$$

 How to deal with a first-principles setting? "Simple" if you can compute a cheap and an expensive version of V whose difference is "long-range":

$$V = V_{\mathsf{cheap} \equiv \mathsf{sr}} + \left(V_{\mathsf{exp.}} - V_{\mathsf{cheap}}\right)_{\equiv \mathit{lr}}$$

Iftimie, Schofield JCP 2011; Marsalek, Markland JCP 2016; Kapil, Vandevondele, Ceriotti JCP 2016

- Higher temperature would allow for faster sampling of activated events, but reweighing to low T would be very inefficient
- Solution is to add multiple replicas at intermediate temperature . . .
 - . . . stochastic exchanges drive simulations up and down the ladder
 - Exchanges are based on Monte Carlo criteria
 - All replicas are always consistent with their T

Earl, Deem, PCCP 2005; Petraglia, Nicolai, Wodrich, MC, Corminboeuf 2015

- Higher temperature would allow for faster sampling of activated events, but reweighing to low T would be very inefficient

Earl, Deem, PCCP 2005; Petraglia, Nicolai, Wodrich, MC, Corminboeuf 2015

- Higher temperature would allow for faster sampling of activated events, but reweighing to low T would be very inefficient
- Solution is to add multiple replicas at intermediate temperature . . .

Earl, Deem, PCCP 2005; Petraglia, Nicolai, Wodrich, MC, Corminboeuf 2015

- Higher temperature would allow for faster sampling of activated events, but reweighing to low T would be very inefficient
- Solution is to add multiple replicas at intermediate temperature . . .
 - . . . stochastic exchanges drive simulations up and down the ladder
 - Exchanges are based on Monte Carlo criteria
 - All replicas are always consistent with their T

Sampling the isobaric ensemble

- How can one perform sampling consistent with constant-pressure conditions? General idea: modify the equations of motion to include the cell volume as a dynamical parameter, with a fictitious mass μ and a conjugate momentum α
- Requires evaluation of the internal pressure, that contains both a kinetic energy term, and a term coming from the virial of the potential - tricky in ab initio calculations!

$$P \propto e^{-\beta E} e^{-\beta pV}$$

HC Andersen, JCP 1980; Parrinello & Rahman, J.Appl.Phys. 1981, Bussi, Zykova & Parrinello, JCP 2009

Sampling the isobaric ensemble

- How can one perform sampling consistent with constant-pressure conditions? General idea: modify the equations of motion to include the cell volume as a dynamical parameter, with a fictitious mass μ and a conjugate momentum α
- Requires evaluation of the internal pressure, that contains both a kinetic energy term, and a term coming from the virial of the potential - tricky in ab initio calculations!

$$\begin{aligned}
\dot{q} &= \frac{p}{m} + \alpha q \\
\dot{p} &= -\partial U/\partial q - \alpha p \\
\dot{V} &= 3 V \alpha \\
\dot{\alpha} &= 3 \left[V \left(P_{int} - P_{ext} \right) + 2 k_B T \right] / \mu
\end{aligned}$$

Sampling the isobaric ensemble

- How can one perform sampling consistent with constant-pressure conditions? General idea: modify the equations of motion to include the cell volume as a dynamical parameter, with a fictitious mass μ and a conjugate momentum α
- Requires evaluation of the internal pressure, that contains both a kinetic energy term, and a term coming from the virial of the potential - tricky in ab initio calculations!

$$q = \frac{\rho}{m} + \alpha q$$

$$\dot{p} = -\frac{\partial U}{\partial q} - \alpha p$$

$$\dot{V} = 3V\alpha$$

$$\dot{\alpha} = 3\left[V\left(P_{int} - P_{ext}\right) + 2k_BT\right]/\mu$$

$$P_{int} = \frac{2K}{3V} - \frac{dU}{dV}$$

- Light nuclei do not obey Newtonian mechanics
- ullet Quantum nature of a vibrational mode of frequency ω becomes important when $\hbar\omega/k_BT > 1$.
 - Light nuclei have strong quantum behavior even at room temperature: $k_BT/\hbar \approx 200 \text{ cm}^{-1}$!

- Light nuclei do not obey Newtonian mechanics
- Quantum nature of a vibrational mode of frequency ω becomes important when $\hbar\omega/k_BT>1$.
 - Light nuclei have strong quantum behavior even at room temperature: $k_BT/\hbar\approx 200~{\rm cm}^{-1}!$
 - Example: properties of isotopically-pure water (heat capacity)
 - Isotope effects on rates for reactions involving hydrogen: massive effect (e.g. a factor of 60 for soybean lypoxigenase).

