D3-branes, Strings and F-Theory in Various Dimensions

- 1601.02015 (JHEP) with Sakura Schäfer-Nameki
- 1612.05640 with Craig Lawrie and Sakura Schäfer-Nameki
- 1612.06393 with Craig Lawrie and Sakura Schäfer-Nameki

Timo Weigand

CERN and ITP Heidelberg

F-theory and D3-branes

- F-theory geometrises the physics of 7-branes and D(-1)-instantons.
- D3-branes probe this backreacted geometry.
- Relevance of D3-branes in F-theory includes:
- 1) D3 on $\mathbb{R}^{1,3} \times \mathrm{pt}$ $\mathrm{pt} \subset \mathrm{CY}_4$ Spacetime-filling2) D3 on $\mathrm{pt} \times D$ $D \subset B_3 \subset \mathrm{CY}_4$ divisorInstanton3) D3 on $\mathbb{R}^{1,1} \times C$ $C \subset B_{n-1} \subset \mathrm{CY}_n$ curveString
- We will focus on strings from wrapped D3-branes:
 - $C \subset CY_3$: self-dual string in 6d \leftrightarrow relation to 6d SCFTs
 - $C \subset CY_4$: cosmic string in $\mathbb{R}^{1,3}$ codimension-two object
 - $C \subset CY_5$: filling $\mathbb{R}^{1,1}$ and required by tadpoles

Aim:

Microscopic understanding of 2d QFT on string in various dimensions

D3-strings in F-theory

- 1) Extrinsic Motivation:
 - 7-brane background for D3-strings as a means to geometrically engineer (new?) chiral 2d theories and SCFTs
 - Methods to describe gauge theories with varying gauge coupling via topological duality twist [Martucci'14]
 - ⇒ Go beyond topological twist of [Bershadsky, Johansen, Vafa, Sadov'95], [Benini, Bobev'13],...

2) Intrinsic Motivation:

D3-branes are exciting window into non-perturbative dynamics captured by F-theory

- Quantum Higgsing
- Mysterious 3-7 string sector

Outline

- 1) Topological (Duality) Twist on D3-brane on C
- 2) Massless Spectrum for Strings from D3-branes
- 3) Quantum Higgsing via F-theory
- 4) Anomalies and 3-7 Modes
- 5) 2d (0,2) Gravity Sector

The general setup

- F-theory on Y_n with base B_{n-1}
- **D3-brane on** $\mathbb{R}^{1,1} \times C$
- C a curve in base $C \subset B_{n-1}$

This talk: Single D3 with C not contained in discriminant locus Δ

- C is transverse to 7-branes on B_{n-1}
- C intersects 7-branes in isolated points on B_{n-1}

M-theory dual descriptions via T-duality see talk by S. Schäfer-Nameki

- transverse to D3-string on $\mathbb{R}^{1,1}$: M5-brane
- parallel to D3-string on $\mathbb{R}^{1,1}$: M2-brane

This talk: We will describe theory directly in language of F-Theory via topological duality twist [Martucci'14]

Duality bundle

- 4d N = 4 SYM coupling on D3
 - $\tau = \frac{\theta}{2\pi} + i\frac{4\pi}{g^2}$

 $= \frac{\text{F-theory axio-dilaton}}{C_0 + ie^{-\phi}}$

7-brane ⇒
 background

au-variation on $C \subset B_{n-1}$ monodromy around $C \cap$ (7-brane)

• Consistent due to $SL(2,\mathbb{Z})$ duality of N = 4 SYM:

$$\begin{split} \tau &\to \frac{a\tau + b}{c\tau + d} & (F, F_D) \to M_{\mathrm{SL}(2,\mathbb{Z})}(F, F_D) \\ & \mathrm{SYM} \ \mathrm{fields} : \Phi \to e^{iq\alpha} \Phi \quad \mathrm{with} \quad e^{i\alpha} = \frac{c\tau + d}{|c\tau + d|} \\ & q : \ U(1)_D \ \mathrm{charge} \ \mathrm{'bonus} \ \mathrm{symmetry'} \ \ [\mathrm{Intriligator'98]} \ [\mathrm{Kapustin}, \mathrm{Witten'06}] \end{split}$$

