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Stress relaxation of near-critical gels
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The time-dependent stress relaxation for a Rouse model of a cross-linked polymer melt is completely
determined by the spectrum of eigenvalues of the connectivity matrix. The latter has been computed analyti-
cally for a mean-field distribution of cross-links. It shows a Lifshitz tail for small eigenvalues and all concen-
trations below the percolation threshold, giving rise to a stretched exponential decay of the stress relaxation
function in the sol phase. At the critical point the density of states is finite for small eigenvalues, resulting in
a logarithmic divergence of the viscosity and an algebraic decay of the stress relaxation function. Numerical
diagonalization of the connectivity matrix supports the analytical findings and has furthermore been applied to
cluster statistics corresponding to random bond percolation in two and three dimensions.
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I. INTRODUCTION

The most striking observation in near-critical gels is t
anomalous stress relaxation@1# that precedes the transform
tion of the viscous fluid into an elastic amorphous solid, i
the gelation transition. Here, polymer systems are con
ered, where the viscoelastic behavior is controlled by
concentrationc of cross-links connecting monomers of di
ferent molecules. At a critical concentrationccrit the gelation
transition occurs. Viscoelastic studies by several groups h
revealed the following characteristic features of stress re
ation.~1! In the sol phase, well below the gelation transitio
one observes a stretched exponential decay of the stres
laxation functionx(t);exp2(t/t* )b. ~2! The time scalet*
;e2z diverges as the critical point is approached. Heree
5(ccrit2c)/ccrit denotes the distance from the critical poin
~3! The viscosityh, which is given as the integral over th
stress relaxation function, diverges ash;e2k as the critical
point is approached.~4! At the critical point, stress relaxatio
is algebraic in time:x(t);t2D.

Whereas the stretched exponential decay is characte
of the sol phase and holds for all cross-link concentrati
c,ccrit , the last three observations refer to critical behav
as the gel point is approached. If dynamic scaling ho
these findings can be cast in a scaling ansatz for the s
relaxation functionx(e,t), which depends on time and dis
tance from the critical pointe,

x~c,t !5ez2kg„t/t* ~e!… ~1!

with t* ;e2z. Given a certain distancee from the gel point,
one expects to see a crossover from an algebraic deca
intermediate times to a stretched exponential decay
asymptotically large times. The scaling ansatz impliesD
5(z2k)/z. Dynamic scaling as implied by Eq.~1! is well
confirmed experimentally@2# for the intermediate time re
gime wherex(t) decays like a power law. However, th
values for the exponents scatter considerably. Martinet al.
@3# and Adolf and Martin@2# find D50.760.05 in agreemen
with the valueD50.760.02 of Durandet al. @4#, whereas
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1063-651X/2001/64~2!/021404~19!/$20.00 64 0214
.,
d-
e

ve
x-
,
re-

tic
s

r,
,
ss

at
at

Winter and co-workers@5# observe a wide range of expone
values 0.2<D<0.9, depending on molecular weight and st
ichiometry. The experimental support for a univers
stretched exponential law is weak. Whereas Martinet al.
confirm the stretched exponential decay and quoteb'0.4
@3#, other studies reveal nonuniversal exponentsb. The di-
vergence of the time scalet* ;e2z in the scaling function
was determined in viscoelastic measurements asz53.9
60.2 @3,2# and deduced from static measurements of
shear modulus asz54.060.6 @6#. The experimental values
for k, the critical exponent of the viscosity, vary in the ran
0.7<k<1.4. The origin of the scatter in the experimen
data is not clear. One possible explanation is the size of
critical region, which is known to depend on the degree
polymerization. Hence experiments with different samp
have to cope with different sizes of the critical region a
possibly strong crossover effects.

In this paper we study the simplest dynamic mode
Rouse dynamics—in the presence of a time-dependent s
flow by means of analytical calculations and numerical sim
lations. Within this model, the frequency-dependent str
relaxation is completely determined by the spectral prop
ties of the connectivity matrixG, which specifies which
monomers are cross-linked. As a function of the total co
centration of cross-linksc, one observes in general a perc
lation transition at a critical concentrationccrit , such that for
c,ccrit no macroscopic clusters of connected particles ex
whereas forc.ccrit the system percolates. In the context
gelation the fraction of sites in the macroscopic cluster
been identified with the gel fraction and the percolation tra
sition has been shown to mark the onset of solidification@7#.

The connectivity matrixG is a positive semidefinite, ran
dom matrix, which has been studied in various contexts, e
diluted ferromagnets, diffusion in sparsely connected spa
@8#, anomalous relaxation in glassy systems, and localiza
@9#. In all cases the system consists ofN vertices~monomers
in the context of gelation! which are connected bycN edges
~cross-links!. A given realization of the connectivity matrix
can be decomposed into connected components or clus
Each cluster has one zero eigenvalue that describes the
fusive motion of the center of mass of the cluster. The
maining nonzero eigenvalues determine the stress relaxa
function and are discussed in this paper. In the simplest c
©2001 The American Physical Society04-1
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~mean field! one chooses the edges independently out of
possibleN(N21)/2 edges. The density of eigenvalues c
be computed analytically for the above simple distributi
and has been discussed in Refs.@8,9# in the percolating re-
gime, i.e., c>ccrit . In this paper we focus on the rang
c<ccrit , which corresponds to the sol phase and the crit
point. For cross-links of unit strength the spectrum ofG is
shown to consist ofd functions only, whereas it is smoot
for fluctuating cross-link strength. In both cases the spect
goes to zero for small eigenvalues as a Lifshitz singula
for all c,ccrit . The spectrum determines the time-depend
stress relaxation functionx(t). All characteristic features o
x(t) as discussed in the first paragraph above are reprod
by the mean-field model. The stretched exponential decay
long times can be traced back to the Lifshitz singularity
the spectrum for small eigenvalues. At the critical point,
spectrum approaches a finite value for small eigenvalu
giving rise to a logarithmic divergence of the static she
viscosity in agreement with previous studies. In mean-fi
theory the exponents are found to beb51/3,D51, and
z53. These results have been confirmed by numerical dia
nalization of the connectivity matrixG.

The last approach can be extended to finite-dimensio
connectivities, corresponding to two- and three-dimensio
percolation. The stress relaxation function is found to de
algebraically at the critical point, i.e.,x(t);t2D with
D'0.74 (d52) andD'0.83 (d53). In the sol phase one
observes a crossover from algebraic decay at intermed
times to stretched exponential decay at long times. The
merically determined spectra can also be used to compute
static shear viscosity. We find for the critical expone
k'1.19 (d52) and k50.75 (d53). These values are in
reasonable agreement with a scaling relation@10# based on
an exact correspondence between the viscosity and the r
tance of a random resistor network. Using high precis
data@11,12# for the conductivity exponent of the latter, on
obtainsk'1.17 (d52) andk'0.71 (d53).

The paper is organized as follows. In the following se
tion ~Sec. II! we introduce the dynamic model and the o
servables that we want to discuss and that can be relate
the spectrum of eigenvalues of the connectivity matrix.
Sec. III we present the analytical calculations for the me
field distribution of cross-links. We briefly review the der
vation of a self-consistent equation for the spectrum, wh
was previously given by Bray and Rodgers@8#. We then go
on to discuss the appearance of Lifshitz tails for small eig
values. For cross-links of unit strength the spectrum is sho
to consist of a countable set ofd peaks. We present an an
lytical scheme to systematically compute the spectrum
iteration. We also consider cross-links of fluctuating streng
for which the spectrum is continuous and can be obtained
standard numerical means from the self-consistent inte
equation. In Sec. IV we present results from a numer
diagonalization of random connectivity matrices. We fi
compute the spectrum for a mean-field distribution of cro
links and compare it to the analytical results. Next, clus
distributions of random bond percolation in two and thr
dimensions are considered. Data for the stress relaxa
function are presented as well as finite-size scaling plots
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the static shear viscosity. We summarize our results in Sec
Some detailed calculations have been deferred to App
dixes.

Our paper is an extension of previous work, in which w
discussed the static shear viscosity@10,13# and self-diffusion
@14# in the sol phase as well as at the gelation transiti
There it was shown that the long time limit of the incohere
scattering function is determined by the zero eigenvalue
the connectivity matrix, and the static shear viscosity is
termined by the trace of the Moore-Penrose inverse of
connectivity matrix. Here we focus on thefull spectrum of
eigenvalues, which also determines the decay of the st
relaxation atfinite times.

II. MODEL AND OBSERVABLES

We consider a system ofN identical Brownian particles,
each characterized by its time-dependent position ve
Ri(t) ( i 51, . . . ,N) in d-dimensional space of volumeV,
i.e., with densityr5N/V. M permanent cross-links are in
troduced between randomly chosen pairs of particles (i e ,i e8),
resulting in a cross-link concentrationc5M /N. These cross-
links are modeled by a harmonic potential

Uª

d

2a2 (
e51

M

le~Ri e
2Ri

e8
!2, ~2!

whose overall strength is controlled by the parametera.0.
We use units of energy such thatkBT51 and allow for fluc-
tuations in the strength of cross-links by introducing the p
rameterle . Cross-links of uniform strength correspond to a
le51. In general each cross-linke is assigned independentl
a random strengthle according to the distributionp(l). The
connectivity of the particles is specified by the connectiv
matrix

G i i 85 (
e51

M

le~d i i e
2d i i

e8
!~d i 8 i e

2d i 8 i
e8
!, ~3!

in terms of which the potential reads U
5(d/2a2)( i ,i 851

N G i i 8Ri•Ri 8 . As usuald i j denotes the Kro-
necker symbol, i.e.,d i j 51 for i 5 j and zero otherwise.

We consider purely relaxational dynamics in an externa
applied space- and time-dependent velocity fieldv ext

a (r ,t):

] tRi
a~ t !52

1

z

]U

]Ri
a

~ t !1vext
a ~Ri~ t !,t !1j i

a~ t !. ~4!

Here, Greek indices indicate Cartesian coordinatesa
5x,y,z, . . . , and wewill always consider a flow field in the
x direction, increasing linearly withy, i.e.,

vext
a ~r ,t !5da,xk~ t !r y , ~5!

with a time-dependent shear ratek(t). The noisej has zero
mean and covariancê j i

a(t) j i 8
b (t8)&52z21 da,b d i ,i 8d(t

2t8), whered(t) is the Diracd function. Here, the bracke
^•••& indicates the average over the realizations of
4-2
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STRESS RELAXATION OF NEAR-CRITICAL GELS PHYSICAL REVIEW E64 021404
Gaussian noisej. The relaxation constant is denoted byz.
The probability distribution of cross-link configurationsG
5$ i e ,i e8%e51

M as well as the probability distribution of cros
link strengths will be specified later.

In Ref. @10# we computed the shear viscosity in the s
phase for~macro!molecular units of arbitrary internal con
nectivity. It was shown that the dependence on the cross-
concentration and in particular the critical behavior near
gelation threshold are the same for all~macro!molecular
units, as long as we consider identical units with a fin
degree of polymerization. We expect the same universal
havior for stress relaxation on long time scales, which
much larger than the longest internal time scale of a sin
~macro!molecule. Hence we specialize to the simplest un
namely, Brownian particles.

A. Relaxation of shear stress

We aim at the computation of the intrinsic shear str
sab(t) as a function of the shear ratek(t). For the simple
shear flow~5!, a linear response relation

sxy~ t !5E
2`

t

dtx~ t2t!k~t! ~6!

is valid for arbitrary strengths of the shear ratek(t). The
linear response or shear relaxation functionx(t) is given in
terms of the connectivity matrix as explained in detail in R
@13#,

x~ t !5
r

N (
i 51

N S @12E0~G!#expH 2
2dt

za2
G~G!J D

i i

5:
r

N
TrS @12E0~G!#expH 2

2dt

za2
G~G!J D . ~7!

The matrix E0 denotes the projector onto the subspace
zero eigenvalues ofG ~see Ref.@10#!. For a time-independen
shear ratek(t)5k, the stress tensor is time independent a
related to the shear rates5rhk via the static shear viscos
ity, given by Ref.@10#,

h5
za2

2dN
Tr

12E0~G!

G~G!
. ~8!

B. Self-diffusion

To discuss self-diffusion we set the externally applied
locity field to zero and focus on the incoherent scatter
function

S~q,t !ª lim
T→`

K 1

N (
i 51

N

exp$ iq•@Ri~ t1T!2Ri~T!#%L ~9!

and the squared time delayed displacement
02140
l

k
e

e-
e
le
,

s

.

f

d

-
g

C~ t !ª lim
T→`

K 1

N (
i 51

N

@Ri~ t1T!2Ri~T!#2L . ~10!

We note thatRi(t1T)2Ri(t) is a Gaussian Markov pro
cess whose distribution in the limitT→` is characterized by
a vanishing mean and the covariance function

Gii 8~ t !ª lim
T→`

^@Ri~ t1T!2Ri~T!#•@Ri 8~ t1T!2Ri 8~T!#&

5
1

zE0

t

dtS expH 2
2dt

za2
GJ D

i i 8

. ~11!

Performing the integral in Eq.~11! leads to

Gii 8~ t !5
2

z F za2

2d

12E0

G S 12expH 2
2dt

za2
GJ D 1tE0G

i i 8

.

~12!

The matrixG is non-negative by inspection@see Eq.~2!#, as
it should be to ensure relaxation to equilibrium. The scat
ing function as well as the time delayed displacement can
expressed in terms ofGii 8(t) via

S~q,t !5
1

N (
i 51

N

exp$2q2Gii ~ t !% ~13!

and

C~ t !5
1

N (
i 51

N

Gii ~ t !. ~14!

C. Density of eigenvalues

All dynamic quantities of interest have been expressed
terms of G. Accordingly, once we know the eigenvalue
$g i% i 51

N and eigenvectors of this matrix, we can compu
dynamic observables for arbitrary times. In the following, w
shall discuss the density of eigenvalues

D tot~g!5 lim
N→`

1

N (
i 51

N

d~g2g i !5 lim
N→`

1

N
Tr d~g2G!

~15!

for several cross-link distributions. Here the overbar deno
the average over cross-link realizations. If one splits off
zero eigenvalues,D tot(g) can be written as

D tot~g!5T0~c!d~g!1@12T0~c!#D~g!, ~16!

whereD(g) is normalized to 1 and contains only the no
zero eigenvalues. If we group the particles into clusters,
eigenspace of modes with zero eigenvalues correspond
vectors that are constant within one cluster@14#. In other
words, there is one zero eigenvalue for each cluster and
dimension of the null space is just the number of clust
Ncl . The weight of zero eigenvalues is simply given by t
density of clusters, i.e.,T0(c)5Ncl /N.
4-3
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BRODERIX, ASPELMEIER, HARTMANN, AND ZIPPELIUS PHYSICAL REVIEW E64 021404
We restrict ourselves to the density of eigenvalues and
not attempt to compute eigenvectors, which is in gene
more difficult. Hence, we can compute only observables
can be written as (1/N)( i 51

N @ f (G)# i i , wheref is an arbitrary
function of G. The incoherent scattering function is not
this form@Eq. ~13!#, whereas the stress relaxation function

x~ t !5@12T0~c!#rE
0

`

dgD~g!expH 2
2dt

za2
gJ . ~17!

The zero eigenvalues are not to be included in the inte
tion, due to the term 12E0 in Eq. ~7!. Analogously, the
averaged viscosity is given by

h̄5@12T0~c!#
za2

2d E0

`

dg
D~g!

g
. ~18!

In the same way, the disorder averaged, time delayed
placement is determined by

C~ t !5@12T0~c!#
a2

d E
0

`

dg
D~g!

g S 12expH 2
2dt

za2
gJ D

1T0~c!
2t

z
. ~19!

It can also be expressed as an integral over the ti
dependent response function,

C~ t !5
2

zrE0

t

dtx~t!1T0~c!
2t

z
. ~20!

