D3-branes, Strings and F-Theory in Various Dimensions

- 1601.02015 (JHEP) with Sakura Schäfer-Nameki
- 1612.05640 with Craig Lawrie and Sakura Schäfer-Nameki
- 1612.06393 with Craig Lawrie and Sakura Schäfer-Nameki

Timo Weigand

CERN and ITP Heidelberg

F-theory and D3-branes

F-theory geometrises the physics of 7-branes and $D(-1)$-instantons.
D3-branes probe this backreacted geometry.
Relevance of D3-branes in F-theory includes:

1) D3 on $\mathbb{R}^{1,3} \times \mathrm{pt} \quad \mathrm{pt} \subset \mathrm{CY}_{4}$
2) D3 on pt $\times D$
$D \subset B_{3} \subset \mathrm{CY}_{4}$ divisor Instanton
3) D 3 on $\mathbb{R}^{1,1} \times C$
$C \subset B_{n-1} \subset C Y_{n}$ curve \quad String

We will focus on strings from wrapped D3-branes:

- $C \subset \mathrm{CY}_{3}$: self-dual string in $6 \mathrm{~d} \leftrightarrow$ relation to 6 d SCFTs
- $C \subset \mathrm{CY}_{4}$: cosmic string in $\mathbb{R}^{1,3}$ - codimension-two object
- $C \subset \mathrm{CY}_{5}$: filling $\mathbb{R}^{1,1}$ and required by tadpoles

Aim:
Microscopic understanding of 2d QFT on string in various dimensions

D3-strinos in E-theory

1) Extrinsic Motivation:

- 7-brane background for D3-strings as a means to geometrically engineer (new?) chiral 2d theories and SCFTs
- Methods to describe gauge theories with varying gauge coupling via topological duality twist [Martucci'14]
\Longrightarrow Go beyond topological twist of [Bershadsky,Johansen, Vafa,Sadov'95],
[Benini,Bobev'13] ,...

2) Intrinsic Motivation:

D3-branes are exciting window into non-perturbative dynamics captured by F-theory

- Quantum Higgsing
- Mysterious 3-7 string sector

Outline

1) Topological (Duality) Twist on D3-brane on C
2) Massless Spectrum for Strings from D3-branes
3) Quantum Higgsing via F-theory
4) Anomalies and 3-7 Modes
5) 2d $(0,2)$ Gravity Sector

The general setup

F-theory on Y_{n} with base B_{n-1}
D3-brane on $\mathbb{R}^{1,1} \times C$
C a curve in base $C \subset B_{n-1}$

This talk: Single D3 with C not contained in discriminant locus Δ

- C is transverse to 7 -branes on B_{n-1}
- C intersects 7 -branes in isolated points on B_{n-1}

M-theory dual descriptions via T -duality see talk by S . Schäfer-Nameki

- transverse to D3-string on $\mathbb{R}^{1,1}$: M5-brane
- parallel to D3-string on $\mathbb{R}^{1,1}$: M2-brane

This talk: We will describe theory directly in language of F-Theory via topological duality twist [Martucci'14]

Duality bundle

- 4d $N=4$ SYM coupling on D3

$$
\tau=\frac{\theta}{2 \pi}+i \frac{4 \pi}{g^{2}}
$$

$$
=\begin{aligned}
& \text { F-theory axio-dilaton } \\
& C_{0}+i e^{-\phi}
\end{aligned}
$$

- 7-brane
τ-variation on $C \subset B_{n-1}$ background monodromy around $C \cap$ (7-brane)
- Consistent due to $S L(2, \mathbb{Z})$ duality of $N=4$ SYM:

$$
\begin{aligned}
&\left(F, F_{D}\right) \rightarrow M_{\mathrm{SL}(2, \mathbb{Z})}\left(F, F_{D}\right) \\
& \tau \rightarrow \frac{a \tau+b}{c \tau+d} \quad \text { SYM fields }: \Phi \rightarrow e^{i q \alpha} \Phi \quad \text { with } \quad e^{i \alpha}=\frac{c \tau+d}{|c \tau+d|}
\end{aligned}
$$

q : $U(1)_{D}$ charge 'bonus symmetry' [Intriligator'98] [Kapustin,Witten'06]