- τ -variation on C described by non-trivial $SL(2,\mathbb{Z})$ bundle \mathcal{L}_D
 - connection $\mathcal{A} = \frac{\mathrm{d}\tau_1}{2\tau_2}$ $\tau = \tau_1 + i\tau_2$
 - as holomorphic bundle: $\mathcal{L}_D = K_{B_{n-1}}^{-1}|_C$ [Bianchi,Collinucci,Martucci'11] [Greene,Shapire,Vafa,Yau'89]

F-Theory 2017, Trieste – p.6

Duality Twist

- $G \supset SO(1,3)_L \times SU(4)_R \times U(1)_D$
- Supercharges: $Q_{\alpha I}$: $(\mathbf{2}, \mathbf{1}, \overline{\mathbf{4}})_{\mathbf{1}}$ $\widetilde{Q}^{I}_{\dot{\alpha}}$: $(\mathbf{1}, \mathbf{2}, \mathbf{4})_{-\mathbf{1}}$
- \implies Topological duality twist required due to τ variation [Martucci'14]

Ex: $C \subset B_2$ [Haghighat, Murthy, Vafa, Vandoren'15][Lawrie, S-Nameki, TW'16]

$$G_{\text{total}} \rightarrow SO(4)_T \times SO(1,1)_L \times \mathbf{U}(1)_{\mathbf{R}} \times \mathbf{U}(1)_{\mathbf{C}} \times \mathbf{U}(1)_{\mathbf{D}}$$

 $(\mathbf{2},\mathbf{1},\overline{\mathbf{4}})_{1} \rightarrow (\mathbf{2},\mathbf{1})_{1;-\mathbf{1},\mathbf{1},\mathbf{1}} \oplus (\mathbf{2},\mathbf{1})_{-1;-\mathbf{1},-\mathbf{1},\mathbf{1}} \oplus (\mathbf{1},\mathbf{2})_{1;\mathbf{1},\mathbf{1},\mathbf{1}} \oplus (\mathbf{1},\mathbf{2})_{-1;\mathbf{1},-\mathbf{1},\mathbf{1}}$

$$T_C^{\text{twist}} = \frac{1}{2}(T_C + T_R), \qquad T_D^{\text{twist}} = \frac{1}{2}(T_D + T_R)$$

 $\begin{array}{rcl} G_{\text{total}} & \to & SO(4)_T \times SO(1,1)_L \times \mathbf{U}(1)_{\mathbf{C}}^{\text{twist}} \times \mathbf{U}(1)_{\mathbf{D}}^{\text{twist}} \\ (\mathbf{2},\mathbf{1},\overline{\mathbf{4}})_1 & \to & \underline{(\mathbf{2},\mathbf{1})_{1;\mathbf{0},\mathbf{0}}} \oplus (\mathbf{2},\mathbf{1})_{-1;-1,\mathbf{0}} \oplus (\mathbf{1},\mathbf{2})_{1;1,\mathbf{1}} \oplus \underline{(\mathbf{1},\mathbf{2})_{-1;\mathbf{0},\mathbf{1}}} \\ (\mathbf{1},\mathbf{2},\mathbf{4})_{-1} & \to & \underline{(\mathbf{2},\mathbf{1})_{1;\mathbf{0},\mathbf{0}}} \oplus (\mathbf{2},\mathbf{1})_{-1;1,\mathbf{0}} \oplus (\mathbf{1},\mathbf{2})_{1;-1,-\mathbf{1}} \oplus \underline{(\mathbf{1},\mathbf{2})_{-1;\mathbf{0},-\mathbf{1}}}. \end{array}$

(4,4) broken to (0,4) by topological duality twist: **chiral theory**

F-theory Duality Twists

Applicable to all types of D3-brane strings in F-theory [Lawrie,S-Nameki,TW'16]

Spacetime dim d	8	6	4	2
CY_n	2	3	4	5
2d supersymmetry	(0, 8)	(0, 4)	(0,2)	(0,2)

• F-theory on K3 is an outlier: direct twist of $U(1)_C$ with $U(1)_D$

Twisted Bulk Spectrum

- $G_{\text{total}} = SO(1,3)_L \times SU(4)_R \times \mathbf{U}(1)_{\mathbf{D}}$
- A_{μ} : $(\mathbf{2}, \mathbf{2}, \mathbf{1})_{*} \quad \phi_{i}$: $(\mathbf{1}, \mathbf{1}, \mathbf{6})_{\mathbf{0}} \quad \Psi_{\alpha}^{I}$: $(\mathbf{2}, \mathbf{1}, \mathbf{4})_{\mathbf{1}} \quad \widetilde{\Psi}_{\dot{\alpha}I}$: $(\mathbf{1}, \mathbf{2}, \overline{\mathbf{4}})_{-\mathbf{1}}$