III. MEAN FIELD THEORY

We consider first the simplest distribution of cross-link
which ignores all correlations between cross-links, i.e.,
cross-links are chosen independently of each other and
pair (i e ,i e8) of particle indices is realized with equal prob
ability. As shown in Ref.@15# the particle clusters exhibit th
analog of a percolation transition at a critical cross-link co
centrationccrit51/2. Below this concentration there is n
macroscopic cluster and almost all finite clusters are tre
The average number of tree clustersTn with n particles is
given in the macroscopic limit by

lim
N→`

Tn

N
5tn5

nn22~2ce22c!n

2cn!
. ~21!

In particular the total number of clusters per particle is

T0~c!512c. ~22!

These results are independent of the distribution of cross-
strengths,p(l).

To compute the density of eigenvalues we introduce
resolvent
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G~V!5 lim
N→`

1

N
Tr

1

G2V
~23!

for complex argumentV5g1 i e,e.0. In the limit e→0,
we recover the spectrum from the imaginary part of the
solvent according to

D tot~g!5
1

p
lim
e↓0

Im G~g1 i e!. ~24!

It can be inferred from Eq.~15! that, conversely,D tot(g)
determinesG(V) via

G~V!5E
2`

`

dg
D tot~g!

g2V
. ~25!

A. Disorder average by replicas

Bray and Rodgers@8# have shown how to reduce the com
putation ofD tot(g) for cross-links of unit strength~i.e., all
le51) to the solution of a nonlinear integral equation. Th
derivation is easily generalized to cross-links of strengthl
that fluctuates according to a given distributionp(l). We
restrict ourselves to distributionsp(l) such that

E
0

`dl

l
p~l!,` ~26!

holds. It will be shown below@see Eq.~37!# that this condi-
tion is necessary to ensure a finite viscosity in the sol pha
Following Bray and Rodgers we introduce a generating fu
tion

Z~V!5E
RNS )i 51

N
df i

A2p
D expS i

2 (
i , j

f if j~Vd i j 2G i j ! D ,

~27!

which determines the resolvent, according to

G~V!5 lim
N→`

2

N

] ln Z

]V
. ~28!

The average over the disorder is performed with the rep
trick, resulting in

Zn5E
RNS )i 51

N

)
a51

n df i
a

A2p
D expS i

2
V(

i 51

N

f̂ if̂ i

1
c

NE0

`

dlp~l! (
i , j 51

N

e2 il(f̂ i2f̂ j )
2/22cND . ~29!

We assume that the connectivity is intensive, lim
N→`

(c/N)

50, and have introduced the notationf̂ i5(f i
1 ,f i

2 , . . . ,
f i

n) for n-times-replicated variables. In the next step o
decouples different sites as shown in Ref.@8# and performs a
saddle-point approximation for largeN. This gives rise to a
self-consistent equation for a functiongV( x̂),
4-4
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gV~ x̂!52cE
0

`

dlp~l!
E dŷe[ iV ŷ212gV( ŷ)2 il( ŷ2 x̂)2]/2

E dŷe[ iV ŷ212gV( ŷ)]/2

~30!

which in turn determines the resolvent according to

G~V!5 lim
n→0

i

n

E dx̂x̂2e[ iV x̂2/21gV( x̂)]

E dx̂e[ iV x̂2/21gV( x̂)]

. ~31!

In the last step of the calculation one assumes a rep
symmetric solution for the saddle-point equation:

gV~ x̂!5gV~r! with r5A(
a

xa
2. ~32!

The limit n→0 can then be performed resulting in the fo
lowing nonlinear integral equation forgV(r) @cf. Eqs.
~16,17! in Ref. @8##:

gV~r!52cE
0

`

dl p~l!expH 2
il

2
r2J

12ic e22cE
0

`

dl p~l!E
0

`

dx lrI 1~ ilrx!

3expH 2
il

2
~r21x2!1

iV

2
x21gV~x!J ~33!

with gV(0)52c. Here I n(z) are the modified Bessel func
tions of the first kind. The solution of Eq.~33! yields the
resolvent

G~V!52E
0

`dl

l
p~l!1

i

2cE0

`

dr rgV~r! ~34!

and the density of eigenvalues

D tot~g!5
1

2cp
lim
e→0

ImH i E
0

`

drrgg1 i e~r!J . ~35!

B. Moments and Lifshitz tails

If all inverse momentsMn of the density of nonzero ei
genvaluesMnª*0

`dgg2nD(g), nPN, exist, one can derive
the following asymptotic expansion of the resolvent:

G~V!5
c21

V
1

2dh

za2
1c(

n51

`

VnMn11 ~36!

by expanding the denominator in Eq.~25! in a geometric
series. As we show in Appendix A, the lowest moments
given explicitly by
02140
a-

e

M15
1

4c F lnS 1

122cD22cG E
0

`dl

l
p~l!5

2dh

za2
~37!

and

M252
~5P224P1

2!

240c2
lnS 1

122cD2
8c326c225c11

30c~122c!3
P1

2

2
4c223c21

24c~122c!2
P2 ~38!

with Pnª*0
`dll2n p(l). We are interested in the small e

genvalues that are due to the geometry of the clusters and
due to the appearance of weak links. Hence we confine
selves to distributions such that weak cross-links are unlik
to occur. More precisely we require

lim
l↓0

lnu ln p~l!u
u ln lu

.
1

2
. ~39!

The divergence of the moments,M1 and M2, suggests a
Lifshitz tail of the density of states of the form

D~g!}expH 2S g0~122c!3

g D kJ , g ↓ 0, c, 1
2 , ~40!

since for positivek this ansatz implies for the inverse mo
ments

Mn}~122c!23(n21), c↑ 1
2 . ~41!

Bray and Rodgers have given a heuristic argument in fa
of the ansatz~40! with k51/2. They argue that out of al
clusters for givenn the linear one has the smallest eige
value, namely,gmin5g0n22. There is just one linear cluste
for given n, so that its contribution to the spectrum is

D lin5
1

2c (
n

~2ce(22c)!ndS g2
g0

n2D ;e2Ag0 /g. ~42!

Arbitrary finite clusters may be attached to the chain witho
altering the dependence of the smallest eigenvalue on
length of the chain. If a finite cluster of massmi is attached
to site i of the linear chain, the smallest eigenvalue isgmin
5g0 /min

2. Replacing

mi;m̄5

(
n

ntn

(
n

tn

5
1

122c
~43!

leads togmin5g0(122c)/n2. The number of clusters con
tributing to D(g) for small g is much larger if attachment
are taken into account: The probability of finding a chain
lengthn, regardless of attachments, is given by (2c)n. Hence
the density of eigenvalues is estimated as
4-5
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D lin5
1

2c (
n

~2c!ndS g2
g0~122c!

n2 D
;expH 2S g0~122c!3

g D 1/2J . ~44!

Here, we have expanded ln(2c);2c21 for c sufficiently
close to its critical valueccrit51/2 to obtain the Lifshitz tail
near criticality. In Appendix A 3 we derive rigorous upp
and lower bounds forD(g), which prove thatD(g) has
indeed a Lifshitz tail of the formD(g);exp@2Ah(c)/g#.
We are unable to derive the dependence ofh(c) on cross-
link concentrationc, which is, however, suggested by th
lowest order moments~38! and ~74!.

In the following two subsections we shall discuss tw
special choices forp(l). In the first case all cross-links ar
of unit strength, giving rise to a point spectrum. In the s
ond case the strength of the cross-links fluctuates accor
to p(l)5exp(21/l)/l2. The integral equation~33! simpli-
fies considerably for this distribution and allows for a so
tion by iteration.

C. Exact solution of the integral equation for uniform cross-
link strengths

For cross-links of unit strength, the integral equation~33!
reduces to Eq.~16! in Ref. @8#,

gV~r!52c expS 2
i

2
r2D H 11 ie22cE

0

`

dx rI1~ irx!

3expS i ~V21!

2
x21gV~x! D J

52c expS 2
i

2
r2D H 122c e22cE

0

`

dx J1~x!

3expF i

2
~V21!

x2

r2
1gVS x

r D G J . ~45!

The second equality follows from a substitutionx→rx and
from the basic relation between the Bessel functions of
first kind Jn and the modified Bessel functionsI n , in particu-
lar, I 1(x)52 iJ1( ix).

To get some feeling for the spectrum of eigenvalues,
first consider the case of smallc. We then have predomi
nantly small clusters, i.e., single particles, dimers, trime
etc. The connectivity matrix of a dimer has eigenvaluesl1
50,l252. A linear chain of three particles has eigenvalu
$0,1,3%, a linear chain of four particles has eigenvalu
$0,2,21A2,22A2%, and a star with three legs has eigenv
ues$0,1,4%. These are the only trees up toO(c3). Hence in
this order the spectrum consists ofd functions at the above
eigenvalues, with each cluster contributing to the weight
the d functions according to its frequency of occurrenc
Next we show thatd functions in the spectrum correspond
Gaussian functionsgV(r). The ansatz
02140
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ng
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e

e
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.

gV~r!52ca exp@2 iz~V!r2/2#, ~46!

where z5z(V) is an arbitrary function ofV5g1 i e with
Im$z%,0 for e.0, leads toG(V)5211a/z. In the limit
Im$z%→0 each zerog i of Re$z(g i)%50 gives rise to ad
function in the spectrum,

D tot~g!5a(
i

d~g2g i !

u]z/]g~g i !u
. ~47!

Next, we construct an approximation to the integral eq
tion ~45! by successive iteration. We start with

g0
V~r!ª2c. ~48!

The first step of the iteration gives

g1
V~r!52c expS 2

i

2
r2D H 12e22cE

0

`

dx J1~x!

3expF i

2
~V21!

x2

r2
1g0

VS x

r D G J ~49!

52c expS 2
i

2

V

V21
r2D ~50!

since the integral on the right-hand side can be calcula
exactly @16#. The spectrum consists of ad function at g
50, D1(g)5d(g). The next step of the iteration gives

g2
V~r!52c expS 2

i

2
r2D H 12e22cE

0

`

dx J1~x!

3expF i

2
~V21!

x2

r2
1g1

VS x

r D G J ~51!

52c expS 2
i

2
r2D H 12e22cE

0

`

dx J1~x!

3expS i

2
~V21!

x2

r2D (
k50

`
~2c!k

k!

3expS 2
i

2

kV

V21

x2

r2D J ~52!

by Taylor expansion of the exponential ofg1
V(x/r). Again,

the integrals appearing in Eq.~52! can be computed exactly
yielding

g2
V~r!52c(

k50

`

ak
(2) expS 2

i

2
zk

(2)r2D ~53!

ak
(2)
ªe22c

~2c!k

k!
, zk

(2)
ªS 11

1

V212kV/~V21! D .

~54!
4-6
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Note that (k50
` ak

(2)51. In this iteration, the spectrum i
given by

D2~g!5
12e22c

2c
d~g!1 (

k52

`

e22c
~2c!k21

k~k22!!
d~g2k!.

~55!

Next, we consider a general ansatz forgi
V of the form

gi
V~r!52c(

k50

L

ak
( i ) expH 2

i

2
zk

( i )r2J , ~56!

with (k50
` ak

( i )51. L is an arbitrary positive integer and wi
be allowed to tend tò below. We insert the ansatz~56! into
Eq. ~45! and use a similar Taylor expansion as above
obtain

gi 11
V ~r!52ce22c (

l 050

`

••• (
l L50

` S )
k50

L
~2cak

( i )! l k

l k!
D

3expH 2
i

2 S 11
1

V212 (
k50

`

l kzk
( i )D r2J .

~57!

When we now letL→`, we get the expression

gi 11
V ~r!52c (

$( l k)%
a( l k)

( i 11) expS 2
i

2
z( l k)

( i 11)r2D ~58!

with

a( l k)
( i 11)5e22c)

k50

`
~2cak

( i )! l k

l k!
~59!

and

z( l k)
( i 11)511

1

V212 (
k50

`

l kzk
( i )

. ~60!

We use the notation (l k) to denote a whole sequence of no
negative integers, whilel k ~without parentheses! denotes the
kth element of the sequence. Out of all possible such
quences we only need those with afinite number of nonzero
elements. This is becauseak

( i )→0 as k→`, and thus
)k50

` (2cak
( i )) l k/ l k! 50 if there were infinitely many nonzer

elements in (l k). The set of all sequences with a finite num
ber of nonzero elements is denoted by$( l k)%. The summation
in Eq. ~58! thus goes over a countable set and theref
gi 11

V (r) is of the same functional form asgi
V(r). It is easy to

see that($( l k)%a( l k)
( i 11)51 holds also for the next iteration.

Sinceg2
V(r) is an expression of the form of Eq.~56!, it

follows by induction that allgi
V(r), i>2, are of the same
02140
o

e-

e

form. This observation enables us to write downfix-point
equations for the coefficientsa and the exponential prefac
tors z:

a( l k)
( i 11)5ak

( i ) and z( l k)
( i 11)5zk

( i ) . ~61!

As shown in Appendix B, these equations can be solve
the indices on the left- and right-hand sides are matched
mapping the sequence (l k) that appears as index on the lef
hand side onto a simple numbern5(kl kM

k with some posi-
tive integer M. Afterwards, M is taken to infinity. In the
process, a new structure of the coefficientsa andz emerges:
each pair of coefficients (ai ,zi) falls into one of infinitely
many ‘‘classes’’ of increasing complexity. The first thre
classes are given by the following expressions~the upper
index denotes the class!; the general form can be found i
Appendix B:

a0
05e22c, z0

05
V

V21
, ~62!

an
15e22c

~2ca0
0!n

n!
, zn

15
V2nz0

0

V212nz0
0

, ~63!

a( l k)
2 5e22c)

k50

`
~2cak

1! l k

l k!
, z( l k)

2 5

V2 (
k50

`

l kzk
1

V212 (
k50

`

l kzk
1

.

~64!

Note that the expression for a higher class automatically c
tains all of the lower classes as well if the lower-cla
expressions are recursively inserted, e.g.,a1,0,0, . . .

2

5e22c(2ca0
1)1/1!5a1

1 . This remains true in the genera
case. For higher classes, the indices become more com
cated, e.g., for class 3 it is necessary to use (l (ki )

) as index on
the left hand side. As a shorthand, however, it is conven
to use the notation (l k) or just k even for the higher classes
It is then understood thatk itself may stand for a more com
plicated object like a nested sequence. See Appendix B
details.

We mention the result thatsm, the sum over alla from
classes 0 tom, is given by

sm
ª (

$( l k)%
a( l k)

m 5e22c)
k

e2cak
m21

5exp$22c~12sm21!%,

~65!

and

s05e22c ~66!

As long as c, 1
2 , the corresponding fix-point equations

5e22c(12s) has a stable fixpoint ats51, which implies
limm→`sm51, as it should be. The quantity 12sm is there-
fore a measure for the quality of an approximation that o
goes up to classm. We can conclude that for smallc only a
few classes are sufficient whereas forc close to1

2 consider-
4-7
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ably more are needed. Forc. 1
2 , the fix point becomes un

stable, indicating that the iteration no longer converges to
full solution of the integral equation due to the appearance
the infinite cluster.

Implications for the density of states

Making use of the solution just constructed, the resolv
can be written as

G~V!5211 lim
m→`

(
k

ak
m

zk
m

. ~67!

Here, inclusion ofa’s andz’s from classes lower thanm in
ak

m andzk
m has been implied as explained above. Analogo

to Eq. ~47!, this results in the exact density of states

D tot~g!5 lim
m→`

(
k

ak
m(

i

d~g2gki
m!

u]zk
m/]g~gki

m!u
, ~68!

that is, a sum ofd peaks located at the rootsgki
m of the

respectivezk
m(g) with weight factorsak

mu(]zk
m/]g)(gki

m)u21.
It can be proved with Cauchy’s integration theorem appl
to (z( l k)

m )21 and Eq.~64! or the more general expression fro

Appendix B that( i u(]zk
m/]g)(gki

m)u2151 holds for every
zk

m . This property guarantees that the total weight of
peaks in the spectrum is 1~recall that the sum of alla’s is
also 1!. There is no continuous part of the spectrum, but t
would change forc. 1

2 due to the appearance of an infini
cluster.

