THE ATMOSPHERE

Tereza Cavazos Department of Physical Oceanography Ensenada, Baja California, Mexico

The Science of Climate Change: a focus on Central America and the Caribbean Islands

Antigua, Guatemala, 14-16 de marzo de 2017

Vertical Structure

Atmosphere: is the layer of gases that surrounds the Earth and stays in place due to **gravity**. Up to 80 km the atmosphere is uniform: **AIR**

Earth's Climate System

Earth's Atmosphere

 Unique composition of gases (& GHGs) favors life as we know it **GHGs:** \rightarrow **Global Ta** = 15°C CO₂ (0.04%) CH₄, N₂O, water vapor

No GHGs \rightarrow T = -17°C

- Unique weather & climate
- Transports heat, momentum, and humidity (hydrological cycle)
- Transports aerosols and other contaminants (O₃, CFC, NO_x, black carbon, etc.)

External Forcings

(Petit et al., 1999, *Nature*, 399, p. 431. Ver Fig. 2.31, W&H, 2006, p. 52)

Concentration of Greenhouse Gases (GHGs)

OBS: Global Air Temperature Anomaly and Ocean Heat Content

Global Air Tmean = 15°C

Radiative Forcings in the Atmosphere (Watts/m²) Attribution to climate change

Figure SPM.2. Global average radiative forcing (RF) estimates and ranges in 2005 for anthropogenic carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O) and other important agents and mechanisms, together with the typical geographical extent (spatial scale) of the forcing and the assessed level of scientific understanding (LOSU). The net anthropogenic radiative forcing and its range are also

CLIMATE CHANGE Perturbation of the Earth's climate due to several forcing mechanisms:

Human Activity: Population growth, Industrial development → Land-use change, and Fossil fuel burning NATURAL: Solar radiation, Tectonic plates, Volcanism, El Niño, Decadal Oscillations...

Weather and Climate

Weather: Atmospheric phenomena that occur from seconds to few weeks; this is the deterministic limit for weather forecast. It is the state of the troposphere at any moment.

"Weather is what we feel right now"

<u>Climate:</u> Atmospheric phenomena that occur from one month to much longer time periods. It is the **average weather** in a place over more than thirty years.

"Climate is what we expect"

Scales of Variability of Weather and Climate

Understanding of the effect of climate change on event type

Scales of Variability and Attribution to Climate Change

● = high ● = medium ○ = low	Capabilities of Climate Models to Simulate Event Type	Quality/Length of the Observational Record	Understanding of Physical Mechanisms That Lead to Changes in Extremes as a Result of Climate Change
Extreme cold events	٠	٠	٠
Extreme heat events	•	•	•
Droughts	o	0	0
Extreme rainfall	o	0	0
Extreme snow and ice storms	0	0	0
Tropical cyclones	0	0	0
Extratropical cyclones	0	0	0
Wildfires	0	0	0
Severe convective storms	0	0	0

Attribution of Extreme Weather Events in the Context of Climate Change National Academy of Sciences 2016

Atmospheric Circulation

Ferrel Cell: Thermally indirect circulation Jet Stream

Hadley Cell: Direct circulation

ITCZ

Meridional Circulation and Heat Transport

Annual Temperature Range

Large seasonal contrasts \rightarrow Rossby and planetary waves

Thermodynamic Equation

Local change T = Horiz ADV + vertical ADV + radiative + convective diabatic heating

$$\frac{\partial T}{\partial t} = -\mathbf{V} \cdot \nabla T + \omega \left(\frac{\kappa T}{p} - \frac{\partial T}{\partial p} \right) + \frac{Q_{rad}}{c_p} + \frac{Q_{con}}{c_p} + D_H$$
$$dQ = cpdT - \alpha dp$$

Warming/diabatic dissipation

 $\frac{\partial T}{\partial t} = -\nabla \cdot \nabla T + \sigma \omega \qquad \Rightarrow \text{ Sigma (Static Stability):} \\ \Rightarrow + \text{ Stable, - unstable, 0 neutral}$