Strategy for ϕ_i , Ψ^I_{α} , $\widetilde{\Psi}_{\dot{\alpha}I}$ ($U(1)_D$ eigenstates!):

- Decompose $SU(4)_R \to SO(m)_T \times SU(k)_R \times U(1)_R$
- Determine representation under $SU(k)_R$ and $U(1)_C^{\mathrm{twist}}$, $U(1)_D^{\mathrm{twist}}$
- Deduce transformation of internal component as bundle valued form
- Determine e.o.m/BPS equations and obtain zero mode counting

Example: $C \subset CY_4$ with (0,2) SUSY

 $SU(2)_R \times U(1)_C^{\text{twist}} \times U(1)_D^{\text{twist}} \qquad (q_C^{\text{twist}}, q_D^{\text{twist}}) = (-1, 0): \text{ section of } K_C$ $\phi_i : \mathbf{1}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{2}_{\frac{1}{2}, \frac{1}{2}} \oplus \mathbf{2}_{-\frac{1}{2}, -\frac{1}{2}} \qquad (q_C^{\text{twist}}, q_D^{\text{twist}}) = (0, -1): \text{ section of } \mathcal{L}_D$

 $\implies \mathbf{2}_{\frac{1}{2},\frac{1}{2}} \text{ section of } N_{C/B_3} \colon h^0(C, N_{C/B_3}) \text{ zero modes}$ in agreement with $(q_C^{\text{twist}}, q_D^{\text{twist}}) = \left(-\frac{1}{2}, -\frac{1}{2}\right)$ since $K_C = \mathcal{L}_D^{-1} \otimes \wedge^2 N_{C/B_3}$

Twisted Bulk Spectrum

4d N = 4 gauge field A_{μ} is not a $U(1)_D$ eigenstate

• Wilson line degree of freedom a (complex scalar):

 $\sqrt{\tau_2}a$ is $U(1)_D$ eigenstate: $\sqrt{\tau_2}\,\delta a = -2i\,\epsilon_-\underbrace{\psi_+}_{q_D^{\text{tw}}=-1}$

• external gauge field v_+ and v_- no $U(1)_D$ eigenstates:

$$\sqrt{\tau_2}\,\delta v_- = 2i(\underbrace{\lambda_-}_{q_D^{\rm tw}=1} \tilde{\epsilon}_- + \underbrace{\tilde{\lambda}_-}_{q_D^{\rm tw}=-1} \epsilon_-) \qquad \lambda, \tilde{\lambda}: \text{ gauginos}$$

Counting proceeds via gauginos λ_- , $\tilde{\lambda}_-$

Strings in 6d from CY3

[Lawrie, Schäfer-Nameki, TW'16]

$(q_C^{twist}, q_D^{twist})$	Fermions		Bosons		(0, 4)	Multiplicity	
(1,1)	$({f 2},{f 1})_1$	ψ_+	$(1,1)_0$, $(1,1)_0$	$ar{a},ar{\sigma}$	Hyper	$h^0(C, K_C \otimes \mathcal{L}_D)$	
(-1, -1)	$\left(2,1 ight) _{1}$	$ ilde{\psi}_+$	$\left(1,1 ight)_{0}$, $\left(1,1 ight)_{0}$	a,σ	пуреі	$= g - 1 + c_1(B_2) \cdot C$	
(0, 0)	$(1,2)_1$	μ_+	(2 , 2)		Twisted	$h^{0}(C) = 1$	
(0,0)	$\left(1,2 ight) _{1}$	$ ilde{\mu}_+$	$(\boldsymbol{z}, \boldsymbol{z})_0$	arphi	Hyper	$m(\mathbf{C}) = \mathbf{I}$	
(1,0)	$({f 1},{f 2})_{-1}$	$\tilde{ ho}_{-}$			Formi	$h^{1}(C) = a$	
(-1,0)	$({f 1},{f 2})_{-1}$	ρ_{-}			I enni	n(C) = g	
(0,1)	$(2,1)_{-1}$	λ_{-}	$(1,1)_2$	v_+	Vector	$h^1(C, K = \otimes (\ell =) = 0$	
(0, -1)	$({f 2},{f 1})_{-1}$	$ ilde{\lambda}$	${\bf (1,1)}_{-2}$	v_{-}	vector	$n (C, K_C \otimes \mathcal{L}_D) = 0$	