- τ-variation on C described by non-trivial $S L(2, \mathbb{Z})$ bundle \mathcal{L}_{D}
- connection $\mathcal{A}=\frac{\mathrm{d} \tau_{1}}{2 \tau_{2}} \quad \tau=\tau_{1}+i \tau_{2}$
- as holomorphic bundle: $\mathcal{L}_{D}=\left.K_{B_{n-1}}^{-1}\right|_{C}$ [Bianchi,Collinucci,Martucci'11]

Duality Twist

- $G \supset S O(1,3)_{L} \times S U(4)_{R} \times U(1)_{D}$
- Supercharges: $Q_{\alpha I}:(2,1, \overline{4})_{1} \quad \widetilde{Q}_{\dot{\alpha}}^{I}:(1,2,4)_{-1}$
\Longrightarrow Topological duality twist required due to τ variation [Martucci' 14]
Ex: $C \subset B_{2}$ [Haghighat,Murthy,Vafa,Vandoren'15][Lawrie,S-Nameki,TW'16]

$$
\begin{aligned}
& G_{\text {total }} \rightarrow S O(4)_{T} \times S O(1,1)_{L} \times \mathbf{U}(\mathbf{1})_{\mathbf{R}} \times \mathbf{U}(\mathbf{1})_{\mathbf{C}} \times \mathbf{U}(\mathbf{1})_{\mathbf{D}} \\
& (\mathbf{2}, \mathbf{1}, \overline{4})_{1} \quad \rightarrow \quad(\mathbf{2}, \mathbf{1})_{1 ;-1,1,1} \oplus(\mathbf{2}, \mathbf{1})_{-1 ;-1,-1,1} \oplus(\mathbf{1}, \mathbf{2})_{1 ; 1,1,1} \oplus(\mathbf{1}, \mathbf{2})_{-1 ; 1,-1,1} \\
& T_{C}^{\mathrm{twist}}=\frac{1}{2}\left(T_{C}+T_{R}\right), \quad T_{D}^{\mathrm{twist}}=\frac{1}{2}\left(T_{D}+T_{R}\right) \\
& G_{\text {total }} \rightarrow S O(4)_{T} \times S O(1,1)_{L} \times \mathrm{U}(\mathbf{1})_{\mathrm{C}}^{\mathrm{twist}} \times \mathrm{U}(\mathbf{1})_{\mathrm{D}}^{\mathrm{twist}} \\
& (\mathbf{2}, \mathbf{1}, \overline{\mathbf{4}})_{1} \quad \rightarrow \underline{(\mathbf{2}, \mathbf{1})_{1 ; \mathbf{0}, 0}} \oplus(\mathbf{2}, \mathbf{1})_{-1 ;-1,0} \oplus(\mathbf{1}, \mathbf{2})_{1 ; \mathbf{1 , 1}} \oplus(\mathbf{1}, \mathbf{2})_{-1 ; 0,1} \\
& (\mathbf{1}, \mathbf{2}, \mathbf{4})_{-1} \quad \rightarrow \quad \underline{\left.(\mathbf{2}, \mathbf{1})_{1 ; \mathbf{0}, \mathbf{0}} \oplus(\mathbf{2}, \mathbf{1})_{-1 ; 1,0} \oplus(\mathbf{1}, \mathbf{2})_{1 ;-1,-1} \oplus \underline{(\mathbf{1}, \mathbf{2}}\right)_{-1 ; 0,-1} .}
\end{aligned}
$$

$(4,4)$ broken to $(0,4)$ by topological duality twist: chiral theory

F-theory Duality Twists

Applicable to all types of D3-brane strings in F-theory [Lawrie,S-Nameki,TW'16]

Spacetime $\operatorname{dim} d$	8	6	4	2
CY_{n}	2	3	4	5
2d supersymmetry	$(0,8)$	$(0,4)$	$(0,2)$	$(0,2)$

