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Stress relaxation of near-critical gels
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The time-dependent stress relaxation for a Rouse model of a cross-linked polymer melt is completely
determined by the spectrum of eigenvalues of the connectivity matrix. The latter has been computed analyti-
cally for a mean-field distribution of cross-links. It shows a Lifshitz tail for small eigenvalues and all concen-
trations below the percolation threshold, giving rise to a stretched exponential decay of the stress relaxation
function in the sol phase. At the critical point the density of states is finite for small eigenvalues, resulting in
a logarithmic divergence of the viscosity and an algebraic decay of the stress relaxation function. Numerical
diagonalization of the connectivity matrix supports the analytical findings and has furthermore been applied to
cluster statistics corresponding to random bond percolation in two and three dimensions.
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I. INTRODUCTION Winter and co-workerg5] observe a wide range of exponent
values 0.2 A<0.9, depending on molecular weight and sto-
The most striking observation in near-critical gels is theichiometry. The experimental support for a universal
anomalous stress relaxatiph] that precedes the transforma- stretched exponential law is weak. Whereas Masiral.
tion of the viscous fluid into an elastic amorphous solid, i.e.,confirm the stretched exponential decay and qué+e0.4
the gelation transition. Here, polymer systems are consid:3], other studies reveal nonuniversal exponegtsThe di-
ered, where the viscoelastic behavior is controlled by thesergence of the time scalg® ~ e Z in the scaling function
concentratiorc of cross-links connecting monomers of dif- was determined in viscoelastic measurementszas.9
ferent molecules. At a critical concentratiog;, the gelation  +0.2 [3,2] and deduced from static measurements of the
transition occurs. Viscoelastic studies by several groups havshear modulus az=4.0+0.6 [6]. The experimental values
revealed the following characteristic features of stress relaxfor k, the critical exponent of the viscosity, vary in the range
ation. (1) In the sol phase, well below the gelation transition,0.7<k<1.4. The origin of the scatter in the experimental
one observes a stretched exponential decay of the stress iata is not clear. One possible explanation is the size of the
laxation functiony(t) ~exp—(t/7*)~. (2) The time scaler*  critical region, which is known to depend on the degree of
~¢€ * diverges as the critical point is approached. Here polymerization. Hence experiments with different samples
= (cqit— C)/Cqit denotes the distance from the critical point. have to cope with different sizes of the critical region and
(3) The viscosityn, which is given as the integral over the possibly strong crossover effects.

stress relaxation function, diverges as ¢ ¥ as the critical In this paper we study the simplest dynamic model—
point is approached4) At the critical point, stress relaxation Rouse dynamics—in the presence of a time-dependent shear
is algebraic in timey(t)~t~2. flow by means of analytical calculations and numerical simu-

Whereas the stretched exponential decay is characteristiations. Within this model, the frequency-dependent stress
of the sol phase and holds for all cross-link concentrationselaxation is completely determined by the spectral proper-
c<cCit, the last three observations refer to critical behaviorties of the connectivity matrid’, which specifies which
as the gel point is approached. If dynamic scaling holdsmonomers are cross-linked. As a function of the total con-
these findings can be cast in a scaling ansatz for the stresentration of cross-links, one observes in general a perco-
relaxation functiony(e,t), which depends on time and dis- lation transition at a critical concentratiag,;, such that for

tance from the critical poing, c<cgit N0 macroscopic clusters of connected particles exist,
whereas forc>c,,; the system percolates. In the context of
x(c,t)=€""*g(t/ 7™ (¢)) (1)  gelation the fraction of sites in the macroscopic cluster has