In agreement with previous analysis in [Haghighat, Murthy, Vafa, Vandoren'15]

Lots of recent work on 6d instanton strings:

including [del Zotto,Lockhart'16] and refs therein

2d (0,2) from D3 on CY5

[Lawrie, Schäfer-Nameki, TW'16]

Fermions	Bosons	(0,2) Multiplet	Zero-mode Cohomology			
μ_+	arphi	Chiral	$b^0(C, N_{\text{ext}})$			
$ ilde{\mu}_+$	$ar{arphi}$	Conjugate Chiral	n (C, N_C/B_4)			
$ ilde{\psi}_+$	a	Chiral	$h^0(C, K_{\alpha} \otimes C_{\alpha}) = a - 1 + a(B_{\alpha}) \cdot C$			
ψ_+	$ar{a}$	Conjugate Chiral	$n (C, K_C \otimes \mathcal{L}_D) = g - 1 + c_1(D_4) \cdot C$			
ho		Fermi	$b^{1}(C, N_{r+1}) = b^{0}(C, N_{r+1}) + a + 1 + a + (B_{r}) + C$			
ilde ho	—	Conjugate Fermi	$n (C, N_C/B_4) = n (C, N_C/B_4) + g - 1 - c_1(D_4) \cdot C$			
λ_{-}	v_+	Vector	$h^1(C, K_{\alpha} \otimes C_{\alpha}) = 0$			
$ ilde{\lambda}$	v	Vector	$n (C, K_C \otimes \mathcal{L}_D) = 0$			

massless vector multiplets: $h^0(C, \mathcal{L}_D^{-1})$ $\mathcal{L}_D = K_B^{-1}|_C$

- 1. $C \cap \Delta = 0 \iff$ fibration over C is trivial $h^0(C, \mathcal{L}_D^{-1}) = h^0(C, \mathcal{O}) = 1 \rightarrow U(1)$ gauge group
- 2. $C \cap \Delta \neq 0 \leftrightarrow$ fibration over C non-trivial $h^0(C, \mathcal{L}_D^{-1}) = 0$ since \mathcal{L}_D^{-1} is negative $\rightarrow U(1)$ broken

Type IIB: D3 on curve $C_+ \xrightarrow[action \sigma]{\text{orientifold}} D3'$ on curve C_-

- if $C_+ \neq C_-$: U(1) gauge group irresp. of 7-brane intersection!
- if $C_{+} = C_{-}$: U(1) broken

Suggests:

- In F-theory: Quantum higgsing of U(1) due to strong coupling effects
- Claim: These are localised along the O7-plane and of same origin responsible for non-pert. splitting of O7-plane

Sen limit:

•
$$\Delta \simeq \epsilon^2 h^2 \underbrace{(\eta^2 - h\chi)}_{\text{D7-branes}} + \mathcal{O}(\epsilon^3)$$
 $\epsilon \to 0$: O7-plane at $h = 0$

• IIB double cover CY $X_{n-1}: \xi^2 = h$ $\sigma: \xi \to -\xi$

Consider family of curves C_{δ} for D3-brane (e.g. n=3)

• on base
$$B_2$$
: C_δ : $h = p_1^2 + \delta p_2 \subset B_2$

• on double cover X_2 : $ilde{C}_{\delta}$: $\xi^2 = p_1^2 + \delta \, p_2 \, \subset \, X_2$

Consider limit $\delta \to 0$ (in Sen limit $\epsilon \to 0$):

- On X_2 : $\tilde{C}_0 = C_+ \cup C_ C_{\pm}$: $\xi = \pm p_1$ at intersection $C_+ \cap C_-$ (on top of O-plane): 3-3' modes $q_{U(1)} = 2$ = unHiggsing of U(1)
- On B_2 : merely affects intersection points with O7-plane: $\{h = 0\} \cap C_{\delta}: \quad \{h = 0\} \cap \{p_1 = \pm \sqrt{\delta p_2}\}$

- Perturbative breaking of U(1) = splitting of double-intersection with O7-plane
- Distance of intersection points = order parameter for Higgsing (mass for 3-3' strings!)