$\mathrm{CY}_{2} \quad S U(4)_{R} \rightarrow S O(6)_{T}$
$\mathrm{CY}_{3} \quad S U(4)_{R} \rightarrow S O(4)_{T} \quad \times \underline{U(1)_{R}}$
$\mathrm{CY}_{4} \quad S U(4)_{R} \rightarrow S O(2)_{T} \times S U(2)_{R} \times \underline{U(1)_{R}}$
$\mathrm{CY}_{5} \quad S U(4)_{R} \rightarrow \quad S U(3)_{R} \times \underline{U(1)_{R}}$

- F-theory on K 3 is an outlier: direct twist of $U(1)_{C}$ with $U(1)_{D}$

Twisted Bulk Spectrum

- $G_{\text {total }}=S O(1,3)_{L} \times S U(4)_{R} \times \mathrm{U}(\mathbf{1})_{\mathrm{D}}$
- $A_{\mu}:(\mathbf{2}, \mathbf{2}, \mathbf{1})_{*} \quad \phi_{i}:(\mathbf{1}, \mathbf{1}, \mathbf{6})_{0} \quad \Psi_{\alpha}^{I}:(\mathbf{2}, \mathbf{1}, \mathbf{4})_{1} \quad \widetilde{\Psi}_{\dot{\alpha} I}:(\mathbf{1}, \mathbf{2}, \overline{\mathbf{4}})_{-1}$

Strategy for $\phi_{i}, \Psi_{\alpha}^{I}, \widetilde{\Psi}_{\dot{\alpha} I}\left(U(1)_{D}\right.$ eigenstates!):

- Decompose $S U(4)_{R} \rightarrow S O(m)_{T} \times S U(k)_{R} \times U(1)_{R}$
- Determine representation under $S U(k)_{R}$ and $U(1)_{C}^{\text {twist }}, U(1)_{D}^{\text {twist }}$
- Deduce transformation of internal component as bundle valued form
- Determine e.o.m/BPS equations and obtain zero mode counting

Example: $C \subset \mathrm{CY}_{4}$ with $(0,2) \mathrm{SUSY}$

$$
\begin{array}{lll}
& S U(2)_{R} \times U(1)_{C}^{\mathrm{twist}} \times U(1)_{D}^{\mathrm{twist}} & \left(q_{C}^{\mathrm{twist}}, q_{D}^{\mathrm{twist}}\right)=(-1,0): \\
\phi_{i}: & \mathbf{1}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{2}_{\frac{1}{2}, \frac{1}{2}} \oplus \mathbf{2}_{-\frac{1}{2},-\frac{1}{2}} & \left(q_{C}^{\mathrm{twist}}, q_{D}^{\mathrm{twist}}\right)=(0,-1): \\
\text { section of } K_{C} \\
\text { section of } \mathcal{L}_{D}
\end{array}
$$

$\Longrightarrow \mathbf{2}_{\frac{1}{2}, \frac{1}{2}}$ section of $N_{C / B_{3}}: h^{0}\left(C, N_{C / B_{3}}\right)$ zero modes in agreement with $\left(q_{C}^{\mathrm{twist}}, q_{D}^{\mathrm{twist}}\right)=\left(-\frac{1}{2},-\frac{1}{2}\right)$ since $K_{C}=\mathcal{L}_{D}^{-1} \otimes \wedge^{2} N_{C / B_{3}}$

Twisted Bulk Spectrum

4d $N=4$ gauge field A_{μ} is not a $U(1)_{D}$ eigenstate

- Wilson line degree of freedom a (complex scalar):
$\sqrt{\tau_{2}} a$ is $U(1)_{D}$ eigenstate: $\sqrt{\tau_{2}} \delta a=-2 i \epsilon_{-} \underbrace{\tilde{\psi}_{+}}_{q_{D}^{\text {tw }}=-1}$
- external gauge field v_{+}and v_{-}no $U(1)_{D}$ eigenstates:

$$
\sqrt{\tau_{2}} \delta v_{-}=2 i(\underbrace{\lambda_{-}}_{q_{D}^{\mathrm{tw}}=1} \tilde{\epsilon}_{-}+\underbrace{\tilde{\lambda}_{-}}_{q_{D}^{\mathrm{tw}}=-1} \epsilon_{-}) \quad \lambda, \tilde{\lambda} \text { : gauginos }
$$

Counting proceeds via gauginos $\lambda_{-}, \tilde{\lambda}_{-}$

String in 6a fron cu?