been identified with the gel fraction and the percolation tran-
with 7 ~ €%, Given a certain distancefrom the gel point,  sition has been shown to mark the onset of solidificafitin
one expects to see a crossover from an algebraic decay at The connectivity matriX” is a positive semidefinite, ran-
intermediate times to a stretched exponential decay afom matrix, which has been studied in various contexts, e.g.,
asymptotically large times. The scaling ansatz implies diluted ferromagnets, diffusion in sparsely connected spaces
=(z—k)/z. Dynamic scaling as implied by Eql) is well  [8], anomalous relaxation in glassy systems, and localization
confirmed experimentally2] for the intermediate time re- [9]. In all cases the system consistshbfiertices(monomers
gime wherey(t) decays like a power law. However, the in the context of gelationwhich are connected byN edges
values for the exponents scatter considerably. Maetial.  (cross-links. A given realization of the connectivity matrix
[3] and Adolf and Martir{2] find A=0.7+0.05 in agreement can be decomposed into connected components or clusters.
with the valueA=0.7+0.02 of Durandet al. [4], whereas Each cluster has one zero eigenvalue that describes the dif-
fusive motion of the center of mass of the cluster. The re-
maining nonzero eigenvalues determine the stress relaxation
*Deceased. function and are discussed in this paper. In the simplest case
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(mean field one chooses the edges independently out of althe static shear viscosity. We summarize our results in Sec. V.
possibleN(N—1)/2 edges. The density of eigenvalues canSome detailed calculations have been deferred to Appen-
be computed analytically for the above simple distributiondixes.
and has been discussed in R¢B9] in the percolating re- Our paper is an extension of previous work, in which we
gime, i.e.,c=c.;. In this paper we focus on the range discussed the static shear visco$it,13 and self-diffusion
C<cCgy, Which corresponds to the sol phase and the critical14] in the sol phase as well as at the gelation transition.
point. For cross-links of unit strength the spectrumlofs ~ There it was shown that the long time limit of the incoherent
shown to consist of functions only, whereas it is smooth Scattering function is determined by the zero eigenvalues of
for fluctuating cross-link strength. In both cases the spectrurthe connectivity matrix, and the static shear viscosity is de-
goes to zero for small eigenvalues as a Lifshitz singularitytermined by the trace of the Moore-Penrose inverse of the
for all c<cg;,. The spectrum determines the time-dependengonnectivity matrix. Here we focus on thell spectrum of
stress relaxation functiog(t). All characteristic features of €igenvalues, which also determines the decay of the stress
x(t) as discussed in the first paragraph above are reproducéglaxation affinite times.
by the mean-field model. The stretched exponential decay for
long times can be traced back to the Lifshitz singularity of Il. MODEL AND OBSERVABLES
the spectrum for small eigenvalues. At the critical point, the
spectrum approaches a finite value for small eigenvalues, . L -
gR/ing rise Fopa logarithmic divergence of the sta?tic sheareach c_haracterlzed_ by 't.‘e’ tmg-dependent position vector
viscosity in agreement with previous studies. In mean-fieltﬁi(t) .(':1’ T N) in d-dimensional space Of. volum\i‘,.
theory the exponents are found to ie=1/3,A=1, and I.e., with densityp=N/V. M permanent_ cross-lln_k_s qr/e in-
z=3. These results have been confirmed by numerical diagdrduced between randomly chosen pairs of partidlgs {).
nalization of the connectivity matrik. (esultlng in a cross-link concent_rat|m:n= M./N. These cross-
The last approach can be extended to finite-dimensiondinks are modeled by a harmonic potential
connectivities, corresponding to two- and three-dimensional M
percolation. The stress relaxation function is found to decay U ::i 2 Ao(R, —R;)? )
algebraically at the critical point, i.e.x(t)~t 2 with 29261 % e e
A~0.74 (d=2) andA~0.83 (d=3). In the sol phase one
observes a crossover from algebraic decay at intermediatghose overall strength is controlled by the parametei0.
times to stretched exponential decay at long times. The ni/e use units of energy such thgiT=1 and allow for fluc-
merically determined spectra can also be used to compute theations in the strength of cross-links by introducing the pa-
static shear viscosity. We find for the critical exponentrameter\,. Cross-links of uniform strength correspond to all
k~1.19 d=2) andk=0.75 (d=3). These values are in A.=1.In general each cross-lirdis assigned independently
reasonable agreement with a scaling relafib@ based on arandom strength, according to the distributiop(\). The
an exact correspondence between the viscosity and the restennectivity of the particles is specified by the connectivity
tance of a random resistor network. Using high precisiormatrix
data[11,12 for the conductivity exponent of the latter, one
obtainsk~1.17 @=2) andk~0.71 d=3). M
The paper is organized as follows. In the following sec- I‘ii’:’;::l el 5iie_ 5iig)(5i’ie_ 5i’i,;)v ©)
tion (Sec. 1) we introduce the dynamic model and the ob-
servables that we want to discuss and that can be related {9 terms  of which the potential reads U
tShe smactrum of eltgtinvaluelst.of Ithelcoln?ectlv]:ty {Eatrlx. |n=(d/2a2)ZiNi,:1F”,Ri-Ri,. As usuals; denotes the Kro-
e, Eresen he e calculons or e e sy, .9, 1 for =) and zero thenwse
: . L . We consider purely relaxational dynamics in an externally
vation of a self-consistent equation for the spectrum, which__ . ’ - i
was previously given by Bray and Rodgé8d. We then go applied space- and time-dependent velocity fiefg(r,t):
on to discuss the appearance of Lifshitz tails for small eigen-
values. For cross-links of unit strength the spectrum is shown aR(t) = — 1 U
to consist of a countable set éfpeaks. We present an ana- ' £ 9R”
lytical scheme to systematically compute the spectrum by
iteration. We also consider cross-links of fluctuating strengthHere, Greek indices indicate Cartesian coordinates
for which the spectrum is continuous and can be obtained by Xx,y,z, . . ., and wewill always consider a flow field in the
standard numerical means from the self-consistent integrad direction, increasing linearly witly, i.e.,
equation. In Sec. IV we present results from a numerical
diagonalization of random connectivity matrices. We first VeI 1) = g xi (D)1 y, 6)
compute the spectrum for a mean-field distribution of cross- ) )
links and compare it to the analytical results. Next, cluste™ith a time-dependent shear rat¢t). The noise£ has zero
distributions of random bond percolation in two and threemean and covariance £X(t) &5 (t'))=2¢ "1 8, 561 8(t
dimensions are considered. Data for the stress relaxatiort’), whered(t) is the Diracé function. Here, the bracket
function are presented as well as finite-size scaling plots fo¢- - -) indicates the average over the realizations of the