- Light nuclei do not obey Newtonian mechanics
- Quantum nature of a vibrational mode of frequency ω becomes important when $\hbar\omega/k_BT>$ 1.
 - Light nuclei have strong quantum behavior even at room temperature: $k_BT/\hbar\approx 200~{\rm cm}^{-1}!$
 - Example: properties of isotopically-pure water (pH)
 - Isotope effects on rates for reactions involving hydrogen: massive effect (e.g. a factor of 60 for soybean lypoxigenase).

- Light nuclei do not obey Newtonian mechanics
- Quantum nature of a vibrational mode of frequency ω becomes important when $\hbar\omega/k_BT>$ 1.
 - Light nuclei have strong quantum behavior even at room temperature: $k_BT/\hbar\approx 200~{\rm cm}^{-1}!$
 - Example: properties of isotopically-pure water
 - Isotope effects on rates for reactions involving hydrogen: massive effect (e.g. a factor of 60 for soybean lypoxigenase).

- Solving the Schrödinger equation for the nuclei is impractical
- A connection exists between the statistical properties of a quantum system and those of a classical ring polymer

$$H_{P} = \sum_{i=1}^{P} \left[V(\mathbf{q}_{i}) + \frac{\mathbf{p}_{i}^{2}}{2m} + \frac{1}{2} m \omega_{P}^{2} (\mathbf{q}_{i} - \mathbf{q}_{i-1})^{2} \right]$$

- Harmonic springs hold corresponding particles together
- Convergence to quantum averages for $P\gg\hbar\omega/k_BT$

- Solving the Schrödinger equation for the nuclei is impractical
- A connection exists between the statistical properties of a quantum system and those of a classical ring polymer

$$H_{P} = \sum_{i=1}^{P} \left[V(\mathbf{q}_{i}) + \frac{\mathbf{p}_{i}^{2}}{2m} + \frac{1}{2}m\omega_{P}^{2}(\mathbf{q}_{i} - \mathbf{q}_{i-1})^{2} \right]$$

- Harmonic springs hold corresponding particles together
- Convergence to quantum averages for $P \gg \hbar\omega/k_BT$

- Solving the Schrödinger equation for the nuclei is impractical
- A connection exists between the statistical properties of a quantum system and those of a classical ring polymer

$$H_{P} = \sum_{i=1}^{P} \left[V(\mathbf{q}_{i}) + \frac{\mathbf{p}_{i}^{2}}{2m} + \frac{1}{2}m\omega_{P}^{2}(\mathbf{q}_{i} - \mathbf{q}_{i-1})^{2} \right]$$

- Harmonic springs hold corresponding particles together
- Convergence to quantum averages for $P \gg \hbar\omega/k_BT$

- Solving the Schrödinger equation for the nuclei is impractical
- A connection exists between the statistical properties of a quantum system and those of a classical ring polymer

$$H_{P} = \sum_{i=1}^{P} \left[V(\mathbf{q}_{i}) + \frac{\mathbf{p}_{i}^{2}}{2m} + \frac{1}{2}m\omega_{P}^{2}(\mathbf{q}_{i} - \mathbf{q}_{i-1})^{2} \right]$$

- Harmonic springs hold corresponding particles together
- ullet Convergence to quantum averages for $P\gg\hbar\omega/k_{B}T$

- We can also make a "non-equilibrium" thermostat
 - ullet Frequency-dependent thermalization $T^\star(\omega)$
- A quantum oscillator at temperature T behaves like a classical oscillator at temperature $T^*(\omega) = (\hbar\omega/2k_B) \coth \hbar\omega/2k_BT$
 - This quantum thermostat is exact in the harmonic limit, and also works (approximately) in strongly anharmonic problems

- We can also make a "non-equilibrium" thermostat
 - ullet Frequency-dependent thermalization $T^\star(\omega)$
- A quantum oscillator at temperature T behaves like a classical oscillator at temperature $T^*(\omega)=(\hbar\omega/2k_B)\coth\hbar\omega/2k_BT$
 - This quantum thermostat is exact in the harmonic limit, and also works (approximately) in strongly anharmonic problems

Classical HO V(q), n(q) Temperature T

Quantum HO, temperature T

Ceriotti, Bussi, Parrinello PRL 103 (2009)

- We can also make a "non-equilibrium" thermostat
 - ullet Frequency-dependent thermalization $T^\star(\omega)$
- A quantum oscillator at temperature T behaves like a classical oscillator at temperature $T^*(\omega)=(\hbar\omega/2k_B)\coth\hbar\omega/2k_BT$
 - This quantum thermostat is exact in the harmonic limit, and also works (approximately) in strongly anharmonic problems

Ceriotti, Bussi, Parrinello PRL 103 (2009)

- We can also make a "non-equilibrium" thermostat
 - ullet Frequency-dependent thermalization $T^\star(\omega)$
- A quantum oscillator at temperature T behaves like a classical oscillator at temperature $T^*(\omega)=(\hbar\omega/2k_B)\coth\hbar\omega/2k_BT$
 - This quantum thermostat is exact in the harmonic limit, and also works (approximately) in strongly anharmonic problems