It is impossible to find the roots of allzm but classes 0 and
1 can be solved exactly. We deduce from Eq.~62! that the
roots of zn

1 are located atgn,150 and gn,25n11. The
weight factors are easily computed as 1/(n11) for the peak
at 0 andn/(n11) for the peak atn11. The density of ei-
genvalues including class 0 and 1 then reads

D tot
1 ~g!5

e2ce22c
21

2c
d~g!1 (

k52

`
~2ce22c!k

2ck~k22!!
d~g2k!.

~69!

Note that this is different from the result of the second ite
tion, Eq. ~55!, although it contains the same peaks.

Another consequence of the exact solution of the integ
equation is that the density of states doesnot show scaling
behavior with respect toc, i.e., it cannot be written in the
form D tot(g); f „g/g* (c)… with some typicalg* (c). This
follows from the fact that the positions of the peaks are giv
by the roots of thez’s, which are independent ofc, and only
the weights of the peaks depend onc. This can obviously
never result in an exact scaling form: if scaling were valid
small change ofg* would result in a small shift of the pea
positions, but they must stay fixed. It will be shown belo
for fluctuating cross-link strengths that numerical solutio
for the eigenvalue density indicate that not even an appr
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mate scaling relation holds. This view will furthermore b
supported by the results of the numerical diagonalization
random matrices for different types of system.

To conclude the discussion of the density of states
uniform cross-link strengths, the spectrum from the iterat
solution of the integral equation is compared with resu
from numerical diagonalization ofG ~for details see Sec. IV
below!. Figure 1 shows the numerically computed spectr
for c50.1. Note that there is a peak atg51, which is not
present in Eq.~69!. This ‘‘missing peak’’ can be found only
in higher classes, e.g., inz0,1,0, . . .

2 5g(g21)(g23)/(g3

25g216g221). Other roots that can easily be identifie
with peaks in the numerical results are at 26A2 ~stemming
from z1,1,0, . . .

2 ) or at 5/26A5/2 ~stemming fromz0,2,0, . . .
2 ).

Figure 2 shows a direct comparison between the same
merical simulation and a few explicitly calculated pea
from classes up to class 3. The agreement regarding the
sition of the peaks is excellent but some weight is still mi
ing from some of the peaks. This weight is expected to

FIG. 2. Comparison between the simulation~solid lines! and
some selected peaks calculated from the exact solution~dashed
lines! for c50.1. The analytical peaks have been slightly shifted
the right for better comparison, otherwise they would be indist
guishable from the numerical peaks.

FIG. 1. Numerical simulation of the density of states f
c50.1.
4-8
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found in higher classes and/or in differentz’s which happen
to have a root at the same position.

D. Numerical integration for special p„l…

The integral equation~33! simplifies considerably for a
special choice ofp(l), namely,

p~l!5
1

l2
expH 2

1

lJ , ~70!

implying Pn5n! Inserting the ansatzgV(r)5: f V(r2/2) into
Eq. ~34! leads to the following representation:

G~V!5211
i

2cE0

`

dx fV~x!, ~71!

wheref V(x) is the solution of the ordinary differential equa
tion ~see Appendix A 2 for details!

f V~x!52 ix f V9 ~x!12c exp$22c1 iVx1 f V~x!%,

f V~0!52c. ~72!

This allows one to write down the general term in t
asymptotic expansion ofG(V) for small V. Close to the
critical point the lowest order moments are explicitly giv
by

M15
1

4c H lnS 1

122cD22cJ , c→ 1

2
, ~73!

M25
2

15~122c!3
1

13

60~122c!2
1O„~122c!21

…, c→ 1

2
,

~74!

M35
47

240~122c!6
1

16

105~122c!5
1O~~122c!24!,

c→ 1

2
, ~75!

and

M45
5762

6435~122c!9
1

1159

720 720~122c!8

1O„~122c!27
…, c→ 1

2
, ~76!

giving additional support to the conjecture about the Lifsh
tail Eq. ~40!.

For a numerical evaluation ofG(V) it is more convenient
to rewrite Eq.~33! in the form
02140
gV~r!52cA2irK1~A2ir!

14ice22crK1~A2i r!E
0

r

dhI 1~A2ih!

3expH iV

2
h21gV~h!J

14ice22crI 1~A2ir!E
r

`

dhK1~A2ih!

3expH iV

2
h21gV~h!J , ~77!

since in this representation the integrands do not dependr
and the numerical integration thus needs to be done o
once per iteration, resulting in time and memory requi
ments only of the order of the number of integration g
points. This allows for high precision computations
gV(r), G(V), andD(g).

Figures 3 and 4 show the results for the density of eig
values from a numerical integration of Eq.~77! using a Pade´
approximation in order to extrapolateV5g1 i e to e50.
There are several noteworthy points to be seen in these
ures:

First, we expect to see Lifshitz tails forall c, 0,c,1/2,
for asymptotically smallg. Precisely at the critical poin
D(g) goes to a constant asg→0. For cross-link concentra
tions close to the critical one, we expect to see a crosso
between an approximately constant region at intermediatg
to a Lifshitz tail at very smallg. Since small values ofg are
hard to access numerically, this crossover makes it diffic
to observe the Lifshitz tail, except possibly for smallc. For
intermediatec the data in Fig. 4 can be described appro
mately by a straight line but with a slope different fro
2 1

2 . This property will be confirmed by the results from th
numerical diagonalization presented below.

FIG. 3. DensityD(g) of nonzero eigenvalues for the mean-fie
network for p(l) given by Eq.~70! for different concentrationsc.
The lines are the analytical results@i.e., the results from the numeri
cal solution of Eq.~77!# while the data from the numerical diago
nalization are shown by the symbols.
4-9
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A second remarkable point is that the density of states
seen in Fig. 3 is clearly not suited to a scaling ansatz. Th
are ~at least! two different scales contained in the plot: th
first is the drop-off lengthg0(c) which describes the scale o
which D(g) goes to 0 for smallg, the other is the position o
the maximum,gmax(c). While g0 goes to 0 forc→ 1

2 , gmax

evidently does not; these two features together are obvio
incompatible with a scaling ansatz of the formD(g)
; f „g/g* (c)… with some typicalg* . This finding is in agree-
ment with the observation from the exact solution for u
form cross-link strength where scaling was not possible
ther. Here, however, the statement is even stronger s
even an approximate scaling relation is ruled out. Note
peculiar feature that a second maximum appears inD(g) for
small g at the percolation thresholdc5 1

2 . This is not an
artifact and is confirmed by the numerical diagonalization
shown in the figure. It may even indicate the presence o
third scale since the emergence of a maximum can alread
suspected in the curves for smallerc.

E. Stress relaxation

The characteristic features of the spectrum as discu
above have important consequences for the stress relax
function. In particular, the Lifshitz tail in the spectrum give
rise to an anomalous long time decay of the stress relaxa
function in the sol phase for allc,ccrit . The true asymptotic
behavior ofD(g);exp@2Ah(c)/g#, which is proven rigor-
ously in Appendix A 3, impliesx(t);exp@2(t/t* )b# with b
51/3. However, we are unable to estimate the timesc
needed to reach the asymptotic regime. For smaller tim
the stress relaxation function is characterized by effec
exponents, just as the spectra in Fig. 4 can be fitted to
shitz tails with effective exponents that depend on cross-
concentrationc.

The divergence of the time scalet* (e);e2z is deter-
mined by the functionh(c). The expansion of the resolven
for smallV suggestsz53. At the critical point the density o
eigenvalues is constant asg→0, implying a logarithmic di-

FIG. 4. Double logarithm of the densityD(g) of nonzero eigen-
values as a function of lng for several concentrationsc.
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vergence of the static shear viscosity andx(t);t2D with
D51.

The absence of scaling in the density of states is a
relevant for the stress relaxation function. The presence
more than one characteristic scale for the eigenvalues imp
more than one characteristic time scale for the stress re
ation function. As a consequence, the stress relaxation fu
tion does not scale either. This point will be discussed furt
below in the context of numerical diagonalization of the co
nectivity matrix. Attempts to scale data for the time depe
dent stress relaxation function fail~see Fig. 14 below!.

IV. NUMERICAL DIAGONALIZATION

A. Numerical methods

In this section the eigenvalue densitiesD(g) of three dif-
ferent types of random network are studied numerica
mean-field ~MF! networks as well as two- and three
dimensional simple square/cubic grids. For the first ca
cross-links are allowed for all pairsi , j of nodes while for the
other networks only cross-links between neighboring no
may appear. For the finite-dimensional grids we apply pe
odic boundary conditions in all directions. The size of t
networks is denoted byN, with N5Ld (d52,3) for the
finite-dimensional cases. For the numerical treatment,
consider random graphs with a fixed numberM of vertices,
i.e. the cross-link concentration isc5M /N. Every cross-link
has the same probability of occurrence. For the impleme
tion of the graphs on the computer, theLEDA library @17# was
used. Network sizes up toN510 000 ~MF!, N53136 (d
52) and N54096 (d53) were studied. For each syste
size up to 104 different realizations of the disorder were co
sidered~1000 for the largest sizes!. Different concentrations
of the cross-links between 0 and the percolation thresh
ccrit were treated, whereccrit(MF)51/2, ccrit(d52)51, and
ccrit(d53)'0.7464@18#.

We consider the same two cases regarding the streng
the cross-links as above: Either all cross-links have the s
strengthl51 or their strengths are distributed random
with the probability density given in Eq.~70!. Numerically,
the random values for the strengths of the cross-links
drawn using the inversion method@19#. A random numberr
is drawn that is uniformly distributed in@0,1#. Then the val-
ues oflª21/ln r are distributed according to~70!. For test-
ing purposes also some systems were studied where
strengths were uniformly distributed in the interval@0.5,1.5#.
In all cases no significant deviations of the measurable qu
tities for different distributions could be observed. The ma
difference is that for cross-links of unit strength the distrib
tion D(g) of the eigenvalues is dominated by a sum ofd
peaks below the percolation threshold while for cross-lin
of continuous strength the distributionD(g) is purely con-
tinuous~see below!.

The numerical method works as follows. Random n
works are created, with constant or random cross-l
strengths as needed. Then, for each graph the conne
components are determined@20#. For each connected com
ponent the connectivity matrix is calculated, which is a re
symmetric matrix. Therefore, for determining its eigenvalu
4-10
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the QR algorithm and the Householder method@21# can be
applied. Next, the eigenvalues are sorted in increasing or
Each connected component has one smallest eigenvalu
Because of numerical errors usually the smallest eigenv
is not zero but quite small, depending on the distribution
the strengths of the cross-links. Consequently, the sma
eigenvalue is assigned the value zero. Finally, the eigen
ues of all components are collected, sorted again, and st
for further evaluation for each realization of the network.

B. Results for the mean-field system

First, we consider the densityD(g) of nonzero eigenval-
ues for the mean-field network at the percolation thresh
c51/2. Data for the casep(l)5d(l21) have already been
presented in Fig. 1. Here we consider the case where
strengths of the cross-links are distributed according
~70!. In Fig. 5 the resulting density is shown for differe
system sizes together with the analytical result@obtained
from the numerical solution of Eq.~77!#. It can be seen tha
the sizeN510 000 is already sufficient to reproduce the an
lytical behavior for a large range of eigenvalues. In partic
lar, the ‘‘dip’’ near g50.15 is validated by the numerica
data~see inset!. Because of the finite system sizes, arbitrar
small eigenvalues cannot be found; thus the numerics
agree with the analytical result in that region. Neverthele
the analytical result limg→0D(g).0 can indeed be con
firmed by extrapolating the numerical data to infinite syst
size.

The spectrumD(g) for different cross-link concentration
c is presented in Fig. 3. Once more, the numericalN
510 000) and the analytical results agree very well. F
small g, the logarithm of the spectrum should behave
;2g21/2 ~Lifshitz tail!. Figure 6 shows the logarithm o
D(g) in a double logarithmic plot in complete analogy
Fig. 4. Presumably, the system size ofN510 000 is still too

FIG. 5. DensityD(g) of nonzero eigenvalues for the mean-fie
network at the percolation thresholdc50.5 from numerical diago-
nalization. The solid line is the analytical result, which is hard
distinguishable from the result forN510 000. The inset magnifie
the regiongP@0,0.4#, where the numerical results for the large
system sizeN510 000 are shown by circles.
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small in order to observe the asymptotic behavior of
density of states for small eigenvalues.

C. Results for finite-dimensional systems

Next, we consider three-dimensional systems, which
believed to describe real polymer networks more appro
ately. The density of eigenvalues for the case where all cro
links have the same strength,p(l)5d(l21), is shown in
Fig. 7 for N5163 and c50.2. As in the mean-field case,
collection ofd-peaks is obtained. Since this kind of distrib
tion is more difficult to analyze, we turn again to the mod
where the strengths of the bonds have the distribution~70!.
Results for the largest system sizeN5163 and different
cross-link concentrations are shown in Fig. 8. Below the p
colation transitionccrit'0.7464 the distribution exhibits a
maximum and converges to 0 for small eigenvalues, sim

FIG. 6. Double logarithmic plot of2 ln@D(g)# for different con-
centrationsc of the mean-field network. The line shows a functio
2 ln(g)/21const~Lifshitz tail!, which is the behavior predicted b
theory.

FIG. 7. DensityD(g) of nonzero eigenvalues for the cubic ne
work with all bonds having the same strengthl51 (c50.2,N
5163). Similar to the case of the mean-field network, a sum od
peaks with strongly varying heights is obtained.
4-11
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to the mean-field case. At the transition,D(g) diverges as
g→0 ~see also inset!. Below we will show that this behavio
changes the divergence of the viscosity near the percola
threshold. The eigenvalue densities for the two-dimensio
network look qualitatively similar and are therefore n
shown here. The true asymptotic behavior asg→0 is diffi-
cult to access, just as in the mean-field case.

The changes in the spectrum as compared to the m
field case also affect the stress relaxation, which we inve
gate next. First, the viscosity given by

h̄5@12T0~c!#E
0

`D~g!

g
dg ~78!

is considered. Here, irrelevant prefactors have been om
for simplicity; see Eq.~18! for the complete expression. I
the numerical calculation we compute

h5
1

N (
g i.0

1

g i
~79!

for each realization and subsequently average over diffe
realizations of the disorder to obtainh̄. Whereas for the
mean-field network the viscosity diverges logarithmically f
c→ccrit , for finite-dimensional systems a divergenceh(c)
;(ccrit2c)2k is expected. The reason for the different dive
gences is the manner in whichD(g) behaves for smallg at
the percolation threshold: for the mean-field netwo
limg→0D(g) is finite, but for the finite-dimensional grid
D(g) diverges asg→0. The critical exponentk of the vis-
cosity can be determined from

h~c,L !5L2k/nh̃@~c2ccrit!L
1/n#, ~80!

similar to the usual finite-size scaling relations@22# for the
percolation transition. Hereh̃ is a universal function andn is
the exponent describing the divergence of the correla
length when approaching the percolation transition. The

FIG. 8. DensityD(g) of nonzero eigenvalues for the cubic ne
work with p(l) given by Eq.~70! for different concentrationsc.
The inset shows the finite-size dependence at the percolation th
old for small eigenvalues.
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of finite-size scaling enables us to circumvent the proble
which are posed by the lack of very small eigenvalues
finite graphs.

By plotting hLk/n against (c2ccrit)L
1/n with correct pa-

rametersn and k the data points for different system size
and c'ccrit should collapse onto a single curve. We ha
taken the valuesn(d52)54/3 andn(d53)50.88 from the
literature@18# and adjustedk/n. The best collapse nearccrit
was obtained withk(d52)51.19 andk(d53)50.75. The
results are presented in Figs. 9 (d53) and 10 (d52). The
values we obtained for the different distributions of t
cross-link strengths agree within the error bars.