We consider a system & identical Brownian particles,

(D +vedRi(D), O+ & (). (4
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Gaussian nois&. The relaxation constant is denoted by 1 N
The probability distribution of cross-link configuratior® C(t):=1lim <— Z [Ri(t+T)—Ri(T)]2>- (10
={i,,il}M | as well as the probability distribution of cross- Toe 0T
link strengths will be specified later.

In Ref. [10] we computed the shear viscosity in the sol
phase for(macrgmolecular units of arbitrary internal con-
nectivity. It was shown that the dependence on the cross-lin

concentration and in particular the critical behavior near the G, (t):= lim ([R;(t+ T)~ R{(T)]-[Ri/(t+ T) =R (T)])

We note thaR;(t+ T) —R;(t) is a Gaussian Markov pro-
cess whose distribution in the limit— oo is characterized by
Evanishing mean and the covariance function

gelation threshold are the same for @thacromolecular Tooo

units, as long as we consider identical units with a finite

degree of polymerization. We expect the same universal be- 1t 2dr

havior for stress relaxation on long time scales, which are = _deT exp — EF . (11
i’

much larger than the longest internal time scale of a single
(macrgmolecule. Hence we specialize to the simplest units

) : Performing the integral in Eq11) leads to
namely, Brownian particles. ¢ g q1D

2| a2 1-E, 2dt
A. Relaxation of shear stress Gii ()= Zl2d T 1—exp = EF +1Eg
We aim at the computation of the intrinsic shear stress ”(12)
o,.p5(1) as a funqtion of the shear raLg(t). For the simple o _ _ _
shear flow(5), a linear response relation The matrixI" is non-negative by inspectidisee Eq(2)], as
it should be to ensure relaxation to equilibrium. The scatter-
[t ing function as well as the time delayed displacement can be
Txy(1) = j,xdTX(t_T)K(T) ©) expressed in terms @;;,(t) via
1 N
is valid for arbitrary strengths of the shear ratét). The S(q,t)=— 2 exp{—qZG“(t)} (13)
linear response or shear relaxation functjg(t) is given in N =1
terms of the connectivity matrix as explained in detail in Ref.
and
[13],
1 N
C()=5 2 Gi(t). (14
N i=1