Distance between minima: 1Å, comparison between exact and quantum thermostat results

- We can also make a "non-equilibrium" thermostat
 - ullet Frequency-dependent thermalization $T^\star(\omega)$
- A quantum oscillator at temperature T behaves like a classical oscillator at temperature $T^*(\omega)=(\hbar\omega/2k_B)\coth\hbar\omega/2k_BT$
 - This quantum thermostat is exact in the harmonic limit, and also works (approximately) in strongly anharmonic problems

BLYP water at room temperature, CP2K, DZVP basis, GTH PP.

--- classical

--- PIMD

--- quantum thermostat

Anharmonicities and ZPE leakage

A problem with multidimensional anharmonic systems

- Zero-point energy leakage: common to many semiclassical approaches
- Can be contrasted by tuning the strength of coupling!

Anharmonicities and ZPE leakage

- A problem with multidimensional anharmonic systems
 - Zero-point energy leakage: common to many semiclassical approaches
 - Can be contrasted by tuning the strength of coupling!

Anharmonicities and ZPE leakage

- A problem with multidimensional anharmonic systems
 - Zero-point energy leakage: common to many semiclassical approaches
 - Can be contrasted by tuning the strength of coupling!

- Quantum thermostat ⇒ inexpensive but approximate;
 Path integrals ⇒ accurate but costly!
- Can we get the best of both worlds?
 - Devise "intermediate" forms of colored noise
 - Achieve systematic and accelerated convergence

- Quantum thermostat ⇒ inexpensive but approximate: Path integrals \Rightarrow accurate but costly!
- Can we get the best of both worlds?
 - Devise "intermediate" forms of colored noise
 - Achieve systematic and accelerated convergence!

Ceriotti, Manolopoulos, Parrinello JCP 2011; Ceriotti, Manolopoulos PRL 2012

- Quantum thermostat ⇒ inexpensive but approximate; Path integrals \Rightarrow accurate but costly!
- Can we get the best of both worlds?
 - Devise "intermediate" forms of colored noise
 - Achieve systematic and accelerated convergence!

Ceriotti, Manolopoulos, Parrinello JCP 2011; Ceriotti, Manolopoulos PRL 2012

- Quantum thermostat ⇒ inexpensive but approximate;
 Path integrals ⇒ accurate but costly!
- Can we get the best of both worlds?
 - Devise "intermediate" forms of colored noise
 - Achieve systematic and accelerated convergence!

Ceriotti, Manolopoulos, Parrinello JCP 2011; Ceriotti, Manolopoulos PRL 2012

- Pressure promotes water dissociation. Presence of a large concentration of charged species, particularly with NQEs
- These are real dissociations, leading to proton exchanges
- Quantum effects have a small (but noticeable) effect on density

- Pressure promotes water dissociation. Presence of a large concentration of charged species, particularly with NQEs
- These are real dissociations, leading to proton exchanges
- Quantum effects have a small (but noticeable) effect on density

- Pressure promotes water dissociation. Presence of a large concentration of charged species, particularly with NQEs

BLYP+D3, NpT PIGLET, CP2K; Ceriotti, More, Manolopoulos, Comp. Phys. Comm. 2014

- Pressure promotes water dissociation. Presence of a large concentration of charged species, particularly with NQEs
- These are real dissociations, leading to proton exchanges
- Quantum effects have a small (but noticeable) effect on density

BLYP+D3, NpT PIGLET, CP2K; Ceriotti, More, Manolopoulos, Comp. Phys. Comm. 2014

Self dissociation at 10GPa, 750K

- Pressure promotes water dissociation. Presence of a large concentration of charged species, particularly with NQEs
- These are real dissociations, leading to proton exchanges
- Quantum effects have a small (but noticeable) effect on density

BLYP+D3, NpT PIGLET, CP2K; Ceriotti, More, Manolopoulos, Comp. Phys. Comm. 2014

Isotope fractionation in DFT water

 Different phases in equilibrium contain different fractions of light and heavy isotopes

$$\mathsf{H}_{\textit{phase1}} + \mathsf{D}_{\textit{phase2}} \overset{\Delta \textit{G}}{\rightleftharpoons} \mathsf{D}_{\textit{phase1}} + \mathsf{H}_{\textit{phase2}}$$

- Very useful for geochemistry and atmospheric sciences: extremely accurate experimental data available
- Very demanding calculations, but can be made cheaper with a few tricks

$$\Delta G \propto \int_{m_{
m H}}^{m_{
m D}} rac{T_{
m 1}\left(\mu
ight)}{\mu} - rac{T_{
m 2}\left(\mu
ight)}{\mu} {
m d}\mu$$

- Purely quantum mechanical effect, would be zero for classical nuclei Ideal test of the quality of DFT functionals
 - Because of quantum fluctuations, the simulations probe different regions of the potential energy surface

A comparison of different functionals

- Comparison of fractionation ratios with different functionals
 - Break down in different contributions give more insight
- Temperature dependence for BLYP qualitatively predicts inversion.