The value ofk for two dimensions agrees very well wit
the resultk;1.17 found previously by Broderix et al.@10#,
using the high precision simulations of Gingold et al.@12#.

sh-

FIG. 9. Finite-size scaling plot of the viscosityh(c,L) for the

three-dimensional grid. A scaling behavior ofh(c,L)5L2k/nh̃@(c
2ccrit)L

1/n# is assumed. Usingn50.88 andk50.75 the points for
L510,13,16,20 collapse onto one curve near the critical concen
tion.

FIG. 10. Finite-size scaling plot of the viscosityh(c,L) for the

two-dimensional grid. A scaling behavior ofh(c,L)5L2k/nh̃@(c
2ccrit)L

1/n# is assumed. Usingn54/3 andk51.19 the points for
L510,14,20,28,40,56 collapse onto one curve near the critical c
centration. Since finite systems are treated, the maximum ofh(c) is
below the critical concentrationccrit51 of the infinite lattice.
4-12
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The result for the three-dimensional case (k50.75)is slightly
worse in comparison withk;0.71@10,12#. The reason is tha
here only small system sizes up to 203 could be treated due
to the fact that all eigenvalues are calculated. If one is o
interested ink, it is computationally less expensive to com
pute the Moore-Penrose inverse of the connectivity mat
Thereby one might be able to study system sizes as larg
those used in Ref.@12#. For the realizations treated here, w
have checked other characteristic results concerning the
colation transition, like the critical exponents, which de-
scribes the behavior of the cluster-size distribution. T
finite-size scaling plots have a poor quality for this quant
too, resulting in a rather low precision of the exponent v
ues. Additionally, we have observed a systematic drift in
results: By including even smaller system sizes, the sca
plot results ink50.89, which differs even more from th
value obtained before. Consequently, we believe that la
system sizes are needed, to obtain a more reliable resultk
via numerical diagonalization of random connectivity mat
ces.

Next, the behavior of the stress relaxation function~again
omitting irrelevant prefactors and using dimensionless ti
2dt/za2→t)

x~ t !5@12T0~c!#E
0

`

D~g!exp~2gt !dg ~81!

was investigated; see Eq.~17! for the complete expression
The functions were obtained by first calculatingD(g) and
then numerically integrating it. It would take too much tim
on the computer to first calculatex(t) for each realization by
directly summing up the contributions and then average o
the disorder. Here, we have investigated systems with c
tinuously distributed cross-link strengths because they re
in continuous eigenvalue densities where it is easier to ob
stable numerical data.

In Fig. 11 the numerical results for the mean-field n
work, the d52 and thed53 models for the largest size
(c5ccrit) are shown. As mentioned before, the numeri
simulations are restricted to finite sizes of the networks
to a finite number of realizations of the disorder. Therefo
the eigenvalue densitiesD(g) always have a smallest eigen
value gmin with D(g)50 for g,gmin . Consequently, the
long-time behavior is dominated by an exponential decre
exp(2gmint), irrespective of the true form ofx(t). This re-
sults in a negative curvature in the double-logarithmic p
for long times. Thus, in the numerical results, the asympto
form of the relaxation function is visible only for intermed
ate times~see Fig. 11!. At c5ccrit a x(t);t2D behavior is
expected. By fitting we obtainD51.029(5) ~mean field!,
D50.830(2) (d53), andD50.741(2) (d52). The result
for the mean-field case is known exactly to beD51. The
discrepancy is again due to the finite sizes of the netwo
Indeed, we have observed that for smaller networks a va
of the exponent is obtained that is even larger. So the re
D51 seems to be confirmed. The value for the thr
dimensional grid is compatible with the large range of resu
obtained in experiments@5#.
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The stress relaxation functionx(t) for different concen-
trationsc of the cross-links is shown in Figs. 12~mean field!
and 13 (d53). In both cases we find exponential decay f
the longest times due to finite system size. For intermed
times a stretched exponential behaviorx(t);exp@2(t/t)b# is
visible. At least for finite system sizes the exponentb seems
to be nonuniversal; we find values ranging fromb50.5 for
small cross-link concentrations down tob50.2 close to the
percolation threshold. We suspect that the accessible ti
are too short to see the true asymptotic behavior, which
least in mean-field theory is known to be a stretched ex
nential with exponentb51/3, resulting from the Lifshitz tail
in the density of states. For small timesx(t) decreases like
t2D andx(0)51 by definition.

FIG. 11. Stress relaxation functionx(t) at the the critical con-
centrationc5ccrit for the three types of model considered here, w
continuously distributed strengths of the cross-links in all th
cases. Shown are the results for the largest sizes that coul
treated with sufficient accuracy. For the part of the long-time
havior which is accessible to the numerical simulations, ax(t)
;t2D behavior is visible. From fitting we obtainD51.029 ~mean
field!, D50.830(2) (d53), andD50.741(2) (d52).

FIG. 12. Rescaled stress relaxation function2 ln@x(t)tD# as a
function of the time for the mean-field network (D51.029) with
different concentrationsc of the cross-links. The straight lines co
respond to stretched exponentials with exponentsb50.332 and
b51.
4-13
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Moreover, this variation of the exponentb makes it im-
possible to observe a scaling formx(t);t2Dg(t/t), wheret
is a typical time scale that diverges liket;(ccrit2c)2z when
approaching the percolation threshold. For the mean-fi
network, the expectations from the Lifshitz tails arez53 and
D51, while g(t) is the stretched exponential function, b
we have already mentioned that there seems to be no sc
possible due to the existence of more than one scale. In
14 a scaling plot ofx(t) is shown.x(t)tD is plotted against
t3(ccrit2c)z for mean-field networks of different concentr
tions c. We have used only the regions below the finite-s
asymptotic behavior (b51). It can be seen that the qualit
of the collapse is rather bad, explained by the variation ob
with c. One might think that near the transitionc'ccrit the
scaling may be better. But there the collapse is even wo
~not shown!, because even larger systems are necessa
reach the asymptotic regime for the small eigenvalues
explained before.

FIG. 13. Rescaled stress relaxation function2 ln@x(t)tD# as a
function of the time for the three-dimensional network (D
50.830) with different concentrationsc of the cross-links. The
straight lines correspond to stretched exponentials with expon
b50.386 andb51.

FIG. 14. Scaling plot for the stress relaxationx(t)tD as a func-
tion of t(ccrit2c)z for the mean-field network (N5104, randomly
distributed strengths of cross-links! with the valuesD51,z53.
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For finite-dimensional systems, the quality of the scalin
plot is similar. Therefore, it is not possible to make a reliab
estimate for the dynamical exponentz in that case.

V. CONCLUSIONS

Within our model, the dynamics of a cross-linked polym
melt is determined completely by the eigenvalue and eig
vector spectrum of the connectivity matrixG. In this paper
we have focused on some properties that are determine
the eigenvalues alone~e.g., the stress relaxation function!
since the eigenvectors are hard to obtain. We have used t
different methods to examine the eigenvalue spectrum: fi
the construction of an exact solution for the averaged eig
value density for a fixed cross-link strength, second, a v
precise numerical solution for the case of varying cross-l
strengths, and third, a numerical diagonalization of rand
connectivity matrices.

The first method allowed for some exact results regard
the eigenvalue spectrum. It could be shown that the eig
value spectrum consists of a very complicated but counta
set ofd peaks, some of which could be calculated and co
pared with results from numerical diagonalization. Furth
more, we showed that the eigenvalue density does not s
~exact! scaling behavior.

The second model of fluctuating cross-link strengths
the advantage that the eigenvalue spectrum becomes a
tinuous function instead of an inscrutable sum ofd peaks.
Additionally, it allowed for a fast numerical integratio
scheme. From these numerical solutions it could be infer
that the expected Lifshitz-tail behavior for smallg seems to
set in only for extremely smallg, smaller than is accessibl
numerically. For this reason, the stress relaxation funct
does not show a stretched exponential form with expon
b5 1

3 within the accessible time window. Instead, for th
times that could be reached, there seems to be a reg
where an apparent stretched exponential with a cross-
concentration-dependent and thus nonuniversalb is ob-
served. Furthermore, in numerical evaluations of the eig
value spectrum again scaling could not be observed, not e
approximately, since at least two, possibly three or mo
differentg scales with differentc dependence could be iden
tified. As a consequence, the stress relaxation function d
not scale either.

The third method, numerical diagonalization, confirm
all results obtained so far very well. In particular it show
that the stress relaxation shows stretched exponential be
ior with a concentration-dependent exponentb and it
showed the failure of scaling of the stress relaxation fu
tion. It confirmed, however, the experimental findings that
the critical concentration the stress relaxation function
cays algebraically with exponentD. For the mean-field
model, both theory and numerics yield the exponentD51.
Furthermore, numerical diagonalization allows for going b
yond the mean-field approach. Results were obtained
connectivity matrices on two- and three-dimensional cu
lattices. Unlike the mean-field case, the density of eigenv
ues now diverges at the critical concentration asg→0, and
consequently the viscosity shows a power law divergence

ts
4-14
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STRESS RELAXATION OF NEAR-CRITICAL GELS PHYSICAL REVIEW E64 021404
opposed to a logarithmic divergence as seen in the m
field case. The critical exponent for the viscosity is found
be k'1.19 (d52) andk'0.75 (d53). The exponentD is
found to beD'0.74 (d52) and D'0.83 (d53). These
results are comparable to the experimental findings~see the
Introduction!. If dynamical scaling, Eq.~1!, holds, the criti-
cal exponentz is determined by the scaling relationD5(z
2k)/z, which givesz'4, also in good agreement with ex
periments.

The Rouse model has some limitations: Excluded volu
effects, hydrodynamic interactions, and entanglement
naturally beyond its scope. Hence we consider our work a
first step toward a quantitative analysis of stress relaxatio
polymer gels and are presently working on extensions of
dynamic model to include hydrodynamic as well as exclud
volume interactions.
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APPENDIX A: LOW FREQUENCY EXPANSION
OF THE RESOLVENT

1. Generalp„l…

The low frequency expansion is derived from an alter
tive form of the integral equation~33!. We start from Eq.
~30! and recall an integral representation of t
n-dimensional Laplacian@see also Eqs.~3.47!–~3.51!! in
Ref. @13##

E dŷ

~2pV!n/2
expH 2

~ x̂2 ŷ!2

2V
J f ~ u ŷu!

5expH V

2 S d2

dr2
1

n21

r

d

dr D J f ~r!U
r5ux̂u

. ~A1!

We use this representation in the numerator of Eq.~30! and
take the limitn→0. To evaluate the denominator of Eq.~30!
we observe that

lim
n→0

E dx̂f n~ ux̂u!5 f 0~0!1O~n!. ~A2!

Both steps taken together lead to the following se
consistent equation forgV(r):

gV~r!52ce22cE
0

`

dlp~l!expH 1

2il S ]2

]r2
2

]

r]r D J
3expH iV

2
r21gV~r!J , ~A3!
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which is of course equivalent to the integral equation~33!,
but much better suited for a low frequency expansion.

To that end we rescale variables according tox5AVr
and CV(x)5gV(x/AV). The self-consistent equation the
reads

CV~x!52ce22cE
0

`

dlp~l!expH V

2il S ]2

]x2
2

]

x]xD J
3expH i

2
x21CV~x!J . ~A4!

We look for a solution in terms of a power series inV,

CV~x!5(
j 50

`

~V! jC j~x!. ~A5!

The resolvent can then be expressed in terms ofC j (x) as

G~V!52P11
i

2cV (
j 50

`

V jE
0

`

dxxC j~x! ~A6!

with Pn5*0
`dll2n p(l) as defined after Eq.~38!. The low-

est order term obeys the equation

C0~x!52c exp~22c!expS i

2
x21C0~x! D , ~A7!

which is solved by

C0~x!52W„22c exp~22c!exp~ ix2/2!…. ~A8!

Here W denotes the principal branch of Lambert’sW func-
tion, defined as the solution of

W~x!exp@W~x!#5x. ~A9!

From Eq. ~A7! one derives the following property of th
lowest order solution:

C08~x!5
ixC0~x!

12C0~x!
~A10!

which allows for an exact computation of the integral

i E
0

`

dxxC0~x!52
1

2E0

`

dx
d

dx
@12C0~x!#252c~c21!.

~A11!

The next two terms are given by

C1~x!5
1

12C0~x!

P1

2i S d2

dx2
2

d

x dxD C0~x!, ~A12!

C2~x!5
21

12C0~x! S d2

dx2
2

d

x dxD S P2

8
1

P1
2

12C0~x!
D

3S d2

dx2
2

d

x dxD C0~x!. ~A13!
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The integrals*dxxC j (x) can be performed like Eq.~A11!,
using the properties of Lambert’sW function. The computa-
tions, however, become increasingly tedious, so that hig
order terms have been computed only for the special di
bution p(l) ~see below!.

2. Specialp„l…

We start from Eq.~A3! and introduce the abbreviatio
Drªd2/dr22d/rdr. For the special choice p(l)
5(1/l2)exp(21/l), one can perform the average overp(l)
analytically,

E
0

`dl

l2
expH 2

~11 iD r/2!

l J expH iV

2
r21gV~r!J

5S 11
iD r

2 D 21

expH iV

2
r21gV~r!J . ~A14!

The resulting differential equation simplifies, if we introdu
the functionf V(r2/2)ªgV(r),

f V~r2/2!1 ir2/2f V9 ~r2/2!52c exp~22c!exp@ iVr2/2

1 f V~r2/2!#. ~A15!

Introducing the new variablex5r2/2 leads to the differentia
Eq. ~72! quoted in the main part of the paper. For the lo
frequency expansion it is convenient to introduce yet ano
variable,y5Vx, in terms of which the differential equatio
for hV(Vx)ª f V(x) reads

hV~y!2 iyVhV9 ~y!52c exp~22c!exp@ iy1hV~y!#.
~A16!

The ansatzhV(y)5( j 50
` (V) jhj (y) then yields

hn~y!2 iyhn219 ~y!5h0~y!
1

n!

dn

dVn

3expS (
j 51

`

~V! jhj~y!D
V50

.

~A17!

The left hand side is linear inhn(y), so that Eq.~A17! is
easily iterated.

3. Proof of the existence of a Lifshitz tail inD„g…

The aim of this Appendix is to prove that the density
eigenvaluesD(g) shows a Lifshitz-tail behavior forg→0
andc,1/2. For the proof, it is convenient to make use of t
eigenvalue distribution functionF(g)ª*2`

g dg8D(g8). This
can be done without loss of generality because ifF(g) has a
Lifshitz tail, so doesD(g). It will be shown thatF(g) lies
between two bounds which, taken together, assert the
shitz behavior.

For a given realization of a system withN vertices~or
polymers!, the correspondingFN(g) can be written, using a
decomposition into theK clusters of the realization,
02140
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FN~g!5
1

N (
k51

K

Tr Q~g2Gk!

5
K

N
1

1

N (
k51

K

Tr@~12E0
k!Q~g2Gk!#, ~A18!

whereGk is the connectivity matrix of thekth cluster andE0
k

is the projector on the null space ofGk . In the macroscopic
limit N→`, this yields

F~g!5~12c!Q~g!1 (
n51

`

tn^Tr@~12E0
n!Q~g2G~Tn!!#&

~A19!

due to self-averaging. The bracket^•••& means averaging
over the set of all numbered trees$Tn% of size n of which
there arenn22. G(Tn) denotes the connectivity matrix corre
sponding to the treeTn . The average number of trees of siz
n per vertex is denoted bytn and is given by@15#

tn5
nn22

2cn!
~2ce22c!n5

1

2cA2p
n25/2e2nh(c)2 f (n)/n

~A20!

according to Stirling’s formula withh(c)52c212 ln(2c)
and some functionf (n) with 0, f (n),1.

The smallest nonzero eigenvalue ofG(Tn) is certainly
greater than or equal to the smallest nonzero eigenvalu
the linear cluster withn vertices, which is proportional to
n22, i.e.,

G~Tn!>
a

n2
~A21!