Z|o

N 2dt
x()=3 >, ([1— Eo<g>1exp| - —Zr(@] )
i=1 la i
C. Density of eigenvalues

P 2dt All dynamic quantities of interest have been expressed in
—.NTr([l—Eo(g)]epr —QF(Q)] ) ) terms of T Accordingly, once we know the eigenvalues
{yi}!\Ll and eigenvectors of this matrix, we can compute

. : ynamic observables for arbitrary times. In the following, we
The matrix E, denotes the projector onto th(_e subspace oﬂhall discuss the density of eigenvalues
zero eigenvalues df (see Ref[10]). For a time-independent

shear ratec(t) = «, the stress tensor is time independent and 1 N 1
related to the shear rate=p n« via the static shear viscos- D ¥)= lim = >, 8(y— )= lim =Tr8(y—T)
ity, given by Ref.[10], N—oo N I=1 N—oo
(15
2 _
fa 1-Eo(9) (8) for several cross-link distributions. Here the overbar denotes

77 2dN rg - the average over cross-link realizations. If one splits off the
zero eigenvalued) () can be written as
B. Self-diffusion

Diot ¥)=To(€)6(y) +[1—=To(c)ID (), (16)
To discuss self-diffusion we set the externally applied ve- _ _ _
locity field to zero and focus on the incoherent scatteringvhereD(y) is normalized to 1 and contains only the non-
function zero eigenvalues. If we group the particles into clusters, the

eigenspace of modes with zero eigenvalues corresponds to
vectors that are constant within one clusf&d]. In other

N
1 .
S(g,t):=lim { 5 > explig [Ri(t+T)=Ri(T)1}) (9  words, there is one zero eigenvalue for each cluster and the

T =t dimension of the null space is just the number of clusters
N¢ . The weight of zero eigenvalues is simply given by the
and the squared time delayed displacement density of clusters, i.eTy(c)=Ng/N.
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We restrict ourselves to the density of eigenvalues and do 1
not attempt to compute eigenvectors, which is in general G(Q)=lim NTr ) (23
more difficult. Hence, we can compute only observables that N—eo

can be written as (N)Ei’\‘:l[f(l“)]” , Wheref is an arbitrary
function of I'. The incoherent scattering function is not of
this form[Eq. (13)], whereas the stress relaxation function is

for complex argumenf)=y+ie,e>0. In the limit e—0,
we recover the spectrum from the imaginary part of the re-
solvent according to

- ® 2dt 1
X(t):[l_To(C)]PL dYD(Y)eXDI - EV}- 17 Dioly)=—lim ImG(y+ie). (24)
€l0

The zero eigenvalues are not to be included in the integralt can be inferred from Eq(15) that, converselyD ()
tion, due to the term *E, in Eq. (7). Analogously, the determinesG(Q) via

averaged viscosity is given by D)
o totl ¥
G(Q)—ledy =0 (25)

— {a? J = D(y)
n=[1-To(O)]54 . d?’T- (18
A. Disorder average by replicas
In the same way, the disorder averaged, time delayed dis- Bray and RodgerE8] have shown how to reduce the com-

placement is determined by putation of D,,(y) for cross-links of unit strengtfi.e., all
) Ne=1) to the solution of a nonlinear integral equation. Their
- a® (= D(y) 2dt derivation is easily generalized to cross-links of strength
C(t)_[l_TO(C)]EfO dy y (1—exp{ - EV that fluctuates according to a given distributipt\). We
restrict ourselves to distribution®(\) such that
2t
+To(C)—. (19 =d\
{ f P <e (26)
0

It can also be expressed as an integral over the time- . . ,
dependent response function, holds. It will be shown beloysee Eq(37)] that this condi-

tion is necessary to ensure a finite viscosity in the sol phase.
Following Bray and Rodgers we introduce a generating func-