Finally allow for $\epsilon \neq 0$ (full F-theory)

- Seiberg-Witten quantum splitting of O7-plane \implies non-pert. splitting of intersection with D3-brane even for $\delta = 0$
- Distance of int. points: order parameter for non-pert. $U(1)\ {\rm Higgsing}$

Conclusion: [Lawrie,Schafer-Nameki,TW'16] U(1) unbroken only if $\delta = 0$ (splitting) and in addition $\epsilon = 0$ Otherwise monodromy effects around intersection with O7-plane responsible for U(1) breaking

- 1) Fate of 3-3' strings:
 - After quantum Higgsing one chiral multiplet gets absorbed by vector, one multiplet remains as modulus of D3 as part of bulk moduli
 - Some of these bulk moduli can localize near O7-plane in perturbative limit [Harvey, Royston'07] [Cvetic, G-Extxebarria, Halverson'11]

2) Further application:

Same mechanism applied to D3-brane instantons explains why no distinction between O(1) and U(1) instanton in F-theory necessary

3-7 strings

Intersection points of C with 7-branes: Extra massless matter

Perturbative analysis:

1 complex chiral fermion per intersection point D3 \cap D7 and no scalar (8 DN directions)

Challenge: Compute the spectrum for non-perturbative models

- D3 \cap 7-br.: $[C] \cdot [\Delta] = 12 [C] \cdot c_1(B_{n-1})$ intersection points
- This does <u>not</u> count the number of (independent) Fermi multiplets since not all 7-branes are of same (p,q)-type
- 3 ways to deduce correct counting: [Lawrie, Schafer-Nameki, TW'16]
 - 1. by deforming to weak coupling when possible
 - 2. by anomaly inflow
 - 3. by duality with M5-branes

6d: cf. [Haghighat, Murthy, Vafa, Vandoren'15] see talk by Sakura Schafer-Nameki

3-7 strings - perturbatively

In perturbative limit

$$\Delta \simeq \epsilon^2 h^2 \underbrace{(\eta^2 - h\chi)}_{\text{D7-branes}} + \mathcal{O}(\epsilon^3)$$

- h = 0: 07-plane
- $[D7 brane] = 8c_1(B_{n-1})$

No independent 3-7 states at intersection with O7-plane

of Fermis : $8c_1(B_{n-1}) \cdot [C]$

Turns out: This is always the correct number of Fermi modes uniquely and universally fixed by gauge and gravitational anomalies along the string

3-7 strings and anomalies

$$(n_{R,+} - n_{R,-}) I_{4,R} + \mathcal{I}_4 = 0$$

- $I_{4,R}$: contribution to anomaly from 2d chiral fermions in repr. R
- \mathcal{I}_4 : anomaly inflow from bulk CS terms

Anomaly inflow terms:

- For string in $\mathbb{R}^{1,d-1}$ $d \neq 6$: [Lawrie,S-Nameki,TW'16] $\mathcal{I}_4 = (p_1(T) + p_1(N)) \left(-\frac{1}{4} c_1(B_n) \cdot C\right) - \sum_a \frac{1}{4} \operatorname{Tr} F_a^2 \left(D_a \cdot C\right)$
- For string in $\mathbb{R}^{1,5}$: 2 extra terms due to [Shimizu, Tachikawa'16]
 - self-duality $-\frac{1}{2}(C \cdot C) \chi_4(N) = -\frac{1}{2}(C \cdot C) \left(\frac{1}{2} \text{tr} F_{T,2}^2 \frac{1}{2} \text{tr} F_{T,1}^2\right)$
 - $SU(2)_R$ symmetry $+\frac{1}{2} \text{tr} F_I^2$

In all dimensions, normal and tangent bundle anomalies cancel iff # of 3 - 7 Fermis = $8c_1(B_{n-1}) \cdot [C]$ [Lawrie,S-Nameki,TW'16]

3-7 strings and flavour

Universal flavour term: $\mathcal{I}_4 \supset -\sum_a \frac{1}{4} \operatorname{Tr} F_a^2(D_a \cdot C)$

- a: non-abelian 7-brane stacks $\operatorname{tr}_{\operatorname{fund}} F_a^2 = s_{G_a} \operatorname{Tr} F_a^2$
- \checkmark First principle derivation possible for perturbative gauge groups
- ✓ Other cases: s_G completely fixed by 6d anomaly considerations holds for all dim. [Grassi,Morrison'00] [Ohmori,Shimizu,Tachikawa,Yonekura'14]