	PBE	BLYP	BLYP-D3	PBE0	B3LYP	B3LYP-D3	Exp
$-10^3\Delta G/k_BT$	-17	62	48	90	102	95	73
O-H	-409	-292	-272	-241	-199	-205	-
Plane	114	104	90	99	88	87	-
Orthogonal	278	250	230	232	213	213	

A comparison of different functionals

- Comparison of fractionation ratios with different functionals
 - Break down in different contributions give more insight
 - Comparison of (virtually) exact results in the gas phase, infer reference value for ΔA_i (CCSD(T) PES for the monomer)
- Temperature dependence for BLYP qualitatively predicts inversion.

(meV)	PBE	BLYP	BLYP-D3	PBE0	B3LYP	B3LYP-D3	Exact
K_{ν}	147.1	145.6	145.8	152.3	149.5	149.5	151.1
ΔA_{v}	-88.1	-87.2	-87.3	-91.1	-89.6	-89.6	-90.4
K_l	146.7	148.3	147.5	155.6	153.7	153.3	-
ΔA_{l}	-87.7	-88.8	-88.5	-93.4	-92.3	-92.1	-92.3

A comparison of different functionals

- Comparison of fractionation ratios with different functionals
 - Break down in different contributions give more insight
 - Comparison of (virtually) exact results in the gas phase, infer reference value for ΔA_l (CCSD(T) PES for the monomer)
- Temperature dependence for BLYP qualitatively predicts inversion

Quantum effects in molecular crystals

- Csomputing quantum and anharmonic contributions to the stability of paracetamol form I and II
- A complex combination of thermodynamic integration steps:
 - PIMD with multiple time step and GLE acceleration
 - Phonon calculations and thermodynamic integration
- Bottom line: quantum nuclear effects and anharmonic free energy are as important as the details of the electronic structure calculation (PBE+D3)

Quantum effects in molecular crystals

- Csomputing quantum and anharmonic contributions to the stability of paracetamol form I and II
- A complex combination of thermodynamic integration steps:
 - PIMD with multiple time step and GLE acceleration
 - Phonon calculations and thermodynamic integration
- Bottom line: quantum nuclear effects and anharmonic free energy are as important as the details of the electronic structure calculation (PBE+D3)

Quantum effects in molecular crystals

- Csomputing quantum and anharmonic contributions to the stability of paracetamol form I and II
- A complex combination of thermodynamic integration steps:
 - PIMD with multiple time step and GLE acceleration
 - Phonon calculations and thermodynamic integration
- Bottom line: quantum nuclear effects and anharmonic free energy are as important as the details of the electronic structure calculation (PBE+D3)

Outlook

- Molecular dynamics offers a very flexible framework to sample (thermo)dynamical properties of matter
- Stochastic dynamics provide a natural model for coupling to a bath GLE thermostats are an exquisitely tunable incarnation of the idea
- Besides the constant-T classical dynamics, MD can be adapted to model constant-pressure conditions, quantum systems, and more!

http://epfl-cosmo.github.io/gle4md/

Introducing autocorrelation functions

One can also define a version for discrete series,

$$c_{AA}(i) = \langle A(\mathbf{q}_0) A(\mathbf{q}_i) \rangle$$

• It is written $\langle A(0) A(t) \rangle$, but it really means

$$c_{AA}\left(t
ight)=rac{\left\langle \left(A\left(0
ight)-\left\langle A
ight
angle
ight)\left(A\left(t
ight)-\left\langle A
ight
angle
ight)
ight
angle }{\left\langle A^{2}
ight
angle -\left\langle A
ight
angle ^{2}}$$

... and it *really* means

$$c_{AA}(t) = \frac{\int d\mathbf{q} d\mathbf{q}' P(\mathbf{q}) P(\mathbf{q}'; t|\mathbf{q}; 0) [A(\mathbf{q}) - \langle A \rangle] [A(\mathbf{q}') - \langle A \rangle]}{\int d\mathbf{q} P(\mathbf{q}) [A(\mathbf{q}) - \langle A \rangle]^2}$$

 \dots and in practice it is computed from a trajectory A(t) as

$$c_{AA}(t) = \frac{1}{\sigma_A^2} \lim_{T \to \infty} \frac{1}{T - t} \int_0^{T - t} dt' \left[A(t') - \langle A \rangle \right] \left[A(t' + t) - \langle A \rangle \right].$$