C(t) 2 ftd (7)+To( )2t (200 i
= TX(T C)—. on

plo XTI

2= | R P L P
lll. MEAN FIELD THEORY N\ i1 20 247 T mua e

We consider first the simplest distribution of cross-links, (27)
which ignoreS all correlations between CFOSS-"nkS, i.e., thQNh|Ch determines the reso'vent, according to
cross-links are chosen independently of each other and each
pair (ie,is) of particle indices is realized with equal prob- . 24dInz
ability. As shown in Ref[15] the particle clusters exhibit the G(Q)::"m N 20 (28)

analog of a percolation transition at a critical cross-link con-

centrationc.;=1/2. Below this concentration there is N0 he ayerage over the disorder is performed with the replica
macroscopic cluster and almost all finite clusters are treeg., resulting in

The average number of tree clustérs with n particles is

given in the macroscopic limit by N n dpe i N
- . o
= —|exp 50
. T n""2(2ce 2%)" LN('Hl al_=[1 277) p(z 'zlmb'
N 2w &0 . v
+ ] IO 2 e A ’2—CN). (29)
ihj=1

In particular the total number of clusters per particle is
We assume that the connectivity is intensive,,\}m(c/N)
=0, and have introduced the notatiah=(¢?!,¢?, ...,
These results are independent of the distribution of cross-linii) for n-times-replicated variables. In the next step one

To(c)=1-c. (22

strengthsp(\). decouples different sites as shown in H&f.and performs a
To compute the density of eigenvalues we introduce théaddle-point approximation for large. This gives rise to a
resolvent self-consistent equation for a functig®(x),
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1
M]_:E

N 020 o Qi iy O N2 =d\ 2d
fdye['ﬂy +2g25) NG -2)A12 fOTp()\):_” (37)

(a?

| ! 2
M1=2c) <€

0”(-2¢ | "dnpn) —
0 f dyelioy?+2gt(2

and
(30)
o , : (5P,—4P) 1 8c®~6c°~5c+1
which in turn determines the resolvent according to My=— >—In - 7 P1
240c 1-2c 30c(1—2c)
dgo“(ze[in%zlag“(?o] 4c2—3¢c—1
. -—P, (38
G(Q)=lim — (31 24c(1—2c)?

n—o N f d’)‘(e[iﬂ;(2/2+g“(;<)]
with P, :=fgdAN""p(\). We are interested in the small ei-
agenvalues that are due to the geometry of the clusters and not
due to the appearance of weak links. Hence we confine our-
selves to distributions such that weak cross-links are unlikely

In the last step of the calculation one assumes a replic
symmetric solution for the saddle-point equation:

to occur. More precisely we require
2(x)=g" ith p= 2. 32
9 (0=gp) with p= /X x; (32 lnpoy| 1 .
N 2 (39

The limit n—0 can then be performed resulting in the fol- Mo

lowing nonlinear integral equation fog®(p) [cf. Egs.

(16,17 in Ref. [8]] The divergence of the momentdl; and M,, suggests a

Lifshitz tail of the density of states of the form

* BN _ 3\ k
g“(p)=20fO d\ p(x)exp{—gpz] D(y)oceXp{—(M ] y10, c<%, (40)
+2ic efzcjwd)\ p()\)deX)\pll(”\pX) since for positivex this ansatz implies for the inverse mo-
0 0 ments
N 1, M ,oc(1—2c) 31 3 41
X ex —?(p +X )+7x +g"*(x); (33 n*( c) . Clz (42)

Bray and Rodgers have given a heuristic argument in favor
with g(0)=2c. Herel () are the modified Bessel func- of the ansata40) with «=1/2. They argue that out of all
tions of the first kind. The solution of Eq33) yields the  clusters for givenn the linear one has the smallest eigen-
resolvent value, namely,ymin=yon 2. There is just one linear cluster

dr . for givenn, so that its contribution to the spectrum is
o] I o]
G(m:—f PN +5c| dppg?(p)  (39)
0 Clo