[Lawrie,Schäfer-Nameki,TW'16]

$\left(q_{C}^{\mathrm{twist}}, q_{D}^{\mathrm{twist}}\right)$	Fermions		Bosons		$(0,4)$	Multiplicity
$\begin{gathered} (1,1) \\ (-1,-1) \end{gathered}$	$\begin{aligned} & (\mathbf{2}, \mathbf{1})_{1} \\ & (\mathbf{2}, \mathbf{1})_{1} \end{aligned}$	$\begin{gathered} \psi_{+} \\ \tilde{\psi}_{+} \end{gathered}$	$\begin{aligned} & (\mathbf{1}, \mathbf{1})_{0},(\mathbf{1}, \mathbf{1})_{0} \\ & (\mathbf{1}, \mathbf{1})_{0},(\mathbf{1}, \mathbf{1})_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{a}, \bar{\sigma} \\ & a, \sigma \end{aligned}$	Hyper	$\begin{aligned} & h^{0}\left(C, K_{C} \otimes \mathcal{L}_{D}\right) \\ = & g-1+c_{1}\left(B_{2}\right) \cdot C \end{aligned}$
$(0,0)$	$\begin{aligned} & (\mathbf{1}, \mathbf{2})_{1} \\ & (\mathbf{1}, \mathbf{2})_{1} \end{aligned}$	$\begin{aligned} & \mu_{+} \\ & \tilde{\mu}_{+} \end{aligned}$	$(2,2){ }_{0}$	φ	Twisted Hyper	$h^{0}(C)=1$
$\begin{gathered} (1,0) \\ (-1,0) \end{gathered}$	$\begin{aligned} & (\mathbf{1}, \mathbf{2})_{-1} \\ & (\mathbf{1}, \mathbf{2})_{-1} \\ & \hline \end{aligned}$	$\begin{aligned} & \tilde{\rho}_{-} \\ & \rho_{-} \end{aligned}$			Fermi	$h^{1}(C)=g$
$\begin{gathered} (0,1) \\ (0,-1) \end{gathered}$	$\begin{aligned} & (\mathbf{2}, \mathbf{1})_{-1} \\ & (\mathbf{2}, \mathbf{1})_{-1} \end{aligned}$	$\begin{aligned} & \lambda_{-} \\ & \tilde{\lambda}_{-} \end{aligned}$	$\begin{gathered} (\mathbf{1}, \mathbf{1})_{2} \\ (\mathbf{1}, \mathbf{1})_{-2} \end{gathered}$	$\begin{aligned} & v_{+} \\ & v_{-} \end{aligned}$	Vector	$h^{1}\left(C, K_{C} \otimes \mathcal{L}_{D}\right)=0$

In agreement with previous analysis in [Haghighat,Murthy,Vafa,Vandoren'15]
Lots of recent work on 6 d instanton strings:
including [del Zotto,Lockhart'16] and refs therein

2d $(0,2)$ from D3 on CY5

[Lawrie,Schäfer-Nameki,TW'16]

Fermions	Bosons	$(0,2)$ Multiplet	Zero-mode Cohomology
μ_{+}	φ	Chiral	$h^{0}\left(C, N_{C / B_{4}}\right)$
$\tilde{\mu}_{+}$	$\bar{\varphi}$	Conjugate Chiral	$h^{0}\left(C, K_{C} \otimes \mathcal{L}_{D}\right)=g-1+c_{1}(B 4) \cdot C$
$\tilde{\psi}_{+}$	a	Chiral	
ψ_{+}	\bar{a}	Conjugate Chiral	h^{\prime}
ρ_{-}	-	Fermi	$h^{1}\left(C, N_{C / B_{4}}\right)=h^{0}\left(C, N_{C / B_{4}}\right)+g-1-c_{1}\left(B_{4}\right) \cdot C$
$\tilde{\rho}_{-}$	-	Conjugate Fermi	
λ_{-}	v_{+}	Vector	
$\tilde{\lambda}_{-}$	v_{-}		$\left.K_{C} \otimes \mathcal{L}_{D}\right)=0$

U(1) Quantum Higgsing

\# massless vector multiplets: $h^{0}\left(C, \mathcal{L}_{D}^{-1}\right)$
$\mathcal{L}_{D}=\left.K_{B}^{-1}\right|_{C}$

