F-theory with Q-factorial terminal Singularities and Tjurina's and Milnor's numbers

Antonella Grassi

University of Pennsylvania

F-Theory 2017, Trieste

3

Based on

Arras - AG.- Weigand: arXiv1612.05646, hep-th

G. - Weigand: arXiv, alg-geom/geom-top, to appear.

In the historical papers by Vafa, Morrison-Vafa I, Morrison Vafa II

F-theory is "compactified" on X with:

Example

 $\pi: X o B$ is an elliptic fibration (with section) \leftrightarrow

 $\pi_X^{-1}(p)$ is a smooth elliptic curve E_p (with a marked point), p general in B.

X, smooth, Calabi-Yau

B smooth.

- B

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recently:

- $\pi: X \to B$ is an elliptic fibration (with section), that is :
- $\pi_X^{-1}(p)$ is a smooth elliptic curve E_p (with a marked point) p general in B.

- X, smooth, Calabi-Yau
- B smooth.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

This talk:

X, smooth.

Antonella Grassi (University of Pennsylvania)

Motivation, from Vafa's original paper:

- $\pi: X \to B$ is an elliptic fibration (with section)
- $\pi_X^{-1}(p)$ is a smooth elliptic curve E_p (with a marked point), p general in B.
- X, smooth, Calabi-Yau
- B smooth.
- "Give a wealth of examples"

Math supporting evidence for these working assumptions: (Corollaries of AG. '91; AG '16)

 $\tilde{\pi}: \tilde{X} \to \tilde{B}$ is an elliptic fibration without multiple fibers, \tilde{X} , Calabi-Yau $dim(X) \leq 4$, then:

there is a commutative diagram:

 $\begin{array}{ll} \tilde{X} \longrightarrow X & B(\sim^{bir} \tilde{B}), \text{ smooth if } \dim(X) \leq 3 \\ & & & \downarrow^{\tilde{\pi}} & & \downarrow^{\pi} & X(\sim^{bir} \tilde{X}) \text{ with at most:} \\ & & & \tilde{B} \longrightarrow B & & \mathbb{Q} \text{-factorial terminal singularities} \end{array}$

smooth varieties have at most Q-factorial terminal singularities.

If X, Calabi-Yau has Q-factorial (non-smooth) terminal singularities, then for any resolution Y, K_Y ≠ O_Y.

These are often called: "non-Calabi-Yau resolvable singularities"

7 / 20

It is important to analyze terminal singularities:

X, Calabi-Yau, dim(X) = 3, X is generally smooth, but not always.

X, Calabi-Yau, dim(X) = 4 is <u>NOT</u> generically smooth.

- B

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Few examples, in F-theory literature, where Q-factorial terminal singularities occur:: [Denef, Douglas, Florea, AG, Kachru '05], [Braun,Collinucci,Valandro'14] [Grimm,Kerstan,Palti,TW'11] [Martucci,TW'15], [Braun,Morrison'14], [Morrison,Taylor'14] [Morrison Park Taylor'16] [Mayrhofer,Palti,Till,TW'14] [Cvetič,Klevers,Poretschkin'15] [Anderson,Grimm,Etxebarria,Keitel'14] [Anderson, Gray, Raghuram, Taylor '15] [Font, Garca-Etxebarria, Lüst, Massai, Mayrhofer, '16] . . .

[Arras, AG, Weigand 2016], [AG, Weigand, to appear]:

Physics, $dim(X) \leq 3$, Calabi-Yau:

- ► Claim: Q-factorial (non smooth) terminal singularities ↔ <u>localized</u> uncharged massless hypermultiplets in F-theory
- Implement a quantitative analysis to verify it
- Verify it (anomalies cancellation)

Next: For Fourfolds with $\mathbb Q\text{-}\mathsf{factorial}$ terminal singularities

Math: "A Brieskorn-Grothendieck program"

- ► Semi-simple Lie algebras and some of their representations ↔ geometry of elliptic fibrations and degenerations of fibers,
- "codim 1 " \mathbb{Q} -factorial canonical (non-smooth) singularities \leftrightarrow algebras and some of their representations
- ▶ Q-factorial terminal (non smooth) singularities ↔ Tjurina's numbers, dimensions of versal complex deformations of the singularities
- Implement a quantitative analysis to verify it

Next: For Fourfolds with Q-factorial terminal singularities

・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

SI. From the plyace of string theory. : X smooth, elliptically fikeud 1) with section; dim X=3 X: Calobi-You : C1(X)= o ((Kyn Jx) h°(L') = Ln°(L2)=0, L' «d=1, ..., d=; Physics -i) to each component of E there is an associated lie abzema, gange algema 3 (ii) to Eo there are associated (iii) representations au restriced, i.e. dim 17/295.

With D. Norrison, 2003-2012

Classical Analysis: gauge algebras and their representations \leftrightarrow singular fibers of elliptic fibrations

- ► X smooth
- ➤ X smooth, Calabi-Yau threefold: dimension of complex deformations is h^{2,1}(X)
- ➤ X smooth, Calabi-Yau threefold: dimension of kaheler deformations is h^{1,1}(X)
- $\chi_{top(X)} = \frac{1}{2}(h^{1,1}(X) h^{2,1}(X))$
- $\chi_{top(X)}$ can be computed with any (co)-homology, usual (singular)...