1
D= Z (2ce(2°))“5( y— %)wvﬁ’?. (42)

and the density of eigenvalues
Arbitrary finite clusters may be attached to the chain without
_ . [ yie altering the dependence of the smallest eigenvalue on the
Dol ) 2cm !IE) Im( ! JO dppg (p)% (35 length of the chain. If a finite cluster of mass is attached
to sitei of the linear chain, the smallest eigenvalueyijsi,

= yo/m;n2. Replacing
B. Moments and Lifshitz tails

If all inverse momentdV, of the density of nonzero ei- 2 nr
genvaluesM ,:=[5dyy "D(y), ne\, exist, one can derive — " 1
the following asymptotic expansion of the resolvent: mi~m= “1-2¢ (43)
" 2 Tn
=t 27 S g (36) )
=——+—+cC
Q fa®?  n=1 i leads t0ymin=vo(1—2c)/n?. The number of clusters con-

tributing to D(y) for small y is much larger if attachments
by expanding the denominator in E®5) in a geometric are taken into account: The probability of finding a chain of
series. As we show in Appendix A, the lowest moments ardengthn, regardless of attachments, is given bg)2 Hence
given explicitly by the density of eigenvalues is estimated as
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Oy — o 2

D"nziZ (20)“5( . M) g%(p)=2caexd —iz(Q)p?2], (46)
2¢ % n? wherez=2z(Q) is an arbitrary function of)=y+ie with
yo(1—2¢)3) 12 Im{z} <0 for >0, leads toG({))=—1+a/z. In the limit

~exp‘ —(0—) ) (44  Im{z}—0 each zeroy; of Re{z(y;)}=0 gives rise to ad

Y function in the spectrum,
Here, we have expanded Imj2-2c—1 for c sufficiently o(y—"i)
close to its critical value.,;;=1/2 to obtain the Lifshitz tail Do ?’):aEi |azl ay(y)|* (47)
near criticality. In Appendix A3 we derive rigorous upper
and lower bounds foD(y), which prove thatD(y) has Next, we construct an approximation to the integral equa-

indeed a Lifshitz tail of the fornD(y)~exd—+vh(c)/y].  tion (45) by successive iteration. We start with
We are unable to derive the dependenceéh@f) on cross-

link concentrationc, which is, however, suggested by the gg(p):=2c. (48)
lowest order moment&38) and(74).
In the following two subsections we shall discuss twoThe first step of the iteration gives
special choices fop(\). In the first case all cross-links are
of unit strength, giving rise to a point spectrum. In the sec- 0 i, I
ond case the strength of the cross-links fluctuates according ~ 91(p)=2cexg —5p|11-€ cfo dx Ji(x)
to p(\) =exp(—1/\)/\?. The integral equatioi33) simpli-

fies considerably for this distribution and allows for a solu- i X2 X
tion by iteration. Xexr{i(ﬂ_l)_ﬂ‘ 0 _) ] (49)
p P
C. Exact solution of the integral equation for uniform cross- i 0
link strengths 2c ex;{ ~50-1 pz) (50
For cross-links of unit strength, the integral equatids)
reduces to Eq(16) in Ref.[8], since the integral on the right-hand side can be calculated
i . exactly [16]. The spectrum consists of & function aty
g%(p)=2c ex;{ - EPZ) 1+ie’2cf dx ply(i px) =0, D{(y)=6(vy). The next step of the iteration gives
0
Q-1 Y LY PR
Xex;{ ( . )X2+gQ(X) ) gz(p)—ZCex;{ L )[1 e fo dx Jy(x)
| X2 X
=2c exp( - Epz) { 1-2c e*ZCJ dx Jy(x) X ex (Q 1) 5 +ot| — P (51
0
X ex i—(Q—l)x—2+ Q i) . (45) =2C€X[{-i—p2> 1—e‘2°fwdx.](x)
2 p? p 2 0 !
o k
The second equality follows from a substitutinn- px and X ex (Q 1)— 2 (ZC)
from the basic relation between the Bessel functions of the k=