1. $C \cap \Delta=0 \longleftrightarrow$ fibration over C is trivial $h^{0}\left(C, \mathcal{L}_{D}^{-1}\right)=h^{0}(C, \mathcal{O})=1 \rightarrow U(1)$ gauge group
2. $C \cap \Delta \neq 0 \leftrightarrow$ fibration over C non-trivial $h^{0}\left(C, \mathcal{L}_{D}^{-1}\right)=0$ since \mathcal{L}_{D}^{-1} is negative $\rightarrow U(1)$ broken
Type IIB: D3 on curve $C_{+} \xrightarrow[\text { action } \sigma]{\stackrel{\text { orientifold }}{\longrightarrow}}$ D3' on curve C_{-}

- if $C_{+} \neq C_{-}: U(1)$ gauge group - irresp. of 7-brane intersection!
- if $C_{+}=C_{-}: U(1)$ broken

Suggests:

- In F-theory: Quantum higgsing of $U(1)$ due to strong coupling effects
- Claim: These are localised along the O7-plane and of same origin responsible for non-pert. splitting of O7-plane

U(1) Quantum Higgsing

Sen limit:

- $\Delta \simeq \epsilon^{2} h^{2} \underbrace{\left(\eta^{2}-h \chi\right)}_{\text {D7-branes }}+\mathcal{O}\left(\epsilon^{3}\right) \quad \epsilon \rightarrow 0: \quad$ O7-plane at $h=0$
- IIB double cover CY $X_{n-1}: \xi^{2}=h \quad \sigma: \xi \rightarrow-\xi$

Consider family of curves C_{δ} for D3-brane (e.g. $\mathrm{n}=3$)

- on base $B_{2}: C_{\delta}: h=p_{1}^{2}+\delta p_{2} \subset B_{2}$
- on double cover $X_{2}: \tilde{C}_{\delta}: \xi^{2}=p_{1}^{2}+\delta p_{2} \subset X_{2}$

Consider limit $\delta \rightarrow 0$ (in Sen limit $\epsilon \rightarrow 0$):

- On $X_{2}: \tilde{C}_{0}=C_{+} \cup C_{-} \quad C_{ \pm}: \xi= \pm p_{1}$ at intersection $C_{+} \cap C_{-}$(on top of O-plane): 3-3' modes $\quad q_{U(1)}=2$
$=$ unHiggsing of $\mathrm{U}(1)$
- On B_{2} : merely affects intersection points with O7-plane:
$\{h=0\} \cap C_{\delta}: \quad\{h=0\} \cap\left\{p_{1}= \pm \sqrt{\delta p_{2}}\right\}$

U(1) Quantum Higgsing

- Perturbative breaking of $U(1)=$ splitting of double-intersection with O7-plane
- Distance of intersection points = order parameter for Higgsing
 (mass for 3-3' strings!)
Finally allow for $\epsilon \neq 0$ (full F-theory)
- Seiberg-Witten quantum splitting of O7-plane \Longrightarrow non-pert. splitting of intersection with D3-brane - even for $\delta=0$
- Distance of int. points: order parameter for non-pert. $U(1)$ Higgsing

Conclusion: [Lawrie,Schafer-Nameki,TW'16]
$\mathrm{U}(1)$ unbroken only if $\delta=0$ (splitting) and in addition $\epsilon=0$
Otherwise monodromy effects around intersection with O7-plane responsible for $\mathrm{U}(1)$ breaking

U(1) Quantum Higgsing

1) Fate of 3-3' strings:

- After quantum Higgsing one chiral multiplet gets absorbed by vector, one multiplet remains as modulus of D3 as part of bulk moduli
- Some of these bulk moduli can localize near O7-plane in perturbative limit [Harvey,Royston'07] [Cvetic, G-Extxebarria,Halverson'11]

2) Further application:

Same mechanism applied to D3-brane instantons explains why no distinction between $O(1)$ and $U(1)$ instanton in F-theory necessary

3-7 strings

Intersection points of C with 7-branes: Extra massless matter
Perturbative analysis:
1 complex chiral fermion per intersection point D3 \cap D7 and no scalar (8 DN directions)