Autocorrelation function from a trajectory

$$c_{AA}(t) = \frac{1}{\sigma_A^2} \lim_{T \to \infty} \frac{1}{T - t} \int_0^{T - t} dt' \left[A(t') - \langle A \rangle \right] \left[A(t' + t) - \langle A \rangle \right]$$

Autocorrelation function from a trajectory

$$c_{AA}(t) = \frac{1}{\sigma_A^2} \lim_{T \to \infty} \frac{1}{T - t} \int_0^{T - t} dt' \left[A(t') - \langle A \rangle \right] \left[A(t' + t) - \langle A \rangle \right]$$

Autocorrelation function from a trajectory

$$c_{AA}(t) = \frac{1}{\sigma_A^2} \lim_{T \to \infty} \frac{1}{T - t} \int_0^{T - t} dt' \left[A(t') - \langle A \rangle \right] \left[A(t' + t) - \langle A \rangle \right]$$

- $c_{AA}(t)$ tells you how much one can infer about the deviation of A from its mean at time t from its deviation at time 0.
- Example: daily rain fall on a small island in the Pacific: will it rain tomorrow? Multiple time scales can be identified.

- $c_{AA}(t)$ tells you how much one can infer about the deviation of A from its mean at time t from its deviation at time 0.
- Example: daily rain fall on a small island in the Pacific: will it rain tomorrow? Multiple time scales can be identified.

- $c_{AA}(t)$ tells you how much one can infer about the deviation of A from its mean at time t from its deviation at time 0.
- Example: daily rain fall on a small island in the Pacific: will it rain tomorrow? Multiple time scales can be identified.

- $c_{AA}(t)$ tells you how much one can infer about the deviation of A from its mean at time t from its deviation at time 0.
- Example: daily rain fall on a small island in the Pacific: will it rain tomorrow? Multiple time scales can be identified.

ACF and error in the mean

- Autocorrelation functions are closely related to the sampling efficiency
- The mean A computed from a run of length T is

$$\langle A \rangle_T = \frac{1}{T} \int_0^T A(t) \, \mathrm{d}t$$

• The mean square error in the mean $\epsilon_{\Delta}^{2}(T)$ is then

$$\left\langle \left[\left\langle A \right\rangle_T - \left\langle A \right\rangle \right]^2 \right\rangle = \frac{1}{T^2} \int_0^T \mathrm{d}t \int_0^T \mathrm{d}t' \left\langle \left[A(t) - \left\langle A \right\rangle \right] \left[A(t') - \left\langle A \right\rangle \right] \right\rangle.$$

Noting that

$$\langle [A(t) - \langle A \rangle] [A(t') - \langle A \rangle] \rangle = \sigma_A^2 c_{AA} (t' - t),$$

one can do a change of variables $t'-t=\Delta$ and get

$$\epsilon_{A}^{2}(T) = \frac{\sigma_{A}^{2}}{T} \int_{-T}^{T} d\Delta c_{AA}(\Delta) \left(1 - \frac{|\Delta|}{T}\right)$$

• For T much longer than the time scale on which $c_{AA}(t)$ decays to zero, $\epsilon_A^2(T) = \frac{\sigma_A^2}{T/\tau_A}$, where we introduced the **correlation time**

$$\tau_{A} = \int_{-\infty}^{\infty} c_{AA}(t) \, \mathrm{d}t$$

• For T much longer than the time scale on which $c_{AA}(t)$ decays to zero, $\epsilon_A^2(T) = \frac{\sigma_A^2}{T/\tau_A}$, where we introduced the **correlation time**

$$\tau_{A} = \int_{-\infty}^{\infty} c_{AA}(t) \, \mathrm{d}t$$

• For T much longer than the time scale on which $c_{AA}(t)$ decays to zero, $\epsilon_A^2(T) = \frac{\sigma_A^2}{T/\tau_A}$, where we introduced the **correlation time**

$$\tau_{A} = \int_{-\infty}^{\infty} c_{AA}(t) \, \mathrm{d}t$$

• For T much longer than the time scale on which $c_{AA}(t)$ decays to zero, $\epsilon_A^2(T) = \frac{\sigma_A^2}{T/\tau_A}$, where we introduced the **correlation time**

$$\tau_{A} = \int_{-\infty}^{\infty} c_{AA}(t) \, \mathrm{d}t$$

• For T much longer than the time scale on which $c_{AA}(t)$ decays to zero, $\epsilon_A^2(T) = \frac{\sigma_A^2}{T/\tau_A}$, where we introduced the **correlation time**

$$\tau_{A} = \int_{-\infty}^{\infty} c_{AA}(t) \, \mathrm{d}t$$

- ACFs can be computed very efficiently with FFT
- ullet There is a problem with the average entering the definition of c_{AA}
 - For $T \sim \tau_A$, $\langle A \rangle$ estimated from the trajectory is correlated with A(t)
 - The estimator for c_{AA} is biased (sort of $N \to N-1$ evaluating σ_A^2)
 - Use the exact (or most accurate) $\langle A \rangle$ whenever possible
 - In practice au_A tends to always be underestimated