~except for the zero eigenvalue! with somea independent of
n. This results in

Tr@~12E0
n!Q„g2G~Tn!…#<~n21!Q~g2a/n2!

~A22!

or

F~g!<12c1 (
n>Aa/g

~n21!tn for g.0. ~A23!

For g→0, the sum can be approximated by an integral,

F~g!<12c1
1

2cA2p
E

Aa/g

`

n23/2e2nh(c) ~A24!

'12c1
1

2ch~c!A2p
S g

a D 3/4

expH 2h~c!S a

g D 1/2J .

~A25!

This is the lower bound forF(g).
For the upper bound, Eq.~A19! will be used again. Ex-

plicitly, one has forg.0
4-16
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F~g!512c1
1

2c (
n51

`
1

n!
~2ce22c!n

3(
$Tn%

Tr@~12E0
n!Q„g2G~Tn!…# ~A26!

>12c1
1

2c (
n51

`
1

n!
~2ce22c!n

3 (
$Ln%

Tr@~12E0
n!Q„g2G~Ln!…#, ~A27!

where the inner sum has been restricted to the set oflinear
numbered trees$Ln%. There aren!/2 such linear trees, suc
that

F~g!512c1
1

4c (
n52

`

e2n[h(c)11] Tr@~12E0
n!Q„g

2G~Ln!…#. ~A28!

Next, the trace, which is a sum of non-negative terms
estimated by just one of the terms. In particular, Tr@(1
2E0

n)Q„g2G(Ln)…#>Q(g2a/n2), corresponding to the
smallest eigenvalue ofLn . This finally gives

F~g!>12c1
1

4c (
n>Aa/g

e2n[h(c)11] ~A29!

'12c1
1

2c@11h~c!#
expH 2S a

g D 1/2

@11h~c!#J
~A30!

for the lower bound.
The upper and the lower bound together imply

lim
g→0

lnu ln@F~g!211c#u
u ln gu

5
1

2
~A31!
l

-

e

02140
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or, even stronger,

Aah~c!<2 lim
g→0

g1/2 ln@F~g!211c#<Aa@h~c!11#,

~A32!

which is the sought-for Lifshitz-tail behavior.

APPENDIX B: DETAILS OF THE EXACT SOLUTION OF
THE INTEGRAL EQUATION

1. Solution of the integral equation

It is not obvious how to solve the fix-point equations 6
because the coefficients of thei th iteration are labeled by an
index, and a subsequent iteration gives rise to coefficie
that are labeled by a sequence (l k). We therefore try to map
the sequence (l k) that appears as index onto a number
writing nª(k50

` l kM
k with some MPN. For this to be a

one-to-one map, we need to restrict alll k to be ,M . This
restriction will be removed later when we letM→`. The
sequence (l k) can be reconstructed fromn by writing n in the
number system of baseM. Let this be indicated byl k

5(n)k
M .

The fix-point equations can now be written down as

an5e22c)
k50

`
~2cak!

(n)k
M

~n!k
M!

, ~B1!

zn511
1

V212 (
k50

`

~n!k
Mzk

. ~B2!

The equations foran can be solved independently from tho
for zn . We start withan . Successively solving the system o
equations~B1! by inspection gives

a05e22c, ~B3!
an55
e22c

~2ca0!n

n!
for 1<n,M

e22c )
k50

M21
~2cak!

(n)k
M

~n!k
M!

for M<n,M M

e22c )
k050

M21

••• )
kM2150

M21 ~2cak01Mk11•••1MM21kM21
!(n)k01Mk1•••

M

~n!k01Mk1•••
M !

for M M<n,M MM
,

~B4!

~B5!

~B6!
and so on. The coefficienta0 is obviously independent of al
other an . This property will be called ‘‘class 0.’’
a1 , . . . ,aM21 depend only ona0: this will be termed ‘‘class
1.’’ Analogously,aM , . . . ,aMM21 are in class 2 as they de
pend only ona’s from classes 0 and 1.

Now we can letM tend to infinity. Classes 0 and 1 ar
simple ~the upper index now denotes the class!:
a0
05e22c, ~B7!

an
15e22c

~2ce22c!n

n!
, n>1. ~B8!

If we drop the constraintn>1, Eq. ~B8! automatically con-
tains class 0.
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For the higher classes, as we are now consideringM
→`, indexing via a numbern is no longer possible. Instead
for class 2, we have to revert to using a finite sequence
index. For class 3, even this is not sufficient and a nes
sequence (l (ki )

) is needed:

a( l k)
2 5e22c)

k50

`
~2cak

1! l k

l k!
, length of~ l k!.1, ~B9!

a( l (ki )
)

3 5e22c )
$(ki )%

~2ca(ki )
2 ! l (ki )

l (ki )
!

. ~B10!

If the constraint@length of (l k).1] is dropped and if the
explicit expressions for thea from the lower classes are re
cursively inserted, all classes up to class 2 are containe
one formula, Eq.~B9!. An analogous statement holds for E
~B10!.

In general, for classm, the index will be of the form
( l (k

�(r i )
)) with m nesting levels. The general result is thus

a( l (k
�(r i )

))
m 5e22c )

$(k
�(r i )

)%

~2ca(k
�(r i )

)
m21 ! l (k

�(r i )
)

l (k
�(r i )

)!
. ~B11!

With the same reasoning as above we can calculate
zn . We find the same classes, and the results are

z0
05

V

V21
, ~B12!

zn
15

V2nz0
0

V212nz0
0

, ~B13!

z( l k)
2 5

V2 (
k50

`

l kzk
1

V212 (
k50

`

l kzk
1

, ~B14!

A

z( l (k
�(r i )

))
m 5

V2 (
$(k

�(r i )
)%

l (k
�(r i )

)z(k
�(r i )

)
m21

V212 (
$(k

�(r i )
)%

l (k
�(r i )

)z(k
�(r i )

)
m21

. ~B15!

2. Properties of the solution

If one asks for the total weight of a particular peak at, s
someg0 ~up to classm), one has to find all finite solution
( l k) of the diophantic equation
02140
as
d

in

he

,

g02 (
k50

`

l kzk
m21~g0!50. ~B16!

This is possible in some special cases, e.g., forg051 in
class 2. Sincezn

1(1)51, it follows that Eq.~B16! is satisfied
if and only if exactly one entry of (l k) equals 1 whereas al
the others are 0. Adding up all of the weights yiel
e22c@(2ce22c21)e2ce22c

11# as the total weight ofd(g
21) from class 2.

The z( l k)
m have several noteworthy properties, most

which are easy to prove by induction overm and are there-
fore listed below without proof.

~1! z( l k)
m is a rational function ofg with integer coeffi-

cients.
~2! The degree of the numerator is the same as that of

denominator.
~3! The coefficient of the highest power is 1 in both n

merator and denominator.
~4! z( l k)

m is a strictly monotonically decreasing functio

~except at its poles!.
~5! All roots and poles ofz( l k)

m are located on the non

negative real axis.
~6! z( l k)

m has exactly as many poles as roots. Roots a

poles alternate, starting with a root at 0.
~7! There is exactly one more root ofz( l k)

m than there are

poles in(k50
` l kzk

m21 .
~8! The sum( i u(]z( l k)

m /]g)(g ( l k) i
m )u21 over all rootsg ( l k) i

m

of z( l k)
m equals 1. As stated in the text, this can be prov

using Cauchy’s integration theorem.

Consider now somez( l k)
m and choose (l k) such that only

the nth entry is nonzero. Then we have

z0, . . . ,0,l n,0, . . .
m 5

g2 l nzn
m21

g212 l nzn
m21

. ~B17!

Between two of its poles~see the list of properties above!,
zn

m21 is a continuous function that maps one to one onto
real numbers; therefore there exists ag l n

m in this interval such

that z( l k)
m (g l n

m)50. Moreover, whenl n→`, the g l n
m converge

to the root gn,i
m21 of zn

m21 in this interval. Sincezn
m21 is

monotonically decreasing,g l n
m,gn,i

m21 . This implies that for

every peak in the spectrum there are infinitely many ot
peaks to the left of it in any arbitrarily small interval aroun
this peak. This also applies recursively for each of the
satellite peaks. Only the peak at 0 is different: as stated in
list above, all roots ofz( l k)

m are >0 and thus there are n

satellite peaks ofd(g).
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G. J. Rodgers
Department of Theoretical Physics, The Uniuersity, Manchester, M13 9PL, United Kingdom

A. J. Bray*
Schlumberger Dol-! Research, Old Quarry Road, Ridgefield, Connecticut 06877 4108-

(Received 28 April 1987)

The density of sthtes p(p) of an E &&X real, symmetric, random matrix with elements 0, +1 is cal-
culated in the limit X~ ao as a function of the average "connectivity" p„ i.e., of the mean number of
nonzero elements per rom. For p ~ oo, the %igner semicircular distribution is recovered. For finite

p the distribution has tails extending beyond the semicircle, with p(p)-(ep jp )" for p ~ ao. Ap-
plications to the theory of "GriSths singularities" in dilute magnets are discussed.

I. INTRODUCTION

There has been recent interest' in spin systems in
which the exchange interactions are very dilute, but of
infinite range, in such a way that the average coordina-
tion number is finite. This is achieved by letting the bond
occupation probability be p/X, where X is the number of
sites. Then the mean coordination number is p.

There are many reasons to study such models. While
the finite coordination number is characteristic of sys-
tems with short-range interactions, the infinite-range
forces lead to exactly soluble models. ' In addition, such
models allow one to study the interplay between magnet-
ic order and percolation. ' Finally, the technical prob-
lems posed by these models have strong formal similari-
ties with those encountered in many problems of com-
binatorial optimization, such as graph-partitioning„
matching, and traveling-salesman problems.

Our own motivation originally arose from the desire to
understand the role of GrifFiths singularities in both the
statics and dynamics of dilute spin systems at tempera-
tures between the critical temperatures of the dilute and
non-dilute systems (the "GriSths phase"'o). It has been
argued" that this temperature regime is characterized by
unusual behavior of the spectrum of the inverse I ' of
the matrix of susceptibilities. In particular X ' should
have eigenvalues arbitrarily close to zero, corresponding
to localized eigenstates. The phase transition should
occur when the eigenstate at the mobility edge goes soft,
i.e., when the mobility edge reaches zero eigenvalue. "'
It would be very nice to be able to construct an exactly
soluble model, such as mean-field theory, exhibiting this
erat'ect, and dilute, 6nitely coordinated, infinite-range mod-
els seem promising. Unfortunately, determination of the
matrix 7 ' is itself a di%cult nonlinear problem. There-
fore, as a 5rst step, we look at the simpler problem of the
eigenvalue spectrum of the exchange matrix J. Note that
at high temperatures these matrices are related, ' since

' =TI —/+0 (1/T), where I is the unit matrix.
While the above considerations provide the authors*

personal motivation, the eigenvalue spectrum of a 1arge
random matrix is an interesting problem in its own right,

and has a long history. ' The simplest case is when the
elements of the matrix are identically distributed in-
dependent random variables with zero mean. For this
case one obtains, in the limit of large matrices, the
famous "semicircular" distribution of Wigner. ' We re-
cover this result in the limit that the mean "connectivity"
p (i.e., the mean number of nonzero elements per row) of
the sparse matrix tends to in6nity. For any finite p, how-
ever, we will show that there are states beyond the sem-
icircle, and that the density of states in the tails of the
distribution varies as p(p)-(ep/p )" .

The outline of the paper is as follows. In Sec. II we
present the model, and in Sec. III give its forrnal solution
in terms of a nonlinear integral equation. In Sec. IV the
integral equation is solved perturbatively to 0 (1/p). The
leading term reproduces the semicircle law while the
0 (1/p) correction may be interpreted in terms of a shift-
ed band edge. In perturbation theory, however, there are
no states at large eigenvalue. To obtain such states it is
necessary to extract a nonperturbative contribution from
the integral equation, and this is done in Sec. V. Section
VI contains a summary and discussion of the results.

II. THE MODEL

We consider a real, symmetric XXX matrix J whose
elements J;. are (up to the symmetry J~ =JJ;) indepen-
dent, identically distributed, random variables, with
probability distribution

P(JJ )= 1 — 5(JJ. ) + ~~[&(J;,—1)+5(J;,+1)].(1)X

For a particular realization of the matrix J, the normal-
ized density of states p(p) can be obtained from the
Green's matrix

G(p)=(J —pI)

via

37 3557 Oc1988 The American Physical Society
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1
p(p, ) = Im TrG(p, +i5), [z"].,=f"

i, a

where 6 is a positive infinitesimal.
To compute p(p) it is convenient to introduce the gen-

erating function

X exp . —p, g (i)),. )2
2

+ g cos
i,J a

where now p contains implicitly a small positive imagi-

nary part which ensures convergence of the integrals.

From Eqs. (2)—(4) one obtains

(7)

To proceed further, it is necessary to decouple the
different sites in (7) by the introduction of auxiliary vari-
ables ("Hubbard-Stratonovich transformation") in the
usual way. To do this we will follow the method of De
Dominicis and Mottishaw. ' Consider generating func-
tions of the form

2 i3 lnZ
p(p) = Im

Bp
(5)

Z„!W f }=f Dg exp g g (((, )

This gives the result for a particular realization of the dis-

order. To make further progress we invoke the replica
method to average over the disorder. The average densi-

ty of states is obtained from Eq. (5) by replacing lnZ by

[lnZ], „, where [ ],„ indicates a disorder average. The
latter may be computed from the replicated generating
function [Z"],„via the limit

[lnZ],„=lim ([Z"],„—I)/~ .

III. THE SQI.UTIQN

Introducing replica variables !p; }, a= I, ~,&, and

averaging over the random-matrix elements with the dis-
tribution (1) yields, after dropping subextensive terms,

w"ere D()) =ii;,~ (dp; ), 8'(p) is a "weighting function, "
and the function f(g x ) is assumed to have a power-
series expansion. Such an expansion can be rearranged in
the form

f gx = f(0)+ggb„x" + g gb„x~p
aP rs
a(P

g b„,x~~~+
aPy

rsvp

«Pry
Inserting this expansion in (8), with x =(()~((), and intro-
ducing auxiliary 5elds q '"',q

' &', . . . . conjugate to
g, (P;)",g, (P, )"(P~)', . . . . yields, up to constants,

Z„!8',f}=f Dq exp —-- gb, (q'"') + g gb (q'&")2+ .
a, r aP rs

a&P

n

+X ln d exp 8 +pg (10)

where

g!y. }=f(0)++b,q.'"'(y. )"
f DP h! (() }exp E!(('i }

D expF

+ g gb„,q'q" (P.)"(P~)'+ . . .
aP rs
a(P

In the limit X~ ao, the integrals over the auxiliary fields
can be eva1uated by steepest descents, to give

I'!W. }=g ~(4.)+Jg!4.}

for an arbitrary function h.
At this point we can use Eq. (12) to substitute for the

"order parameters" !q } in Eq. (11). The function g!P }
can then be expressed in terms off!P } as

q.,'=&(q. ) (q, ) &, ,

etc. , where ( )&
is defined by

sf'. l=(f XPA. ),
which is a nonlinear integral equation for g!P }.

(15)
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Note the generality of the above approach. If Z„ is re-
garded as the replicated partition function for a spin sys-
tem with "spin variables" I P,. j, then W(P} specifies the
spin weight function, while f (x) characterizes the bond
distribution.

