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The Global Climate System
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Global Air Temperature

Temperature Anomaly (°C)
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Global Mean Surface Temperature (January-June)
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The first six months of 2016 were the warmest six-month
period in NASA's modern temperature record, which dates
to 1880. Credits: NASA/Goddard Institute for Space Studies
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Observed Global Warming

Annual Trend 1901 to 2005
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Fourier

Predicting Climate Change

Arrhenius Manabe
« Arrhenius quantifies in 1896 the ' e
changes in surface temperature

(approx. 5 C) to be expected

from a doubling in CO,, based

on the concept of "glass bowl”

effect introduced in )Y

Joseph Fourier

Norman Phillips develops the
first global atmospheric GCM,
and early climate models are
being developed by many
(Manabe, Mintz and Arakawa, | “"h
Washington, etc.) = AL

) _Arékawa N Washilnon
Courtesy: Prof. Guy Brasseur (2011)




The Climate Prediction Puzzle

* Initial Condition
— Weather forecasting
— Intra-seasonal prediction

 Boundary Condition
— Seasonal prediction
— Decadal to centennial prediction/scenarios

* Internal Dynamics
— The whole of turbulence/chaos attractors
— Representation of small scales processes.

Climate Variability and Change: What can we predict and why.



Advances in Weather Forecasts

Anomaly correlation of 500hPa height forecasts
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Limits of predictability of a
complex system

 Validity of parameterizations

— Degree of nonlinearity: XY’ # 0

» Seasonal cycle:

- X(s.t) ~ X(s.1) + X' (s.1)

— Systematic errors:

* Degree of internal complexity:

— Individual clouds / solar radiation interactions
— Dynamical vegetation / forest fires...

— Oceanic eddies / river discharge
Climate Variability and Change: What can we predict and why.



Change of Frequency of Extremes
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Two “one-in-a-century” Amazon Droughts
within a 5 years period

2005 and 2010 Amazon Droghts

Climate Variability and Change: What can we predict and why.



Nifo 3.4 SST Predictability

INPE-CPTEC s O-A Coupled Model

—_~
o]
o
(@]
N
-—
s
[
O
[72]
-}
C
©
£
©
[0}
c
R
>
-}
o
C
5
N
[0}
—
o)
@)
Z
o
-}
©
o




BESM Equatorial Pacif

BESM North Tropi

Standardized Deviations(Normalized)
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Source: Becker et al (2014)
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Source: Becker et al (2014)



SST NMME ensemble AC
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Source: Becker et al (2014)
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BESM2.5 CMIP5
Runs 1850-2100
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Courtesy: V. Capistrano, INPE/BESM



Temperature Rate of Change (C/30 years)

Adjustment time scales of the coupled
global ocean-atmosphere system
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Potential Sources of
Climate Predictability

« Slowly varying boundary conditions
— Green House Gas (GHG) concentration growth
— Tropical SST
— Soil Moisture/ Ice extent

* |nitial Conditions
— Atmospheric Blocking
— Ocean initialization
* Internal variability of the coupled ocean-
atmosphere system
— PDO, NAO, ENSO, trends

Climate Variability and Change: What can we predict and why.



What is the “greenhouse effect”? Like the sun, the Earth also
emits radiation. Itis much

cooler than the sun, though,
so it emits in the infrared.
Some of that energy is
absorbed by molecules in
the atmosphere, affecting
the global energy balance:

Radiated

Incoming
out to space

solar radiation

With no greenhouse effect, T, =-18°C . We'd be frozen. The real average
temperature is +15°C, due to the Earth’s natural greenhouse effect.

Courtesy: Prof. Guy Brasseur (2011)




Global Mean Surface Temperature Anomalies
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Radiative Forcing (W/m?)

-
N

-y
o

o0

0

RCP Climate Forcing

History RCPs ECPs
' RCP8.5 ]
~-B5Wim* — -/ —
RCP6
BOWM ————f——— ‘
",  SCP6to4.5
_____ 4 My RCP4.5
~30W/m? - — — — /' _____
RCP3-PD/2.6 -
1800 1900 2000 2100 2200 2300 2400 2500

Climate Variability and Change: What can we predict and why.



Anomalies from 1986-2005 (°C)
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North Amerlcan Annual Surface T (°C)
(1900-2100)
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Phenomena-related

Seasonal Predictability
ENSO - El Nino-Southern Oscillation:

— Equatorial Pacific air-sea interactions modulate large-scale
atmospheric circulation, temperature and precipitation patterns;

NAQO — North Atlantic Oscillation:

— Influences North America temperature and precipitation storm
tracks

Atlantic Meridional mode:

— North-south SSTA gradient modulates ITCZ position, affecting
rainfall distribution over northern South America

Low Level Jet

— Transport moisture into SESA, modulating severe weather over
southern Brazil, Paraguay, Uruguay, and northern Argentina.

Climate Variability and Change: What can we predict and why.