- ACFs can be computed very efficiently with FFT
- ullet There is a problem with the average entering the definition of c_{AA}
 - ullet For $T\sim au_{A}$, $\langle A
 angle$ estimated from the trajectory is correlated with A(t)
 - ullet The estimator for c_{AA} is biased (sort of N o N-1 evaluating σ_A^2)
 - Use the exact (or most accurate) $\langle A \rangle$ whenever possible
 - In practice au_{A} tends to always be underestimated

- ACFs can be computed very efficiently with FFT
- ullet There is a problem with the average entering the definition of c_{AA}
 - ullet For $au \sim au_{A}$, $\langle A
 angle$ estimated from the trajectory is correlated with A(t)
 - The estimator for c_{AA} is biased (sort of N o N-1 evaluating σ_A^2)
 - Use the exact (or most accurate) $\langle A \rangle$ whenever possible
 - In practice au_{A} tends to always be underestimated

- ACFs can be computed very efficiently with FFT
- ullet There is a problem with the average entering the definition of c_{AA}
 - ullet For $T\sim au_{A}$, $\langle A
 angle$ estimated from the trajectory is correlated with A(t)
 - The estimator for c_{AA} is biased (sort of N o N-1 evaluating σ_A^2)
 - Use the exact (or most accurate) $\langle A \rangle$ whenever possible
 - In practice au_{A} tends to always be underestimated

Markovian/non-Markovian dynamics

- A non-Markovian dynamics can be seen as the projection of a Markovian dynamics in an extended phase space
- With the appropriate formalism (Mori-Zwanzig), the effect of the extra degrees of freedom can be integrated out, and corresponds to a memory kernel in a generalized Langevin equation

Non-Markovian GLE

- We want to use a non-Markovian GLE, but it is inconvenient
- A large class of non-Markovian dynamics can be mapped onto a Markovian dynamics in an extended phase space
- The Markovian GLE corresponds to a (possibly complex) exponential memory kernel $K(t) = a_{np}\delta(t) \mathbf{a}_{n}^{T}e^{-\mathbf{A}t}\bar{\mathbf{a}}_{n}$
- Except for the non-linear potential, this stochastic differential equation is an **Ornstein-Uhlenbeck process** $\dot{\bf u} = -{\bf A}{\bf u} + {\bf B}{\boldsymbol \xi}$ which can be solved analytically.

Markovian GLE

- We want to use a non-Markovian GLE, but it is inconvenient
- A large class of non-Markovian dynamics can be mapped onto a Markovian dynamics in an extended phase space
- The Markovian GLE corresponds to a (possibly complex) exponential memory kernel $K(t) = a_{\rho\rho}\delta(t) \mathbf{a}_{\rho}^{\mathsf{T}}e^{-\mathbf{A}t}\bar{\mathbf{a}}_{\rho}$
- Except for the non-linear potential, this stochastic differential equation is an **Ornstein-Uhlenbeck process** $\dot{\bf u} = -{\bf A}{\bf u} + {\bf B}{\boldsymbol \xi}$ which can be solved analytically.

Markovian GLE

- We want to use a non-Markovian GLE, but it is inconvenient
- A large class of non-Markovian dynamics can be mapped onto a Markovian dynamics in an extended phase space
- The Markovian GLE corresponds to a (possibly complex) exponential memory kernel $K(t) = a_{\rho\rho}\delta(t) \mathbf{a}_{\rho}^{\mathsf{T}}e^{-\mathbf{A}t}\bar{\mathbf{a}}_{\rho}$
- Except for the non-linear potential, this stochastic differential equation is an **Ornstein-Uhlenbeck process** $\dot{\bf u} = -{\bf A}{\bf u} + {\bf B}{\boldsymbol \xi}$ which can be solved analytically.

Markovian GLE

- We want to use a non-Markovian GLE, but it is inconvenient
- A large class of non-Markovian dynamics can be mapped onto a Markovian dynamics in an extended phase space
- The Markovian GLE corresponds to a (possibly complex) exponential memory kernel $K(t) = a_{\rho\rho}\delta(t) \mathbf{a}_{\rho}^T e^{-\mathbf{A}t}\bar{\mathbf{a}}_{\rho}$
- Except for the non-linear potential, this stochastic differential equation is an **Ornstein-Uhlenbeck process** $\dot{\bf u} = -{\bf A}{\bf u} + {\bf B}{\boldsymbol \xi}$ which can be solved analytically.