first kind J, and the modified Bessel functiohs, in particu-
lar, 1,(x)=—iJ4(ix). B i kQ x2
To get some feeling for the spectrum of eigenvalues, we Xex 20—-1 .2 (52)
first consider the case of smail We then have predomi- P
nantly small clusters, i.e., single particles, dimers, trimers
etc. The connectivity matrix of a dimer has eigenvalugs the integrals appearing in E652) can be computed exactly,
=0\ ,=2. Alinear chain of three particles has elgenvalue%,iekjing
{0,1,3}, a linear chain of four particles has eigenvalues
{0,2,2+ \2,2— \/2}, and a star with three legs has eigenval- i
ues{0,1,4. These are the only trees up @(c®). Hence in Hp)= 202 al® e ;{— —Z(kz)pz) (53
this order the spectrum consists &ffunctions at the above 2
eigenvalues, with each cluster contributing to the weight of

by Taylor expansion of the exponential gf'(x/p). Again,

the & functions according to its frequency of occurrence. _(z). _e_ZC(ZC) @[ 14 1
Next we show thab functions in the spectrum correspond to k= ki otk 0O-1-kQ/(Q-1))°
Gaussian functiong®(p). The ansatz (54
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Note that3;_,a{®’=1. In this iteration, the spectrum is form. This observation enables us to write dofix-point
given by equations for the coefficien and the exponential prefac-
torsz
1_e72c *° - (2C)k71 o i1 )
Da(y)= 5 5('y)+k22e Zcma(y—k). afiiV=a and z{V=2z0. (61)

(59 As shown in Appendix B, these equations can be solved if
the indices on the left- and right-hand sides are matched by
mapping the sequencé,] that appears as index on the left-
) hand side onto a simple numhes =1, M* with some posi-
i I tive integer M. Afterwards, M is taken to infinity. In the
9 (p) 202 a() p{ a Ez(k)pz}’ (56 process,ga new structure of the coefficieatsndz gmerges:
each pair of coefficientsa(,z;) falls into one of infinitely

with 35_,al)=1. L is an arbitrary positive integer and will many “classes” of increasing complexity. The first three

be allowed to tend te> below. We insert the ansat6) into ~ classes are given by the following expressidtise upper
Eq. (45) and use a similar Taylor expansion as above tghdex denotes the classhe general form can be found in

Next, we consider a general ansatz gt of the form

obtain Appendix B:
o0 Q
i (2ca">> aj=e %, Zy=o—r, (62
op=zee =3, . 3 (I 24 e Eag
0~ L* -
i 1 al_e_ZC(ang)“ 21——9_nzg (63
xexpl — 5| It ————— p?| . n n T 0-1-ng’
Q-1-> I,zM
k=0 *
_ 1
(57) (2cak)' @ IZO '
a2 2cH 2 =
(i ’ () * :
When we now lel.—o, we get the expression “ k=0 “ 1
’ QO-1-> Izt

9i1(p)= 2c2 afj )" ex r{—gzéit”pz) (58) (4
Note that the expression for a higher class automatically con-
tains all of the lower classes as well if the Iower class
expressions are recursively inserted, e. gaaoo
—e 2(2cal)/1!=al. This remains true in the general
(590  case. For higher classes the indices become more compli-
cated, e.g., for class 3 it is necessary to U%I as index on

the left hand side. As a shorthand, however, it is convenient
and to use the notationl{) or justk even for the higher classes.

It is then understood th&titself may stand for a more com-
t1_q 4 1 60 plicated object like a nested sequence. See Appendix B for
) * o details.

Q-1-> 1,zM We mention the result tha™, the sum over alk from
k=0 classes 0 tan, is given by

with

~ (2cal)'x

k=0 Iy!

(|+l)

-2
i,y =e

z{]

We use the notationl ) to denote a whole sequence of non- m e cam—1 me1
negative integers, whill, (without parentheseslenotes the S ::{uE)} auy=¢e 1;[ e =exp—2c(1-s"" )},
kth element of the sequence. Out of all possible such se- : (65)
guences we only need those wittiigite number of nonzero

elements. This is becausal’—0 as k—=, and thus and

IT;_o(2ca’)'v/1, ! =0 if there were infinitely many nonzero
elements in ). The set of all sequences with a finite num-
ber of nonzero elements is denoted{ly)}. The summation
in Eq. (58) thus goes over a countable set and therefore

gi"1(p) s of the some functional form ag'(p). Itis easy to lim,, ...s"=1, as it should be. The quantity-Is™ is there-

see thatE{(, 212(iy"'=1 holds also for the next iteration. 0" 2 (easure for the quality of an approximation that only
Sincegy(p) is an expression of the form of E¢56), it goes up to clasm. We can conclude that for smallonly a
follows by induction that allgi*(p), i=2, are of the same few classes are sufficient whereas éoclose to} consider-