The random-matrix problem under consideration here
is specified by W(P)=(i/2)pg, and f (x)=cos(x) —1.
Inserting these into Eq. (15), and using (13) and (14), gives
an explicit equation for g ( P I which can be written com-
pactly by treating P=((!}i,. . . , P„) as a vector in the n-

dimensional replica space:

f d "P[cos(P g) 1]ex—pF(f)
g(p)= (16)

f d"f expF(t(}

It is clear that Eq. (16) possesses a solution in which g (P)
is a function of x =

~ P ~
only, and we will just consider

this solution, i.e., we will not pursue the possibility that
rotational symmetry in the replica space is spontaneously
broken. The angular integrals in Eq. (16) may then be
evaluated in n-dimensional polar coordinates, and the
n ~0 limit taken, to give

g(x)= —x dy exp —py +pg(y) J, (xy),
0 2

where J1 is the Bessel function of order 1.
Equation (18) is our central result. It remains to ex-

tract the average density of states [p(p)],„[which we will
henceforth call simply p(p)] from g(x}. Using Eqs.
(5)-(7) one obtains

p(p) =

From Eq. (16) one has

x =2Es/p, g =2ilg /I[I, p =pF.
1/2

1= —y(s),

(21)

and to replace J, in (18) by its power-series expansion, to
obtain

y(s)= J du exp[ —u+y(u)]E2 0

SQ 1

r!(r + 1)!

p(p)= — I mb(p, ) .
'1'

(24)

To derive the 1/p expansion we observe that higher
powers of s in the expansion (23) of y(s) are associated
with higher powers of 1/p. Therefore we write

b (I)

y(s) =p g b„—,b„= g
r= 1 ~ 1=0 I

Substituting into (23), expanding the right-hand side as a
power series in 1/p, integrating term by term, and equat-
ing coefficients of s "/p"+', gives

The fact that p has a positive imaginary part means that
the integration contour should end up in the fourth qua-
drant. This will be important for extracting the nonper-
turbative part in Sec. V. For the purposes of the pertur-
bative treatment, however, one can take the integration
contour to be the positive real axis. Note that if

y(s)=b, (p)s+O(s )

then

the last equality following from rotational invariance.
Thus if

g (x)= —
—,'az(p)x +0 (x )

g {1) 2b( )

(1) 1 + 2

g 3
( 1 b (0) )2 ( 1 b io) )3

g (0)

2E4(1 —b Io) )i

(26)

(27)

then

1
p(ju)= —Reaz(p) .

etc. Note that, according to (24), the density of states is
determined solely by b, . From (25)—(27) one finds

' 1/2

In Sec. IV, Eq. (18) is solved perturbatively in 1/p,
while in Sec. V the leading nonperturbative term is ex-
tracted. Equation (18) has many similarities to the analo-
gous equation derived by Kim and Harris' for the densi-
ty of states of a random hopping model on a Cayley tree,
and we will follow closely their method of analysis below.

IV. THE LARGE-p EXPANSB3N

In order to facilitate and systematize the large-p expan-
sion it is convenient to make the following changes of
variable:

61 ——— 1 — 1—(0)
2 g2

2

1 — 1—(1)
16 g 2

1/2 —4 i
—1/2

( ) (p2 2) i/2

KP

X 1+— 1—,+01 4p 1

These results can now be inserted into (24) to give

(28)
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p, =4[p + 1+0(1/p) ],
QCf

8K ——aK du exp —u + B,u"
1 r=1

r —1 K —1
Q

and p(p) =0 for p, y p, . The leading term is the
"semicircle" law derived by VA'gner for the nondilute
random matrix. The 0 (1/p) correction leads to a shift in
the band-edge location p„but does not lead to any states
at large eigenvalue. Note that the normalization

I p(p)d @=1 is satisfied order by order in perturbation
theory.

S
yo(s)=p exp

pE (1 b, )— (31)

Now we set

The leading nonperturbative contribution to p(p, ) is
computed via a saddle-point evaluation of the integral in
Eq. (23), using the lowest-order approximation for y(s),
following the method of Kim and Harris. ' The idea is to
pick up the leading contribution to the imaginary part of
the coefficients I b, I in the regime p & p„where they are
entirely real in perturbation theory. The lowest-order ap-
proximation, yo(s), is obtained by letting p ~ ao in the ar-
gument of the exponential in (23), i.e., by putting
y(s) =b, s in the right-hand side of (23) to give

I

+ax f du exp[ —u +yo(u)]u
C2

where we have inserted the lowest order approximation
(31) in the integral along C2.

We wish to compute the leading nonperturbative con-
tribution to each BK, i.e., the contribution proportional
to the first power of the (exponentially small) integral

I = du exp —u +go u (36)
C2

Since it will turn out that the saddle point u ' is of order
p for large p, contributions to BK involving the integral
along C2 are of order p 'I. Hence we have to keep
track of all the B„'s in Eq. (35). Now set
Bx Bx '+Br,—"—+, where now (and in contrast to
Sec IV) .Bx ' is the perturbati ue contr'ibution to Bx, while
B~" is the nonperturbatiue contribution of order I'. To
leading order in the nonperturbative contribution, we re-
quire only Bs ' and Bx". Expanding (35) to leading order
in BK", E&2, and dropping higher-order perturbative
corrections, yields

Bed=ax f du exp[ —(1—b, ) ]u
ux-'

Cl

y(s)= g Bxs
K=1

(32) X 1+ g B,"'u"
r=2

Bx =ax f du exp —u + g B„u"
c r=1

(33)

While at this point the BK"s are the same as the bK's of
Sec. IV, the use of upper-case symbols here is intended to
avoid subsequent confusion. Putting (32) in (23) gives

r

r —1 K —1

+ax J du exp[ —u +ye(u)]u ' . (37)
c~

Recalling that BK" is of order p 'I, and retaining
only the leading terms for p ~ 00, we obtain

BK =OK du exP —u +PP u u, I() P2 . 38
2

1 1

E'ir (E —1)!K!
(34)

The case E =1 must be treated separately, since jc
1

and f c in Eq. (37) give comparable contributions

Choosing the integration contour C as shown in Fig. 1,
where u * is the saddle point of the integrand, gives

BI"——E f du exp[ —(1 b, )u] g B—„'"u'
1 f =2

C)

+E—2I

Substituting for B,"', r )2, from Eq. (38), and evaluating

Ic term by term, yields
1

B',"=E (1 b, ) f du exp—[—u +yo(u)]
C2

X [exp[u/E p(1 bi)] —1I—
(39)

FIG. l. Integration contour used to extract the nonperturba-
tive contribution to the density of states. The point u* is the
saddle point of the integrand in Eq. (36).

To leading order we can replace u by the saddle-point
value u ' in the (order unity) factor in curly braces in Eq.
(39). Combining the result with the perturbative contri-
bution derived in Sec. IV yields the following implicit
equation for b, —:8, :
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1 1 1
b = +-

E'(1 b—, ) p E'(1 —b, )'

E E (1 b—i) E p(1 —bi)

It remains to evaluate the integral I, Eq. (36}. After
the change of variable u =pz, the integral has the form,
using (31) for ya(u),

I pe ~ f dz exp[pc@(z)],
C2

z
ei(z) = —z +exp

E (1 b, )—

~(z')=Ei(1 b, )[1——ln[E (1 b, )] ) . —

Integrating away from the saddle point along the steepest
descent contour gives the 6nal result, expressed in terms
ofp =pE, as

2 1J (p) =X(p) —i +
3 n p (p)

(41)

where
' ]/2

Q (p) =1+ 1—Pc

p

~( )
7l'

p 2ep

p'Q(p)

p Q(p)/2

v&Q(u»

and p~ is given below Eq. (30).
The density of states is obtained from (24), with b,

given by Eq. (40). For general values of p, the final result
is neither simple nor illuminating. To avoid encumbering
the reader with more algebra, we content ourselves here
with deriving the result in the limit p gg p„which serves
to demonstrate the central point that nonperturbative
terms lead to states outside the perturbative band, and
particularly, states at arbitrarily large eigenvalue. In this
limit one has Q(p) ~2 and

lnX(p)=p ln(ep/p, ), p &~@, . (42)

In the same limit one can also replace b, by zero in the
right-hand side of Eq. (40} to obtain

The saddle point z'—:u '/p is the solution of Boo/Bz =0,
1.e.,

z'=E (1 bi )ln[E—(1 b, )], —

tive term moves p, o6' the real axis. Thus the density of
states for any finite p covers the entire interval ( —ao, oo ),
the weight in the "tails" being given by (44).

VI. CONCLUSION

%e have computed the density of states of a random
matrix with elements 0, +1, and mean connectivity p. In
the limit p ~~, the "semicircular" distribution of
VA'gner' is recovered, with no weight outside the sem-
icircle in the limit of an in6nite matrix. The general
features (sharp band edges, no weight outside the band)
of the %igner distribution are preserved order by order
in perturbation theory in 1/p. We have shown, however,
that for any finite p nonperturbative terms lead to a
small, but 6nite, density of states for any p, no matter
how large.

Returning to dilute spin systems, we note that for a
Gaussian spin model (spin weight function exp[@'(s)]
=exp[ —s /2]}, the inverse susceptibility matrix is given
exactly by X '= TI J. If t—he couplings are rescaled b~
a factor I/&p, so that J; takes the values O, kl/&p,
and the limit p ~ 00 taken, one recovers the semicircular
distribution with band edges at p, =+2. In this limit,
therefore, which corresponds to a nondilute, infinite-
range, spin-glass model, the Gaussian spin model is well
defined above a critical temperature T, =2. As soon as
nontrivial dilution is introduced (via finite p), however,
and the J eigenvalue distribution develops infinite tails,
the Gaussian spin model becomes ill defined (X ' has
negative eigenvalues) at any finite temperature. For
physical spin weights (e.g. , the Ising model,
exp[ 8'(s) ]=5(s 2 —1), or the "s " model,
W(s) = rs us },—nonl—inear terms in the relation
between g ' and J renormalize the eigenvalue distribu-
tion of X ' so as to keep all eigenvalues positive above
the critical temperature of the dilute system. "' One of
the goals of studying the simple, mean-field-like dilution
models considered in this paper is the hope that they will
lead to an understanding, within a soluble model, of how
such renormalization e8'ects take place. In particular it
would be nice to know how the renorrnalized density of
states [i.e., p(p, ) for X '] vanishes for p~O. This is par-
ticularly interesting for the especially simple case of the
m-vector model in the limit m ~ 00. For this latter mod-
el the dynamics (assumed relaxational, with no conserva-
tion laws) is determined completely by the statics. ' The
presence of arbitrarily small eigenvalues of X ' then
leads to nonexponential relaxation at temperatures above
the critical point of the dilute system, i.e., throughout the
Grii%ths phase. ' The latter is expected to be a complete-
ly general phenomenon in random systems, and we hope
that the techniques introduced in this paper may eventu-
ally lead to a quantitative understanding of the Gri%ths's
phase within the context of a soluble model.

ln[ —Imb, (p)]=in[ —ImI(p, )]=lnX(p) . (43)

Combining (24), (42), and (43) yields finally

(44)

As a final point we note that if one solves Eq. (40) for
p =@& such that Imb 1

——0, one 6nds that the nonperturba-

%"e would like to thank A. B. Harris, A. J. McKane,
M. A. Moore, and P. Mottishaw for useful discussions,
and A. B. Harris for a very helpful correspondence. One
of us (G.J.R.) thanks the Science and Engineering
Research Council for financial support.
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Abstract. We compute the spectral density for ensembles of of sparse symmetric

random matrices using replica, managing to circumvent difficulties that have been

encountered in earlier approaches along the lines first suggested in a seminal paper by

Rodgers and Bray. Due attention is payed to the issue of localization. Our approach is not

restricted to matrices defined on graphs with Poissonian degree distribution. Matrices

defined on regular random graphs or on scale-free graphs, are easily handled. We also

look at matrices with row constraints such as discrete graph Laplacians. Our approach

naturally allows to unfold the total density of states into contributions coming from

vertices of different local coordination.

1. Introduction

Since its inception by Wigner in the context of describing spectra of excited nuclei [1],

Random Matrix Theory (RMT) has found applications in numerous areas of science,

including questions concerning the stability of complex systems [2], electron localisation

[3], quantum chaos [4], Quantum Chromo Dynamics [5], finance [6, 7], the physics of

glasses both at elevated [8, 9] and low [10, 11] temperatures, number theory [12], and

many many more. For an extensive review describing many of the applications in physics

see, e.g. [13].

In the present paper we revisit the problem of determining the spectral density for

ensembles of sparse random matrices pioneered two decades ago in seminal papers by

Bray and Rodgers [14, 15]. The problem has in recent years received much renewed interest

in connection with the study of complex networks, motivated, for instance, by the fact

that geometric and topological properties of networks are reflected in spectral properties

of adjacency matrices defining the networks in question [16, 17]. Also, phenomena such

as non-exponential relaxation in glassy systems and gels [15, 18] — intimately related

to Lifshitz tails [19] and Griffiths’ singularities in disordered systems [20] — as well as

http://arXiv.org/abs/0803.2886v2


Spectra of Sparse Random Matrices 2

Anderson localization of electronic [21] or vibrational [22] states have been studied in

sparsely connected random systems, as finite dimensional versions of these problems have

proven to be extremely difficult to analyse. A wealth of analytical and numerical results

has been accumulated on these systems in recent years. Progress has, however, been

partly hampered by the fact that full solutions of the Rodgers-Bray integral equation

[14], in terms of which spectral densities of the sparse random matrices in question are

computed, have so far eluded us. Asymptotic analyses for large average connectivities

[14, 15], and other approximation schemes such as the single defect approximation (SDA)

and the effective medium approximation (EMA) [23, 24, 17] or very recently [25], as well

as numerical diagonalization (e.g. [26]) had to come in for help.

In what follows we describe some significant progress in the understanding of this problem,

based upon advances in the statistical mechanical analysis of sparsely connected spin-

glass like systems seen in the last couple of years [27, 28] — in the present context in

particular the proposal of a stochastic population-dynamics algorithm [28] to solve the

nonlinear integral equations appearing in the solution of these problems, and the recent

generalization of these methods to systems with continuous degrees of freedom, such as

models of sparsely connected vector spins [29], or finitely coordinated models for low-

temperature phases of amorphous systems [30].

It is well known that the average spectral density of an ensemble M of N × N matrices

M can be computed from the ensemble average of the imaginary part of their resolvent

via

ρN(λ) =
1

πN
Im Tr [λε1I − M ]−1 , (1)

in which 1I is the N ×N unit matrix, and λε = λ− iε, the limit ε → 0+ being understood.

Following Edwards and Jones [31], one can express this result in terms of the Gaussian

integral

ZN =
∫ N
∏

i=1

dui
√

2π/i
exp







− i

2

∑

i,j

ui(λεδij − Mij)uj







(2)

as

ρN(λ) = − 2

πN
Im

∂

∂λ
ln ZN =

1

N
Re

N
∑

i=1

〈u2
i 〉 , (3)

using the replica method to evaluate the average of the logarithm in (3) over the ensemble

M of matrices M under consideration. The ‘averages’ 〈u2
i 〉 in (3) are evaluated with

respect to the ‘Gaussian measure’ defined by (2).‡ This has been the path taken in [14];

we shall initially follow their reasoning.

‡ Note that we are using probabilistic notions in a loose, metaphorical sense, as the Gaussian measures

used in these calculations are complex.
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Disregarding the complex nature of the ‘Hamiltonian’ in the evaluation of (2), the

mathematical problem posed in (2), (3) is analogous to the evaluation of an ‘internal

energy of a disordered system with quenched disorder. Within the general class of finitely

coordinated amorphous model systems considered in [30], the one represented by (2), (3)

constitutes a particular sub-class, viz. that of harmonically coupled systems, for which the

analysis was found to be much simpler than for systems involving anharmonic couplings.

Indeed, while the solution of the latter required the self-consistent determination of

probability distributions over infinite dimensional function-spaces, it was realized in

[30] that solutions of harmonically coupled systems could be formulated in terms of

superpositions of Gaussians, and that the self-consistency problem reduced to the (much

simpler) problem of a self-consistent determination of the probability distribution of their

variances.