Challenge: Compute the spectrum for non-perturbative models

- D3 \cap 7-br.: $[C] \cdot[\Delta]=12[C] \cdot c_{1}\left(B_{n-1}\right)$ intersection points
- This does not count the number of (independent) Fermi multiplets since not all 7 -branes are of same (p, q)-type

3 ways to deduce correct counting: [Lawrie,Schafer-Nameki,TW'16]

1. by deforming to weak coupling - when possible
2. by anomaly inflow
3. by duality with M5-branes

6d: cf. [Haghighat,Murthy,Vafa,Vandoren'15] see talk by Sakura Schafer-Nameki

3-7 strings - perturbatively

In perturbative limit

$$
\Delta \simeq \epsilon^{2} h^{2} \underbrace{\left(\eta^{2}-h \chi\right)}_{\text {D7-branes }}+\mathcal{O}\left(\epsilon^{3}\right)
$$

- $h=0$: O7-plane
- $[\mathrm{D} 7-$ brane $]=8 c_{1}\left(B_{n-1}\right)$

No independent 3-7 states at intersection with O7-plane

$$
\text { \# of Fermis: } \quad 8 c_{1}\left(B_{n-1}\right) \cdot[C]
$$

Turns out: This is always the correct number of Fermi modes uniquely and universally fixed by gauge and gravitational anomalies along the string

3-7 strings and anomalies

$$
\left(n_{R,+}-n_{R,-}\right) I_{4, R}+\mathcal{I}_{4}=0
$$

- $I_{4, R}$: contribution to anomaly from 2d chiral fermions in repr. R
- \mathcal{I}_{4} : anomaly inflow from bulk CS terms

Anomaly inflow terms:

- For string in $\mathbb{R}^{1, d-1} d \neq 6$: [Lawrie,S-Nameki,TW'16]

$$
\mathcal{I}_{4}=\left(p_{1}(T)+p_{1}(N)\right)\left(-\frac{1}{4} c_{1}\left(B_{n}\right) \cdot C\right)-\sum_{a} \frac{1}{4} \operatorname{Tr} F_{a}^{2}\left(D_{a} \cdot C\right)
$$

- For string in $\mathbb{R}^{1,5}: 2$ extra terms due to [Shimizu,Tachikawa' 16]
- self-duality $-\frac{1}{2}(C \cdot C) \chi_{4}(N)=-\frac{1}{2}(C \cdot C)\left(\frac{1}{2} \operatorname{tr} F_{T, 2}^{2}-\frac{1}{2} \operatorname{tr} F_{T, 1}^{2}\right)$
- $S U(2)_{R}$ symmetry $+\frac{1}{2} \operatorname{tr} F_{I}^{2}$

In all dimensions, normal and tangent bundle anomalies cancel iff $\#$ of $3-7$ Fermis $=8 c_{1}\left(B_{n-1}\right) \cdot[C]$
[Lawrie,S-Nameki,TW'16]

3-7 strings and flavour

Universal flavour term: $\mathcal{I}_{4} \supset-\sum_{a} \frac{1}{4} \operatorname{Tr} F_{a}^{2}\left(D_{a} \cdot C\right)$
a : non-abelian 7-brane stacks $\quad \operatorname{tr}_{\text {fund }} F_{a}^{2}=s_{G_{a}} \operatorname{Tr} F_{a}^{2}$
\checkmark First principle derivation possible for perturbative gauge groups
\checkmark Other cases: s_{G} completely fixed by 6 d anomaly considerations holds for all dim. [Grassi,Morrison'00] [Ohmori,Shimizu,Tachikawa,Yonekura'14]

G	$S U(k)$	$U S p(k)$	$S O(k)$	G_{2}	F_{4}	E_{6}	E_{7}	E_{8}
s_{G}	$1 / 2$	$1 / 2$	1	1	3	3	6	30

$$
\text { Need }:\left(-\frac{1}{2} \operatorname{tr}_{R} F^{2}\right)\left(n_{R,+}-n_{R,-}\right)-\frac{1}{4} \operatorname{Tr} F_{a}^{2}\left(D_{a} \cdot C\right) \stackrel{!}{=} 0
$$