MIDLATITUDES: Horiz ADVECTION of Temp dominates

TROPICS: Vert ADV dominates ($\omega \sigma \rightarrow compression$ expansion). Local change and horiz ADV are small from day to day. Easterly waves →

Tropical Atmosphere

Semipermanent Highs and Lows January SLP

See Fig. 1.18, Wallace and Hobbs, 2006, p. 17

Semipermanent Highs and Lows July SLP

See Fig. 1.19, Wallace and Hobbs, 2006, p. 17

January Precipitation Climatology 1998-2015, TRMM

.0 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95

Precipitation (mm hr⁻¹)

Figure from George Kiladis

July Precipitation Climatology 1998-2015, TRMM

.0 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .9

Precipitation (mm hr⁻¹)

Figure from George Kiladis

Mean Annual Precipitation,

Figure from George Kiladis

January and July Precipitation (mm) derived from CMAP

Fig. 1.25 January and July climatological-mean precipitation. [Based on infrared and microwave satellite imagery over the oceans and rain gauge data over land, as analyzed by the NOAA National Centers for Environmental Prediction CMAP project. Courtesy of Todd P. Mitchell.]

Fig. 1.25, Wallace & Hobbs, 2006, p. 20.

Easterly Waves in the Trade Winds

Easterly Waves 23 Aug 1995

http://apollo.lsc.vsc.edu/classes/met130/notes/chapter15/graphics/ATL_WAVES_VIS.gif

Zonal Walker Circulation During Normal to La Niña Conditions

Close relation among SST, convection and winds

(Reynolds SST, ISCCP high clouds, Quikscat winds)

January Mean SLP during La Niña winters Dry in Mexico, the Caribbean and southern US → Zonal circulation (e.g., 2008, 1999, 1989 y 1976)

Canonical La Niña

El Niño

Teleconnection during Strong El Niño winters (Strong subtropical jet and extreme rainfall, 1976-2000)

(Cavazos and Rivas, 2004)

El Niño 2015-2016: An unusual event

Figure from George Kiladis. Courtesy Tao Zhang, PSD ESRL

Subtropical Westerly Jet during El Niño

The Madden-Julian Oscillation (MJO) and Kelvin Waves

The MJO is also referred to as the 30-60 day or 40-50 day oscillation and is the main intraseasonal/intra-annual fluctuation that explains weather variations near the equatorial regions.

It may also affect weather systems in the extratropics, such as the west coast of the U.S. in winter. In its simplest form, the MJO consists of coherent variations

Atmospheric Kelvin Waves and the MJO

http://envam1.env.uea.ac.uk/met_ocean_climate.html

(Matthews 2000)

ENSO and EPAC Tropical Cyclones

ENSO and EPAC Tropical Cyclones May-Nov 1979-2010

Warm Pool: $SST > 28^{\circ}C$

28

28.5

29

LN

Ν

ΕN

U200-U850mb (m/s)

Martinez-Sanchez y Cavazos 2014

AMO and NAT Tropical Cyclones

http://www.aoml.noaa.gov/phod/research/tav/awp/

Decadal Patterns of the Atlantic and Pacific

Teleconnection Pattern: The North Atlantic Oscillation

The two extreme phases of the North Atlantic Oscillation (NAO) and some climatic impacts. Courtesy of Lamont Doherty Earth Lab./NOAA).

Teleconnections of the North Atlantic Oscillation

Figure 2A. The North Atlantic Oscillation (NAO). Its "high index" state is shown above, this corresponds to particularly high atmospheric pressure over the Azores, an intense low over Iceland. Ocean winds are stronger and winters milder in the eastern U.S. When the NAO index is low, ocean winds are weaker and the U.S. winter more severe. Changes in ocean temperature distributions are also observed. (Illustration by Fritz Heide & Jack Cook, WHOI)

Relevant Phenomena for the Central American – Caribbean Region

Thank You

tcavazos@cicese.mx