It can be fairly argued that this last insight is, in fact, easier to obtain within a Bethe-

Peierls or cavity type approach [28], in which (2) is recursively evaluated for given

instances on graphs which are locally tree-like, ignoring correlations among subtrees

— an approximation that becomes exact, e.g., for random graphs that remain finitely

coordinated in the thermodynamic limit. This approach is taken in a separate publication

[32], in which (finite) single-instances and promising algorithmic aspects of the problem

are being highlighted.

Although [30] describes all technical details needed for a replica analysis of the present

problem, we shall nevertheless reproduce the key steps here, both to keep the paper self-

contained, and to point out along the way where the impasse in [14] arises, and how it is

circumvented.

The remainder of the paper is organized as follows. In Sec. 2, we describe the replica

analysis of the problem posed by (2), (3), specializing to matrices defined on Poissonian

(Erdös-Renyi) random graphs. It has been known for some time [31, 14] that the replica-

symmetric high-temperature solution — i.e., a solution preserving both, permutation-

symmetry among replica, and rotational symmetry in the space of replica — is exact

for problems of the type considered here. Accordingly, a representation that respects

these symmetries is formulated in Sec. 2.1. It is at this point where our formulation

departs from that of [14]. In Sec. 3 we present results for a variety of examples,

and compare with numerical diagonalization results for large finite matrices to assess

their quality. In sufficiently sparse graphs, one expects localized states to appear. The

signatures of localization within our approach are discussed throughout Sec. 3, with

inverse participation ratios (IPRs) as a diagnostic tool looked at in Sec. 3.2. A detailed

investigation of Anderson localization for (discrete) Schrödinger operators on sparse

random graphs will be reserved to a separate publication [33]. Matrices with bimodal

instead of Gaussian random couplings are studied in Sec. 3.3. As the formal structure of
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the self-consistency problem remains unaltered when the Poissonian random graphs are

replaced by graphs with other degree distributions [30], we can exploit this fact to present

results for regular and scale-free random graphs in Sec. 3.4. Modifications needed to treat

matrices with row-constraints, such as discrete graph Laplacians are outlined in Sec. 3.5.

Our approach naturally allows to unfold the total density of states into contributions

coming from vertices of different local coordination, and we finally present an example of

such an unfolding in Sec. 3.6. The final Sec. 4 contains a brief summary and an outlook

on promising directions for future research.

2. Replica Analysis

2.1. General Formulation

Here we briefly outline the evaluation of (2), (3) for sparse symmetric matries M of the

form

Mij = cijKij , (4)

in which C = {cij} is a symmetric adjacency matrix of an undirected random graph

(with cii = 0), and the non-zero elements of M are specified by the Kij, also taken to be

symmetric in the indices. Within the present outline we restrict ourselves for the sake of

simplicity to adjacency matrices of Erdös-Renyi random graphs, with

P ({cij}) =
∏

i<j

p(cij)δcij ,cji
and p(cij) =

(

1 − c

N

)

δcij ,0 +
c

N
δcij ,1 ,

exhibiting a Posisssonian degree distribution with average coordination c. We note at the

outset that formal results carry over without modification to other cases [30]. There is

no need at this point to specify the distribution of the Kij, but we shall typically look at

Gaussian and bimodal distributions.

The average (3) is evaluated using replica ln ZN = limn→0
1

n
ln Zn

N , starting with integer

numbers of replica as usual. After performing the average over the distribution of the

connectivities one obtains

Zn
N =

∫

∏

ia

duia
√

2π/i
exp







− i

2
λε

∑

i,a

u2

ia +
c

2N

∑

ij

(〈

exp

(

iK
∑

a

uiauja

)〉

K

− 1

)







, (5)

in which 〈. . .〉K refers to an average over the distribution of the Kij . A decoupling of sites

is achieved by introducing the replicated density

ρ(u) =
1

N

∑

i

∏

a

δ
(

ua − uia

)

, (6)
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with u denoting the replica vector u = (u1, u2, . . . , un), and enforcing its definition via

functional δ distributions,

1 =
∫

DρDρ̂ exp

{

−i
∫

duρ̂(u)

(

Nρ(u) −
∑

i

∏

a

δ
(

ua − uia

)

)}

. (7)

This gives (using shorthands of the form dρ(u) ≡ duρ(u) where useful)

Zn
N =

∫

Dρ
∫

Dρ̂ exp

{

N

[

c

2

∫

dρ(u)dρ(v)

(〈

exp

(

iK
∑

a

uava

)〉

K

− 1

)

−
∫

du iρ̂(u)ρ(u) + ln
∫

∏

a

dua
√

2π/i
exp

(

i ρ̂(x) − i

2
λε

∑

a

u2

a

)











, (8)

allowing to evaluate N−1 ln Zn
N by a saddle point method. The stationarity conditions

w.r.t. variations of ρ and ρ̂ read

iρ̂(u) = c
∫

dρ(v)

(〈

exp

(

iK
∑

a

uava

)〉

K

− 1

)

, (9)

ρ(u) =

exp

(

i ρ̂(u) − i
2
λε
∑

a u2
a

)

∫

du exp

(

i ρ̂(u) − i
2
λε
∑

a u2
a

) . (10)

The way in which sites are decoupled constitutes the first point of departure between our

treatment and that of [14] and subsequent analyses inspired by it (e.g. [34, 35]). In these

papers the averaged exponential expressions in the exponent of (5),

f(ui · vj) = f
(

∑

a

uiavja

)

=

〈

exp
(

iK
∑

a

uiavja

)

〉

K

− 1 , (11)

is expanded, and an infinite family of multi-replica generalizations of Edwards Anderson

order parameters (and corresponding Hubbard-Stratonovich transformations) are used to

decouple the sites, much as in the treatment of the dilute spin-glass problem by Viana

and Bray [36]. The authors then use the expansion and the infinite set of self-consistency

equations for the multi-replica generalizations of Edwards Anderson order parameters to

construct a non-linear integral equation for a function g defined via a suitable ‘average’

of f ; see [14] for details. Our treatment in this respect is closer in spirit to the alternative

approach of Kanter and Sompolinsky [37] who treat local field distributions (which in the

general context of disordered amorphous systems discussed in [30] become distributions

of local potentials) as the primary object of their theory.

However, the difference between our treatment and that of [14] is at this point still

superficial. Indeed, we have the correspondence

iρ̂(u) = cg(u) (12)
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between our ‘conjugate density’ ρ̂ and the function g of [14]. With this identification, (9)

and (10) can be combined to give

g(u) =

∫

dv f(u · v) exp
(

cg(v) − i
2
λεv

2
)

∫

dv exp
(

cg(v) − i
2
λεv

2

) , (13)

which is the Rodgers-Bray integral equation for general distributions of non-zero bond

strengths.

2.2. Replica Symmetry

To deal with the n → 0 limit in these equations, assumptions concerning the invariance

properties of the solutions ρ(u) and ρ̂(u) of (9) and (10) — alternatively of the solution

g(u) of (13)— under transformations among the replica are required. It has been

established for some time [31, 14] that the replica-symmetric high-temperature solution

— i.e., a solution preserving both, permutation-symmetry among replica, and rotational

symmetry in the space of replica — is exact for problems of the type considered here.

It is here where the paths taken in the present paper and in [14] really bifurcate. In

[14], the assumption g(u) = g(u), with u = |u| is used to perform the angular integrals

in n-dimensional polar coordinates in (13), resulting in an integral equation for g(u) in

the n → 0-limit. This integral equation has also been obtained using the supersymmetry

approach [38]. It has, however, so far resisted exhaustive analysis or full numerical solution.

In the present paper we follow [30], and represent ρ and ρ̂ as superpositions of replica-

symmetric functions, using the observation made in [30] that superpositions of Gaussians

of the form

ρ(u) =
∫

dπ(ω)
∏

a

exp [ − ω
2
u2

a]

Z(ω)
, (14)

iρ̂(u) = ĉ
∫

dπ̂(ω̂)
∏

a

exp [ − ω̂
2
u2

a]

Z(ω̂)
, (15)

would provide exact solutions for harmonically coupled systems. Note that these

expressions do indeed preserve permutation symmetry among replica as well as rotational

symmetry. In (15) the constant ĉ is to be determined such that π̂ is normalized,
∫

dπ̂(ω̂) = 1. We note that these representations make sense only for Re ω > 0 and

Re ω̂ > 0; later on we shall find that these conditions are self-consistently met for solutions

of the fixed point equations. Expressing (8) in terms of π and π̂, we get

Zn
N =

∫

DπDπ̂ exp {N [G1[π] + G2[π̂, π] + G3[π̂]]} . (16)
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As n → 0, the functionals G1, G2 and G3 evaluate to

G1[π] ≃ n
c

2

∫

dπ(ω)dπ(ω′)

〈

ln
Z2(ω, ω′, K)

Z(ω)Z(ω′)

〉

K

, (17)

G2[π̂, π] ≃ − ĉ − nĉ
∫

dπ̂(ω̂)dπ(ω) ln
Z(ω̂ + ω)

Z(ω̂)Z(ω)
, (18)

G3[π̂] ≃ ĉ + n
∞
∑

k=0

pĉ(k)
∫

{dπ̂}k ln
Zλ({ω̂}k)
∏k

ℓ=1 Z(ω̂ℓ)
, (19)

in which we have introduced the shorthands {dπ̂}k ≡ ∏k
ℓ=1 dπ̂(ω̂ℓ), and {ω̂}k =

∑k
ℓ=1 ω̂ℓ,

a Poissonian connectivity distribution

pĉ(k) =
ĉk

k!
exp[−ĉ] (20)

with average connectivity 〈k〉 = ĉ, and the ‘partition functions’

Z(ω) =
∫

du exp
[

−ω

2
u2

]

=
√

2π/ω , (21)

Zλε
({ω̂}k) =

∫

du
√

2π/i
exp

[

−1

2

(

iλε + {ω̂}k

)

u2

]

=

(

i

iλε + {ω̂}k

)1/2

, (22)

Z2(ω, ω′, K) =
∫

dudv exp
[

−1

2

(

ωu2 + ω′v2 − 2iKuv
)]

=
2π√

ωω′ + K2
. (23)

Note that the O(1) contributions of G2 and G3 in the exponent of (8) cancel in their sum.

The stationarity condition of the functional integral (8) w.r.t variations of ρ and ρ̂ is

reformulated in terms of stationarity conditions w.r.t variations π and π̂,

ĉ
∫

dπ̂(ω̂) ln
Z(ω̂ + ω)

Z(ω̂)Z(ω)
= c

∫

dπ(ω′)

〈

ln
Z2(ω, ω′, K)

Z(ω)Z(ω′)

〉

K

+ µ , (24)

ĉ
∫

dπ(ω) ln
Z(ω̂ + ω)

Z(ω̂)Z(ω)
=
∑

k≥1

kpĉ(k)
∫

{dπ̂}k−1 ln
Zλε

(ω̂ + {ω̂}k−1)

Z(ω̂)
∏k−1

ℓ=1 Z(ω̂ℓ)
+ µ̂ ,(25)

with µ and µ̂ Lagrange multipliers to take the normalization of π and π̂ into account.

The conditions that (24) must hold for all ω and similarly that (25) must hold for all ω̂

can be translated [28] into

π̂(ω̂) =
c

ĉ

∫

dπ(ω′)
〈

δ(ω̂ − Ω̂(ω′, K))
〉

K
, (26)

π(ω) =
∑

k≥1

k

ĉ
pĉ(k)

∫

{dπ̂}k−1 δ (ω − Ω({ω̂}k−1)) , (27)

in which Ω̂(ω′, K) and Ω({ω̂}k−1) are defined via

Z(ω + Ω̂(ω′, K)) =
Z2(ω, ω′, K)

Z(ω′)
⇔ Ω̂(ω′, K) =

K2

ω′
, (28)
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and

Ω({ω̂}k−1) = iλε +
k−1
∑

ℓ=1

ω̂ℓ , (29)

respectively. Given that π is normalized, it follows from (26) that the same is true for π̂,

provided ĉ = c, so the fixed point equations take their final form as

π̂(ω̂) =
∫

dπ(ω′)
〈

δ(ω̂ − Ω̂(ω′, K))
〉

K
, (30)

π(ω) =
∑

k≥1

k

c
pc(k)

∫

{dπ̂}k−1 δ (ω − Ω({ω̂}k−1)) . (31)

These equations can be seen as special cases of the general framework derived in [30],

when restricted to harmonically coupled random systems. In [30] it is shown that they

hold — unmodified — for non-Poissonian degree distributions as well, as long as the

average connectivity in these systems remains finite.

Note that for all ε > 0, π and π̂ — self-consistently — have support in Re ω > 0

and Re ω̂ > 0 as required. The equations take a form that suggests solving them via a

stochastic population-based algorithm, as described in Appendix A.

For the thermodynamic limit of the spectral density we obtain from (2), (3) and (16)-(23)

that

ρ(λ) =
1

π
Im

∞
∑

k=0

pc(k)
∫

{dπ̂}k
i

iλε + {ω̂}k

=
1

π

∞
∑

k=0

pc(k)
∫

{dπ̂}k
Re({ω̂}k + ε)

(Re({ω̂}k + ε))2 + (λ + Im {ω̂}k)
2

. (32)

This expression has a natural interpretation as a sum of contributions of local-densities of

state of sites with connectivities k, weighted according to their probability of occurrence.

Referring to (3), we may further identify the

σ2

k =
1

π
Im

i

iλε + {ω̂}k
(33)

as realizations of the variance of (Gaussian) marginals on sites of coordination k.

With an eye towards disentangling singular (pure point) and continuous contributions to

the spectral density, we find it useful to define

P (a, b) =
∑

k

pc(k)
∫

{dπ̂}k δ (a − Re {ω̂}k) δ (b − Im {ω̂}k) , (34)

with a ≥ 0 by construction. The density of states can then be expressed as an integral

over P ,

ρ(λ) =
∫ da db

π
P (a, b)

a + ε

(a + ε)2 + (b + λ)2
. (35)
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Noting the singlular nature of the above integrand in the limit ε → 0 for a = 0, we propose

to isolate possible singular contributions to the spectral density by writing

P (a, b) = P0(b)δ(a) + P̃ (a, b) . (36)

This gives

ρ(λ) =
∫

db P0(b)Lε(b + λ) +
∫

a>0

da db

π
P̃ (a, b)

a + ε

(a + ε)2 + (b + λ)2
, (37)

in which Lε denotes a Lorentzian of width ε. Our results below strongly suggest that,

when the limit ε → 0 is taken — thereby Lε(x) → δ(x) — a non-zero value of

P0(−λ) = lim
ε→0

∫

db P0(b)Lε(b + λ) (38)

gives the contribution of the pure-point spectrum, originating from localized states, to

the overall spectral density.

This concludes the general framework.

3. Results

In what follows, we report results for a variety of different ensembles of sparse random

matrices, in order to explore the capabilities and limitations of our approach. In order to

properly appreciate the results presented below, it is worth pointing out that within our

stochastic population-dynamics based approach to solving the fixed point equations (30)

and (31), the integrals (32), or (35), (37) are evaluated by sampling from a population.

Denoting by N the number of samples (ai, bi) taken, we have, e.g.,

ρ(λ) ≃ 1

N









N
∑

i=1

ai=0

Lε(bi + λ) +
1

π

N
∑

i=1

ai>0

ai + ε

(ai + ε)2 + (bi + λ)2









(39)

as an approximation of (37). The ε → 0-limit is clearly singular in the first contribution to

(39). If bi +λ 6= 0 for all bi in the sample, one obtains zero in the ε → 0-limit, whereas one

obtains a diverging contribution, if bi +λ = 0 for at least one bi in the sample. The second

alternative will quite generally be an event of probability zero, so a small regularizing

ε > 0 must be kept in order to ‘see’ this contributions (if it exists). In what follows, we

shall refer to the two contributions to (37), as ρs(λ) and ρc(λ), with

ρs(λ) ≃ 1

N
N
∑

i=1

ai=0

Lε(bi + λ) , ρc(λ) ≃ 1

πN
N
∑

i=1

ai>0

ai + ε

(ai + ε)2 + (bi + λ)2
. (40)
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The population-dynamics algorithm itself is run with a small regularizing ε > 0 (as

required in (2) to guarantee existence of the integral). While running the algorithm, we

use ε = 10−300, which is close to the smallest representable real number in double-precision

arithmetic on the machines used for the numerics.