The ENSO effects
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The Meridional Mode of SSTA and Wind Stress
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From: Nobre and Shukla (1996)



ATLANTIC ITCZ POSITION AND OLR
ANOMALY CORRELATION
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Source: Paulo Nobre (unpublished manuscript)



One x Two Tier

« “Perfect” SST-forced Atmospheric GCM

— Assumes that atmosphere is completely forced by sfc
temperature/humidity distribution

— Generally a good assumption in thermally direct
driven cases like ENSO and Atlantic ITCZ.

— However, prescribe incorrect sfc fluxes in the cases of
convection over cooler waters, e.g. SACZ.

* Coupled O-A GCM:

— Correct surface fluxes over cold/warm waters
— Systematic errors growth hinders further predictability!

Climate Variability and Change: What can we predict and why.



The South Atlantic Convergence Zone
(SACZ)

SACZ formation over cold
waters => Atmospheric

forcing of underlying
SST?

Robertson and Mechoso (2002)

Chaves and Nobre (2004)

De Almeida et al (2007)

NObI'e et al (2009) SGON S5W S0W 45w 40W W JOW 25K 20w ISW (0w Sw 0 S5E IOE
W w0 20w T T ——
OLR SSTA

OBS: 17-25 NOVEMBER 1999

Climate Variability and Change: What can we predict and why.



SACZ low predictability

CPTEC AGCM, 50 years, 10 Member Ensemble, Kuo, T062L28, Obs SST

Marengo et al. (2002)

Climate Variability and Change: What can we predict and why.



BESM Predicts SACZ
over colder Waters

SST-RAINFAL ANOMALY CORRELATIONS

ACC (SST, precipitation)

AGCM/SST

AGCM/SST

Climate Variability and Change: What can we predict and why.

observations

cgem

Nobre et al. (2012, JClimate)



15 SEPTEMBER 2012

TABLE 1. ACCs between surface air temperature (SAT), sea
surface temperature (SST), rainfall (PREC), and downward
shortwave radiation (SWR) for the PIRATA buoys at 8°S, 30°W
and 19°S, 34°W. Daily values smoothed with a 30-day-running-
mean filter for the DJF periods of 2005-10, totaling 450 pairs of
data for each time series. Cross-correlation values greater than 0.35
(italic) [0.6 (boldface)] are statistically significant at the 90% (99%)
level according to a one-sided Student’s ¢ test with 15 degrees of
freedom.

Cross correlation Buoy at 8°S, 30°W Buoy at 19°S, 34°W

SAT-SST 0.91 0.94
SWR-PREC —0.64 —0.74
SAT-SWR —0.38 0.49
SST-SWR —0.18 0.41
SAT-PREC 0.56 —0.32
SST-PREC 0.33 -0.19

Climate Variability and Change:

NOBRE ET AL.

6355

the AGCMs, the results are only marginally statistically
significant over the area of the SACZ. Yet, one could
expect that the more physically sound representation of
the SACZ dynamics and thermodynamics by the CGCM
can leave its imprint on rainfall predictability over
the southwestern Atlantic. Figure 5 shows DJF rain-
fall hindcast skill as measured by ACC between ob-
served and simulated rainfall. The AGCM runs forced
by OISST (Fig. 5a) depict the same robust correlation
pattern of positive correlations along the equatorial
area and negative correlations over the SACZ area,
reproducing previous results that used AGCMs forced
by observed SSTs to simulate the SACZ (Nobre et al.
2006; Robertson et al. 2003). It is noteworthy, however,
that the strong negative ACC shown for the AGCM runs
forced by observed SST is drastically reduced on the

What can we predict and why.

Nobre et al. (2012, JClimate)



Esperado Robertson & Mechoso De Almeida & al.
(2000) (2007)

Climate Variability and Change: What can we predict and why.



Coupled Ocean-Atmosphere processes at play
DJF Precipitation Forecasts anomaly correlations
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Coupled Ocean-Atmosphere processes at play
DJF Precipitation Forecasts anomaly correlations

Clima
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Paulo Nobre (manuscript in preparation)



Seasonal Climate Prediction at CPTEC

Mlodels Suite

OBJECTIVE
ENSEMBLE Consensus
FORECAST ﬂ Forecast
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The exponential growth of
computing on a Logarithmic Plot

All Human Brains
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The ENIAC 24 h 500 hPa forecast starting at 0300
UTC, January 5, 1949. (Charney, et al., 1950).

- The Nokia 6300, dubbed PHONIAC (left) and the
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forecast for 0300 UTC, January 6, 1949 (right) made
with the program phoniac.jar. The contour interval is

50m. (by P.Lynch)

for iPhone

Click here for details and to download

Reconstruction of ENIAC 24-hour forecast by P. Lynch

Climate Variability and Change: What can we predict and why.

http://mathsci.ucd.ie/~plynch/Publications/PHONIAC.html



Concluding remarks

* Tropical Oceans play a central role to
predicting seasonal climate over the
Americas

— ENSO, NAO, AMM, ITCZ

« SACZ, however, still a challenge for both,
2-tier and 1-tier methods

« Systematic errors in 1-tier Coupled CGMs
a major stone block to be studied, process
resolved, models improved.

Climate Variability and Change: What can we predict and why.