\checkmark works for $\operatorname{SU}(\mathrm{k}) / \operatorname{USP}(\mathrm{k})$ (complex) or $\mathrm{SO}(\mathrm{k}) / G_{2}$ (real) with $R=$ fund \mathbf{X} no solution for $G=E_{6,7,8}, F_{4}$

Flavour group must be broken in the UV due to monodromy effects! Example 6d 'E-string': E_{8} flavour group in IR $\rightarrow \mathrm{SO}(16)$ in UV

2d $(0,2)$ gravity

3-branes integral component of 2d $(0,2)$ from F-theory on 5 -folds
[Schafer-Nameki,TW] [Apruzzi,Hassler,Heckman,Melnikov]'16
\checkmark curve class [C] fixed by D3/M2-tadpole
\checkmark D3-sector crucial for cancellation of gauge/grav anomalies:
Sources for gravitational anomalies:

1. Charged 7-brane modes [Schafer-Nameki,TW][Apruzzi,Hassler,Heckman,Melnikov]'16
2. 2d $(0,2)$ supergravity
3. 3-brane sector
E.g. for smooth Weierstrass model on Y_{5} : [Lawrie,Schafer-Nameki,TW'16
$I_{4}(T)=-\frac{1}{24} p_{1}(T) \cdot\left(-\tau\left(B_{4}\right)+\chi_{1}\left(Y_{5}\right)-2 \chi_{1}\left(B_{4}\right)+24+\mathfrak{a}_{D 3}\right) \equiv 0 \checkmark$
Analysis of CS terms in dual 1d Super-Quantum Mechanics proves:

Gravitational Anomaly
Cancellation

Cancellation of D3/M2
tadpole in F / M-Theory

2d $(0,2)$ gravity

$(0,2)$ Multiplet	IIB Orientifold	F-theory	Origin in IIB/F-theory	SQM Multiplet
Chiral	$h_{+}^{1,1}\left(X_{4}\right)-1$	$h^{1,1}\left(B_{4}\right)-1$	J, C_{4}	$(1,2,1)$
	$h_{-}^{1,1}\left(X_{4}\right)$ $h_{-}^{1,0}(\hat{S})$	$h^{2,1}\left(Y_{5}\right)-h^{2,1}\left(B_{4}\right)$	B_{2}, C_{2} Wilson lines	$(2,2,0)$
	1 $h_{-}^{3,1}\left(X_{4}\right)$ $h_{-}^{3,0}(\hat{S})$	$h^{4,1}\left(Y_{5}\right)$	C_{0}, φ cmplx. str. brane def.	$(2,2,0)$
	$h_{+}^{3,1}\left(X_{4}\right)$	$h^{3,1}\left(B_{4}\right)$	C_{4}	$(0,2,2)$
Fermi	$\tau_{+}\left(X_{4}\right)$	$\tau\left(B_{4}\right)$	$C_{4}($ dualised $)$	$(0,2,2)$
	$h_{+}^{2,1}\left(X_{4}\right)$	$h^{2,1}\left(B_{4}\right)$	-	$(2,2,0)$
	$h_{-}^{2,1}\left(X_{4}\right)$	$h^{3,1}\left(Y_{5}\right)-h^{3,1}\left(B_{4}\right)$	-	$(0,2,2)$
Gravity	$h_{-}^{2,0}(\hat{S})$	1	-	$g_{\mu \nu}, \mathcal{V}$

Conclusions

D3-branes on curve C in F-theory backgrounds define chiral string theories in various dimensions.

Spacetime $\operatorname{dim} d$	8	6	4	2
CY_{n}	2	3	4	5
2d supersymmetry	$(0,8)$	$(0,4)$	$(0,2)$	$(0,2)$

Technical description via topological duality twist:
4d $\mathrm{N}=4 \mathrm{SYM}$ with varying gauge coupling due to $S L(2, \mathbb{Z})$ duality
Next steps include:

- Generalisation to non-abelian D3-brane stacks - possibly via duality to M5-branes cf talk by Sakura Schäfer-Nameki
- Better understanding of mysterious 3-7 string sector possibly similar to [Grassi,Halverson,Ruehle,Shaneson'16]?