Predicting and fitting

- In the harmonic limit, exact propagator for the OU process (just as the Langevin propagator):
 - Static and dynamics properties can be predicted analytically
 - Thanks to rotational invariance, in the multidimensional case thermostats can be applied to Cartesian coordinates
- One can obtain custom-tailored thermostats:
 - Compute response properties over a frequency range as broad as the vibrational spectrum of the system
 - Modify the parameters of the GLE until the response matches requirements
- The fitting is a complex nonlinear optimization problem: must restrict the range of \mathbf{A}_{ρ} and \mathbf{B}_{ρ}

Consider the QM partition function in the position representation

$$Z_{\mathsf{QM}} = \int \mathsf{d} q \left\langle q \middle| e^{-eta \hat{H}} \middle| q
ight
angle$$

$$e^{-\beta \hat{H}} = \left(e^{-\beta \hat{H}/P}\right)^P \approx \left(e^{-\beta_P \hat{V}/2} e^{-\beta_P \hat{T}} e^{-\beta_P \hat{V}/2}\right)^P + \mathcal{O}\left(\beta_P^2\right),$$

Consider the QM partition function in the position representation

$$\int \mathrm{d}q \left\langle q \middle| e^{-\beta \hat{V}} e^{-\beta \hat{T}} \middle| q \right\rangle$$

$$e^{-\beta \hat{H}} = \left(e^{-\beta \hat{H}/P}\right)^P \approx \left(e^{-\beta_P \hat{V}/2} e^{-\beta_P \hat{T}} e^{-\beta_P \hat{V}/2}\right)^P + \mathcal{O}\left(\beta_P^2\right),$$

Consider the QM partition function in the position representation

$$\int \mathrm{d}q e^{-\beta V(q)} \left\langle q \middle| e^{-\beta \hat{T}} \middle| q \right\rangle$$

$$e^{-\beta\hat{H}} = \left(e^{-\beta\hat{H}/P}\right)^P \approx \left(e^{-\beta_P\hat{V}/2}e^{-\beta_P\hat{T}}e^{-\beta_P\hat{V}/2}\right)^P + \mathcal{O}\left(\beta_P^2\right),$$

Consider the QM partition function in the position representation

$$\int \mathrm{d}q e^{-\beta V(q)} \int \mathrm{d}\rho \left\langle q \middle| e^{-\beta \hat{T}} \middle| \rho \right\rangle \left\langle \rho \middle| q \right\rangle$$

$$e^{-\beta \hat{H}} = \left(e^{-\beta \hat{H}/P}\right)^P \approx \left(e^{-\beta_P \hat{V}/2} e^{-\beta_P \hat{T}} e^{-\beta_P \hat{V}/2}\right)^P + \mathcal{O}\left(\beta_P^2\right),$$

Consider the QM partition function in the position representation

$$Z_{\mathsf{QM}} = \int \mathsf{d}q e^{-eta V(q)} \int \mathsf{d}\rho \, e^{-rac{
ho^2}{2m}} = Z_{\mathsf{CL}} ?????$$

$$e^{-\beta \hat{H}} = \left(e^{-\beta \hat{H}/P}\right)^P \approx \left(e^{-\beta_P \hat{V}/2} e^{-\beta_P \hat{T}} e^{-\beta_P \hat{V}/2}\right)^P + \mathcal{O}\left(\beta_P^2\right),$$

Consider the QM partition function in the position representation

$$Z_{\text{QM}} = \int dq e^{-\beta V(q)} \int dp \, e^{-\frac{p^2}{2m}} = Z_{\text{CL}} \qquad \left[\mathbf{\hat{V}}, \mathbf{\hat{T}} \right] \neq \mathbf{0}!$$

$$e^{-\beta\hat{H}} = \left(e^{-\beta\hat{H}/P}\right)^P \approx \left(e^{-\beta_P\hat{V}/2}e^{-\beta_P\hat{T}}e^{-\beta_P\hat{V}/2}\right)^P + \mathcal{O}\left(\beta_P^2\right),$$

Consider the QM partition function in the position representation

$$Z_{\text{QM}} = \int dq e^{-\beta V(q)} \int dp \, e^{-\frac{p^2}{2m}} = Z_{\text{CL}} \qquad \left[\mathbf{\hat{V}}, \mathbf{\hat{T}} \right] \neq \mathbf{0}!$$

$$e^{-\beta\hat{H}} = \left(e^{-\beta\hat{H}/P}\right)^P \approx \left(e^{-\beta_P\hat{V}/2}e^{-\beta_P\hat{T}}e^{-\beta_P\hat{V}/2}\right)^P + \mathcal{O}\left(\beta_P^2\right),$$

$$\begin{split} Z_{QM} \approx Z_P &= \int \text{d}q_1 \dots \text{d}q_P \left[\left\langle \left. q_1 \right| e^{-\beta_P V(q_1)/2} e^{-\beta_P \hat{T}} e^{-\beta_P V(q_2)/2} \right| q_2 \right\rangle \dots \\ & \dots \left\langle \left. q_P \right| e^{-\beta_P V(q_P)/2} e^{-\beta_P \hat{T}} e^{-\beta_P V(q_1)/2} \bigg| q_1 \right\rangle \right]. \end{split}$$