3.1. Poisson Random Graphs — Gaussian Couplings

Our first results pertain to sparse matrices defined on Poisson random graphs, with

Gaussian couplings. The left panel of Fig. 1 shows spectral densities for the case of mean

connectivity c = 4, having Gaussian random couplings with 〈K2
ij〉 = 1/c. For this system

we find an integrable power-law divergence of the form

ρ(λ) ≃ 0.05|λ|−0.61 , λ → 0 , (41)

and a δ peak at λ = 0, the latter originating from isolated sites in the ensemble. Results

of numerical diagonalizations (using a sample of 500 N × N matrices with N = 2000 are

shown for comparison, and the agreement is excellent.
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-3 -2 -1  0  1  2  3

ρ(
λ)

λ

Figure 1. Spectral density for matrices defined on Poissonian random graphs with c = 4

(left panel) and c = 2 (right panel), having Gaussian random couplings with 〈K2

ij〉 = 1/c.

Full line: results obtained from the present theory; dashed line: results obtained from a

sample of 2000×2000 matrices. In both cases ε = 10−300 was used in the evaluation of

(39).

The behaviour changes rather drastically if the average connectivity is reduced to c = 2

— a value closer to the percolation threshold cc = 1. In this case the spectral density shows

strong fluctuations, when evaluated with the same small regularizer. These originate from

ρs in (40), and are related to the pure point spectrum associated with localized eigenstates

coming from a collection of isolated finite clusters of all sizes in the ensemble. These

exist for c = 4 as well, but their contribution is too small to be easily notable when
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combined with ρc in (39). In addition, there is a central δ peak as in the c = 4-case which

appears to be separated from the main bands by a gap; see the second panel in Fig 2.

The agreement with results of numerical diagonalization is fairly poor as it stands; in

particular, exponential tails of localized states extending beyond the apparent edge of the

central band are missed in this way. However, when (39) is evaluated with a regularizing

ε = 10−3 comparable to the resolution of the λ-scan, the agreement is once more excellent

as shown in Fig 2. It is worth noting in this context that numerical simulations, in which

binning of eigenvalues is used to determine the the spectral density also imply a form of

regularization, and they do not distinguish continuous and singular contributions to the

DOS if the distribution of the singular contributions is itself reasonably uniform.

When displayed on a logarithmic scale, the results clearly reveal two interesting features:

(i) a localization transition at λc ≃ 2.295, characterised by a vanishing continuous

contribution ρc to (39) for |λ| > λc, and (ii) exponential (Lifshitz) tails [19] in the spectral

density, related to localized states represented by the singular contribution ρs to (39)), and

exhibited only through regularization. We shall substantiate this analysis in the following

sub-section by looking at the behaviour inverse participation ratios. The same phenomena

are seen for c = 4, where λc ≃ 2.581.

3.2. Inverse Participation Ratios and Localization

In order to substantiate our identification of singular and continuous contributions to the

spectral densities we look at Inverse Participation Ratios (IPRs) of eigenstates as obtained

from numerical diagonalizations. Given eigenvectors v of a (random) matrix, their IPRs

are defined as

IPR(v) =

∑N
i=1 v4

i
(

∑N
i=1 v2

i

)2
. (42)

As eigenvectors can always be chosen to be normalized, we see that IPRs remain of order

1 for localized states which have a few O(1) eigenvector components — the extreme case

being IPR(v) = 1 for vi = δi,i0 — whereas they are O(N−1) for fully extended states for

which vi = O(N−1/2) for all i.

Here we only produce a qualitative comparison for the two cases studied in the previous

subsection, comparing IPRs computed for systems of size N = 100 and N = 1000, and

using scatter-plots of IPRs vs eigenvalues to exhibit the salient features. As clearly visible,

there remains a substantial fraction of states at all λ in the c = 2 case, which do not exhibit

the N−1 scaling of IPRs expected for delocalized states; the tails, and a small central band

in particular appear to be dominated by localized states. By contrast in the c = 4 case

there is a notable depletion of states with O(1) IPRs, except for λ = 0 and in the tails of
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Figure 2. Upper left panel: Spectral density for matrices defined on Poissonian random

graphs with c = 2 as in the previous figure, but now evaluated with a regularizing

ε = 10−3 in (39) (full line). At the resolution given the result is indistinguishable from

the numerical simulation results (dashed line). Upper right panel: zoom into the central

region comparing results obtained with the small regularizer, exhibiting a gap around

the central peak (full line), with a larger regularizer ε = 10−3 (short dashed line) and

with results of numerical diagonalization (long dashed line). The same comparison is

made in the lower panel for a larger portion of the spectrum on a logarithmic scale.

The regularized ε = 10−3-results are on this scale indistinguishable from those of the

numerical simulations. Note the localization transition and the Lifshitz tails as discussed

in the main text.

the spectrum. These findings are entirely consistent with our identifications made in the

previous subsection. We note that the role of regularization in identifying localized states

has been pointed out before using heuristics related to the evaluation of local densities of

state [22].

We shall return to this issue in greater quantitative detail in a separate paper devoted to

Anderson localization in discrete random Schrödinger operators defined on sparse random

graphs [33].
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Figure 3. Scatterplots showing eigenvalue against IPRs for Poissonian random graphs

with c = 2 (first row) and c = 4 (second row). The graphs in the left column correspond

to N = 100, those in the right column to N = 1000.

3.3. Poisson Random Graphs — Bimodal Couplings

We can also look at coupling distributions different from Gaussian for the non-zero

couplings, e.g. fixed Kij = 1/
√

c or bi-modal Kij = ±1/
√

c. As noted before [14], both

give rise to the same spectral densities on large sparse (tree-like) graphs due to the absence

of frustrated loops. It can also be seen as a consequence of the appearance of K2 in (28).

We choose a Poissonian random graph at the percolation threshold c = 1 as an example

that allows us to highlight both the strengths and the limitations of the present approach.

It is known that all states will be localized for this system. In Fig 4 we compare results of

a λ-scan with resolution δλ = 10−3, using a regularizer ε = 10−4 for the scan. The smaller

panels exhibit numerical diagonalization results, as well as a comparison between the two

using a zoom into the region around λ = 1.

On the side of the strengths, we note that the spectral density obtained from our algorithm

is able to display more details than can be exposed by simulation results obtainable at
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Figure 4. Comparison of spectral density for Kij = ±1/
√

c, on a Poissonian random

graph with c = 1 as computed via the present algorithm (main panel) with results from

numerical diagonalisation of N × N matrices of the same type with N = 2000 (lower

left) and a direct comparison in the region around λ = 1.

reasonable effort. On the downside, one might note that the results for this system attain

the status of semi-quantitative results, as they do depend on the chosen regularization,

though in fairness it should be said that the same applies to the results obtained via

numerical diagonalization where results vary with the binning resolution. In the present

case this is due to the fact that the spectrum for most parts consists of a dense collection

of δ peaks [39]. A notable deficiency is the broadening of delta-peaks into Lorentzians of

finite width, which creates artefacts around isolated delta-peaks, exemplified here by the

peak at λ = 0. Since the origin of this deficiency is understood, more precise details can,

if desired, be recovered by choosing a smaller regularizing ε.
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3.4. Regular and Scale-Free Random Graphs

In the present section we consider matrices defined on regular and scale-free random

graphs.

3.4.1. Regular Random Graphs Our theory applies unmodified to matrices defined on

graphs with degree distributions other than Poissonian, as long as the mean connectivity

remains finite. We use this fact to obtain spectra of matrices with Gaussian random

couplings defined on regular random graphs with fixed connectivity c, choosing 〈K2
ij〉 =

1/c for the couplings. Results for c = 4 and c = 100 are shown in Fig. 5. The c = 4 results

are compared with simulations, with results analogous to previous cases, including the

presence of a localization transition at λc ≃ 2.14

The second example is chosen as a test to see the semicircular law [40] reemerge in the

limit of large (though finite) connectivity. This limit can also be extracted from the fixed

point equations. It is somewhat easier to verify for results pertaining to single instances

[32] than for the ensemble.
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Figure 5. Spectral densities for a random graph with fixed connectivity c = 4 (left),

and on a random graph with fixed non-random connectivity c = 100 (right).

3.4.2. Scale-Free Graphs We have also looked at a scale free graph with connectivity

distribution given by p(k) = P0k
−γ with γ = 4 and a lower cut-off at k = 2. Results

shown in Fig. 6 reveal a continuous central band, and localized states for |λ| > λc ≃ 2.85

much as in the other cases. For the present system, the tails in the spectral density follow

a power law of the form ρ(λ) ∼ λ1−2γ [17, 41].

Comparison with exact diagonalization results is facilitated by a fast algorithm that

allows to generate sparse graphs with arbitrary degree distribution [42].
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Figure 6. Spectral density for for Kij = ±1/
√

c on a random graph with power-law

degree distribution of average connectivity c ≃ 2.623. Left panel: results obtained with

small regularizer (full line), and numerical diagonalization results from a sample of 500

matrices of dimension N = 2000 (dashed line). Right panel: the same results displayed

on a logartithmic scale, this time with results regularized at ε = 10−3 (short dashed line)

included.

3.5. Graph Laplacians

Let us finally look at matrices row-constraints, such as related to discrete graph-

Laplacians.

The discrete graph Laplacian of a graph with connectivity matrix C = {cij} has matrix

elements

∆ij = cij − δij

∑

k

cik . (43)

A quadratic form involving the Laplacian can be written in the form

1

2

∑

ij

∆ijuiuj = −1

4

∑

ij

cij(ui − uj)
2 . (44)

As before we shall be interested in more general matrices with zero row-sum constraint

of the form

Mij = cijKij − δij

∑

k

cikKij . (45)

To evaluate the spectral density within the present framework one would thus have to

compute

Zn
N =

∫

∏

ia

duia
√

2π/i
exp







− i

2
λε

∑

i,a

u2

ia +
c

2N

∑

ij

(〈

exp

(

iK

2

∑

a

(uia − uja)
2

)〉

K

− 1

)
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instead of (5). The required modification has, of course, been noted earlier [15, 43].

The resulting problem constitutes precisely (the harmonic variant of) the translationally

invariant systems, for which the framework in [30] was developed in the first place. The

general theory can be copied word for word, and the fixed point equations (30), (31)

remain formally unaltered except for the change in Z2(ω, ω′, K) in (23), owing to the

modified interaction term, which gives rise to a modified expression for Ω̂(ω′, K) in (28).

We obtain

Ω̂(ω′, K) =
Kω′

K − iω′
(46)

instead of (28). Fig. 7 shows the spectrum of a Laplacian for a Posisson random graph with

c = 2, comparing our solution (upper left panel) computed with ε = 10−3 with numerical

diagonalization results in the upper right panel. We use Kij ≡ 1/c for the non-zero matrix

elements in this case. As in the other cases, we observe a localization transition, here at

λc ≃ −3.98. Results obtained with a small regularizer ε = 10−300 exhibiting only the

continuous part of the spectrum are shown in the lower panel.

3.6. Unfolding Spectral Densities

As a last item in this study we look at the possibility of unfolding the spectral density

according to contributions of local densities of state, coming from vertices of different

coordination, as suggested by Eq. (32). This method has been used in [30] to look at

distributions of Debye-Waller factors in amorphous systems, unfolded according to local

coordinations. In the present context it may provide an interesting diagnostic tool to help

understanding localization phenomena.

Fig 8 exhibits the spectrum of the graph Laplacian shown in the previous figure along

with its unfolding into contributions of local densities of state with different coordination.

The present example clearly shows that — somewhat paradoxically — the well connected

sites are the ones providing the dominant contributions to localized states in the lower

band-edge Lifshitz tails. The clearly identifiable humps in the figure correspond from left

to right to k = 9, k = 8, k = 7, k = 6, k = 5, k = 4, and k = 3, which easily allows

to identify the corresponding contributions to the spectral density, the contribution of

k = 2 gives rise to several notable humps in the spectral density, and together with the

k = 1 contribution is mainly responsible for the dip at λ = −1. The k = 0 contribution

is mainly responsible for the δ-peak at λ = 0 (which is broadenend into a Lorentzian of

width ε = 10−3 due to the regularization, as discussed earlier.
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Figure 7. Spectral density for the Laplacian on a Poissonian random graph with c = 2

as computed via the present algorithm. Upper left panel: ε = 10−3-results; upper right

panel: results from numerical diagonalisation of N × N matrices of the same type with

N = 2000. Lower panel: continuous part of the spectrum obtained using ε = 10−300 as a

regularizer.

4. Conclusions

In the present paper we have used a reformulation of the replica approach to

the computation of spectral densities for sparse matrices, which allows to obtain

spectral densities in the thermodynamic limit to any desired detail — limited only by

computational resources. Our method is versatile in that it allows to study systems with

arbitrary degree distributions, as long as they give rise to connectivity distributions with

finite mean. A cavity approach that emphasises results on finite instances will appear

elsewhere [32]. As expected (and well known), the Wigner semi-circle reemerges in the

large c limit as discussed in [32]. Large and small λ asymptotics remain to be investigated.

Our method allows to expose the separate contributions of localized and extended states

to the spectral density, and thereby to study localization transitions. We shall explore this

issue in greater detail in a separate publication. Indeed, with results for graph-Laplacians
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Figure 8. Spectral density for the Laplacian on a Poissonian random graph with c = 2

(full upper line), shown together with its unfolding according to contributions of different

coordination, as discussed in the main text.

in hand, the step towards a study of discrete random Schrödinger operators and Anderson

localization in such systems is just around the corner [33]. A generalization to asymmetric

matrices using both the cavity method and a replica approach for the ensemble along the

lines of [44] is currently under investigation in our group [45]. Other problems we have

started to look at are spectra of modular systems [46] and small world networks.

We believe our results to constitute an improvement over previous asymptotic results as

well as over results obtained by closed form approximations. They may open the way to

further interesting lines of research. Let us here mention just a few such examples: within

RMT proper, one might wish to further investigate the degree of universality of level

correlations in these systems [47]; one could refine the random matrix analysis of financial

cross-correlations [7] by taking non-trivial degree distributions of economic interactions

into account, or one might wish to look at finite connectivity variants of random reactance

networks [48], taking e.g. regular connectivity 4 to compare with results of numerical

simulations of such systems on two-dimensional square lattices.
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Appendix A. Population Dynamics

The stochastic algorithm used to solve (30), (31) takes the following form. Populations

{ωi; 1 ≤ i ≤ Np} and {ω̂i; 1 ≤ i ≤ Np} are randomly initialized with Re ωi > 0 and

Re ω̂i > 0.

Then the following steps are iterated

1. Generate a random k ∼ k
c
pc(k).

2. Randomly select k − 1 elements from {ω̂i; 1 ≤ i ≤ Np}; compute

Ω = iλε +
k−1
∑

j=1

ω̂ij , (A.1)

and replace ωi by Ω for a randomly selected i ∈ {1, . . . , Np}.
3. Select j ∈ {1, . . . , Np} at random, generate a random K according to distribution of

bond strengths; compute

Ω̂ =
K2

ωj
,

(

or Ω̂ =
Kωj

K − iωj
for zero row-sums

)

, (A.2)

and replace ω̂i by Ω̂ for a randomly selected i ∈ {1, . . . , Np}.
4. return to 1.

This algorithm is iterated until populations with stable distributions of {ω̂i; 1 ≤ i ≤ Np}
and {ωi; 1 ≤ i ≤ Np} are attained.

A variant of this algorithm when implemented on instances of real graphs generates the

belief-propagation or cavity equations for this problem, as studied in [32]. It can be derived

directly in terms iterative evaluations of (2) on locally tree-like graphs.
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