Challenges with singularities:

- (Co)-homology theories do not coincide. In particular:
- The regular singular cohomology does not necessary have a Hodge decomposition
- Poincaré duality might not hold

 $\sim \rightarrow$

- Question: How to compute the dimension of complex deformations $h^{2,1}$, smooth case
- Question: How compute the dimension of kaheler deformations $h^{1,1}$, smooth case
- Question: How to combine them? χ_{top} , smooth case

"Non-Calabi-Yau-resolvabe singularities"

Definition

X has terminal singularities if and only if: for any $f: Y \to X$ resolution, then $K_Y = f^*(K_X) + \sum_k b_k E_k$ with $b_k > 0$ and E_k exceptional divisors

Definition

X is \mathbb{Q} -factorial if any Weil divisor is \mathbb{Q} -Cartier. (X, Toric: every cone in the fan is simplicial)

Example

$$X \subset \mathbb{P}^4$$
 of equation $x_0g_0 + x_1g_1 = 0$ is NOT \mathbb{Q} -factorial

Example

X, singular with $K_X \simeq \mathcal{O}_X$

X has \mathbb{Q} -factorial terminal singularities if, for any resolution Y, $K_Y \neq \mathcal{O}_Y$.

[Arras, AG, Weigand'16], [AG, Weigand]

Stated here for X, Calabi-Yau, \mathbb{Q} -factorial terminal singularities, locally defined by f = 0

- dim Kaheler deformations: computed by b₂(X) as in the smooth case (rank of the Neron-Severi group)
- 2. dim Complex deformations: computed by:

 $-1 + \frac{1}{2} \{ b_3(Y_3) + \sum_{P} (m_P - 2\tau_P) \} + \sum_{P} \tau_P$ where: $m_P = \dim_{\mathbb{C}}(\mathbb{C}[x_i]/\langle \partial f/\partial x_i \rangle)$, is the Milnor number of the singularity

 $\tau_P = \dim_{\mathbb{C}}(\mathbb{C}[x_i]/\langle f, \partial f/\partial x_i \rangle)$, is the Tjurina number of the singularity, dimension of versal deformations of the singularity at *P*.

- 3. localized \leftrightarrow localized massless uncharged hypermultiplets
- 4. Can compute the difference via $\chi_{\textit{top}},$ usual homology

イロト 不得 トイヨト イヨト 二日

Verified for:

Example

1. $m_p = \tau_P = 2$

2.
$$m_p = \tau_p = 1.$$

Antonella Grassi (University of Pennsylvania)

More examples

Checked for several other example: $B = \mathbb{P}^2$, $m = \tau$

(μ_f, μ_g)	(1,1)	(2,1)	(1, 5)	(1,7)
fibres	$\Pi \rightarrow \Pi$	$II \rightarrow IV$	$III \rightarrow I_0^*$	$III \rightarrow I_0^*$
Gauge Group	_		SU(2)	SU(2)
# isolated sing.	17	17	11	11
m _P	2	2	2	4
$\chi_{ m top}$	-506	-506	-434	-412
$h^{1,1}$	2	2	3	3
Cxdef	272	272	231	231
$n_{\rm unch.}^{\rm loc.} = \sum_P m_P$	34	34	22	44
$n_{\rm unch.}^{\rm loc.}$ per locus	2	2	2	4
$n_{ m unch.}^{ m unloc.} = h^{2,1} + 1 - 1/2 \sum_P m_P$	1 + 238	1 + 238	1 + 209	1 + 187
n _{ch.}	0	0	44	44
n _{ch.} per locus	0	0	4	4
irrep	—		2 × 2	2 × 2

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Ingredients: \mathbb{Q} -factorial terminal singularities, on X Calabi-Yau threefold

1.They are classified, they are isolated hypersurface singularities (\leftarrow Reid)

2. They are smoothable to X_t and $b_3(X) - b_3(X_t)$ is computable (\leftarrow Namikawa-Steenbrink)

3. They are rational homology sphere (Example 1), then iff are locally analytic \mathbb{Q} -factorial (\leftarrow Flenner-Kollár) ICH, singular (co)-homology, Deligne MHS, coincide (\leftarrow Saito-McPherson)

4. If not (Example 2), we can reduce to the rational homology sphere case, to prove Poincaré duality and compute χ_{top}

5. Milnor number and Tjurina number coincides in a wealth of examples (weighted hypersurfaces, Saito), resolution of Weierstrass models over \mathbb{P}^2 .

Opportunities with \mathbb{Q} -factorial terminal singularities:

- (Co)-homology theories might not coincide The regular singular cohomology does not necessary have a Hodge decomposition, AND
- ▶ this provides the key to the (physics) interpretation of the singularity
- Poincaré duality does hold
- ► We compute the dimension of complex deformations from b₃: unlocalized part ⊕ localized parts (Tjurina numbers)
- We compute the dimension of kaheler deformations
 b₂

 $\sim \rightarrow$

20 / 21

Other opportunities with \mathbb{Q} -factorial terminal singularities:

• Hold the key to understand other dualities [AG,Halverson, Ruhele, Shaneson '16], [AG,Halverson, Ruhele, Shaneson]

• Points us towards fourfolds with singularities