Consider the QM partition function in the position representation

$$Z_{\text{QM}} = \int dq e^{-\beta V(q)} \int d\rho \, e^{-\frac{\rho^2}{2m}} = Z_{\text{CL}} \qquad \left[\mathbf{\hat{V}}, \mathbf{\hat{T}} \right] \neq \mathbf{0}!$$

$$\begin{split} e^{-\beta\hat{H}} &= \left(e^{-\beta\hat{H}/P}\right)^P \approx \left(e^{-\beta_P\hat{V}/2}e^{-\beta_P\hat{T}}e^{-\beta_P\hat{V}/2}\right)^P + \mathcal{O}\left(\beta_P^2\right), \\ &\left\langle \left.q_i\right|e^{-\beta_P\hat{T}}\middle|q_j\right\rangle = \int \mathsf{d}\rho \left\langle \left.q_i\right|e^{-\beta_P\hat{T}}\middle|\rho\right\rangle \left\langle \left.\rho\right|q_j\right\rangle \propto e^{-\frac{1}{2}\beta_P m\omega_P^2\left(q_i-q_j\right)^2} \end{split}$$

Consider the QM partition function in the position representation

$$Z_{\text{QM}} = \int dq e^{-\beta V(q)} \int dp \, e^{-\frac{p^2}{2m}} = Z_{\text{CL}} \qquad \left[\mathbf{\hat{V}}, \mathbf{\hat{T}} \right] \neq \mathbf{0}!$$

$$\begin{split} e^{-\beta \hat{H}} &= \left(e^{-\beta \hat{H}/P}\right)^P \approx \left(e^{-\beta_P \hat{V}/2} e^{-\beta_P \hat{T}} e^{-\beta_P \hat{V}/2}\right)^P + \mathcal{O}\left(\beta_P^2\right), \\ Z_{\text{QM}} &\approx Z_P = \int \text{d}q_1 \dots \text{d}q_P \text{d}p_1 \dots \text{d}p_P \, e^{-\frac{\beta}{P} H_P} \end{split}$$

Fluctuations in a (quantum) HO

 \bullet A quantum harmonic oscillator of frequency ω has Gaussian fluctuations with amplitude

$$\left\langle \mathit{q}^{2}\right\rangle \left(\omega\right)=\frac{\hbar}{2\omega}\,\mathrm{coth}\,\frac{\hbar\omega}{2\mathit{k}_{B}\mathit{T}}$$

 A ring polymer with P beads for a HO potential has normal modes with frequencies

$$\omega_{k} = \sqrt{\omega^{2} + 4\omega_{P}^{2}\sin^{2}(k\pi/P)}, \qquad \omega_{P} = Pk_{B}T/\hbar$$

so the fluctuations of $\langle q^2 \rangle$ with canonical sampling can be written as

$$\langle q^2 \rangle_P(\omega) = \frac{1}{P} \sum_k \langle \tilde{q}_k^2 \rangle = k_B T \sum_k \frac{1}{\omega_k^2}$$

ullet For large P, $\left\langle q^2
ight
angle_P(\omega)
ightarrow rac{\hbar}{2\omega} \coth rac{\hbar \omega}{2k_BT}$

PI+GLE

- The quantum thermostat enforces ω -dependent fluctuations that mimic quantum phase-space distribution of p and q for all the frequencies of interest
- PI+GLE idea: use colored noise to make sure that $\langle q^2 \rangle_P(\omega) = \frac{\hbar}{2\omega}$ coth $\frac{\hbar\omega}{2k_BT}$ for any finite P
 - The thermostat knows nothing about the necklace, only knows the frequency of each mode. So we are trying to find $c_{aa}(\omega)$ such that

$$\frac{1}{P}\sum_{k=0}^{P-1}c_{qq}\left(\omega_{k}\right)=\frac{\hbar}{2\omega}\coth\frac{\hbar\omega}{2k_{B}T}$$

• ω_k depends from the physical frequency ω . This functional equation can be solved iteratively by casting it as a fixed-point iteration for c_{aa} , exploiting the fact that $\omega_0 = \omega$

$$c_{qq}(\omega) = \frac{\hbar P}{2\omega} \coth \frac{\hbar \omega}{2k_B T} - \sum_{k=1}^{P-1} c_{qq}(\omega_k)$$