G	SU(k)	USp(k)	SO(k)	G_2	F_4	E_6	E_7	E_8
s_G	1/2	1/2	1	1	3	3	6	30

Need :
$$(-\frac{1}{2} \operatorname{tr}_R F^2)(n_{R,+} - n_{R,-}) - \frac{1}{4} \operatorname{Tr} F_a^2(D_a \cdot C) \stackrel{!}{=} 0$$

✓ works for SU(k)/ USP(k) (complex) or SO(k)/ G_2 (real) with R =fund X no solution for $G = E_{6,7,8}, F_4$

Flavour group must be broken in the UV due to monodromy effects! Example 6d 'E-string': E_8 flavour group in IR \rightarrow SO(16) in UV

2d (0,2) gravity

- 3-branes integral component of 2d (0,2) from F-theory on 5-folds
- [Schafer-Nameki,TW] [Apruzzi,Hassler,Heckman,Melnikov]'16
- \checkmark curve class [C] fixed by D3/M2-tadpole
- \checkmark D3-sector crucial for cancellation of gauge/grav anomalies:

Sources for gravitational anomalies:

- 1. Charged 7-brane modes [Schafer-Nameki,TW][Apruzzi,Hassler,Heckman,Melnikov]'16
- 2. 2d (0,2) supergravity
- 3. 3-brane sector

E.g. for smooth Weierstrass model on Y_5 : [Lawrie, Schafer-Nameki, TW'16 $I_4(T) = -\frac{1}{24}p_1(T) \cdot \left(-\tau(B_4) + \chi_1(Y_5) - 2\chi_1(B_4) + 24 + \mathfrak{a}_{D3}\right) \equiv 0 \checkmark$

Analysis of CS terms in dual 1d Super-Quantum Mechanics proves:

Gravitational Anomaly Cancellation ←→ Cancellation of D3/M2 tadpole in F/M-Theory

2d (0,2) gravity

(0,2) Multiplet	IIB Orientifold	F-theory	Origin in IIB/F-theory	SQM Multiplet
Chiral	$h^{1,1}_+(X_4) - 1$	$h^{1,1}(B_4) - 1$	J, C_4	(1, 2, 1)
	$ \begin{array}{c c} h_{-}^{1,1}(X_{4}) \\ h_{-}^{1,0}(\hat{S}) \end{array} $	$h^{2,1}(Y_5) - h^{2,1}(B_4)$	B_2, C_2 Wilson lines	(2, 2, 0)
	$ \begin{array}{c c} 1 \\ h_{-}^{3,1}(X_{4}) \\ h_{-}^{3,0}(\hat{S}) \end{array} $	$h^{4,1}(Y_5)$	C_0, φ cmplx. str. brane def.	(2, 2, 0)
	$h^{3,1}_+(X_4)$	$h^{3,1}(B_4)$	C_4	(0, 2, 2)
Fermi	$\tau_+(X_4)$	$ au(B_4)$	C_4 (dualised)	(0, 2, 2)
	$h_{+}^{2,1}(X_4)$	$h^{2,1}(B_4)$	—	(2, 2, 0)
	$ \begin{array}{c c} h^{2,1}_{-}(X_4) \\ h^{2,0}_{-}(\hat{S}) \end{array} $	$h^{3,1}(Y_5) - h^{3,1}(B_4)$	_	(0, 2, 2)
Gravity	1	1	$g_{\mu u}, {\cal V}$	(1, 2, 1) + 1d gravity

Conclusions

D3-branes on curve C in F-theory backgrounds define chiral string theories in various dimensions.

Spacetime dim d	8	6	4	2
CY_n	2	3	4	5
2d supersymmetry	(0, 8)	(0, 4)	(0,2)	(0,2)

Technical description via topological duality twist:

4d N=4 SYM with varying gauge coupling due to $SL(2,\mathbb{Z})$ duality

Next steps include:

- Generalisation to non-abelian D3-brane stacks possibly via duality to M5-branes cf talk by Sakura Schäfer-Nameki
- Better understanding of mysterious 3-7 string sector possibly similar to [Grassi,Halverson,Ruehle,Shaneson'16]?