P=eg 2 (66)

As long asc<3, the corresponding fix-point equatios
=e 2¢(179 has a stable fixpoint as=1, which implies
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ably more are needed. For>3, the fix point becomes un- 10°
stable, indicating that the iteration no longer converges to the

full solution of the integral equation due to the appearance of
the infinite cluster. 102 +
Implications for the density of states
E 104
Making use of the solution just constructed, the resolvent & 10
can be written as
m 10°®
. ay
G(Q)=—1+1lm > —. (67)
m— oo k Zk
108
Here, inclusion ofa’s andz's from classes lower tham in 0 05 1 15 2 25 3 35 4
ay andzy' has been implied as explained above. Analogous Y
to Eq.(47), this results in the exact density of states FIG. 1. Numerical simulation of the density of states for
c=0.1.
. ) . . o
Dot 7)= lim >, akz —_—, (68)  mate scaling relation holds. This view will furthermore be
m—o K T |ozdlay(vi)l supported by the results of the numerical diagonalization of
i random matrices for different types of system.
that is, a sum of6 peaks located at the rootg; of the To conclude the discussion of the density of states for

respectivezy(y) with weight factorsay|(9z¢/dy) ()|~ uniform cross-link strengths, the spectrum from the iterative
It can be proved with Cauchy’s integration theorem appliedsolution of the integral equation is compared with results
to (ZETK))_l and Eq.(64) or the more general expression from from numerical diagonalization df (for details see Sec. IV
Appendix B that=;|(azf/dy)(yR)| *=1 holds for every below). Figure 1 shows the .numerically compu;ed ;pectrum
z". This property guarantees that the total weight of allfor c=0.1. Note that there is a peak @t=1, which is not
peaks in the spectrum is (tecall that the sum of al's is ~ Present in Eq(69). This ‘missing peak” can be found only
also 1. There is no continuous part of the spectrum, but thigh higher classes, e.g., i@, . =y(y—1)(y=3)/(®
would change foc>1 due to the appearance of an infinite —5¥°+6y*—1). Other roots that can easily be identified
cluster. with peaks in the numerical results are at 22 (stemming

It is impossible to find the roots of a" but classes 0 and from zZ,, ) or at 5/2=\5/2 (stemming fromz§,, ).
1 can be solved exactly. We deduce from B8R that the  Figure 2 shows a direct comparison between the same nu-
roots of z- are located aty,;=0 and y,,=n+1. The merical simulation and a few explicitly calculated peaks
weight factors are easily computed asnt{(1) for the peak from classes up to class 3. The agreement regarding the po-
at 0 andn/(n+1) for the peak ah+1. The density of ei- Sition of the peaks is excellent but some weight is still miss-

genva]ues inc|uding class 0 and 1 then reads Ing from some of the peaks. This Welght is eXpected to be
-1
eZCefzc_ * (2C672C)k 10
1 _ _
(69) 102 |

10° |

D)

Note that this is different from the result of the second itera-
tion, Eg. (55), although it contains the same peaks.

Another consequence of the exact solution of the integral
equation is that the density of states does show scaling 10§
behavior with respect ta, i.e., it cannot be written in the
form D(y)~f(y/v*(c)) with some typicaly*(c). This | | : |
follows from the fact that the positions of the peaks are given 10° 5 (’)'5 ] 15 ) 2'5’ 3 3'5’ 4’
by the roots of the’s, which are independent af and only ) ) ’ ‘
the weights of the peaks depend onThis can obviously Y
never result in an exact scaling form: if scaling were valid, @ FiG. 2. Comparison between the simulatisolid line9 and
small change ofy* would result in a small shift of the peak some selected peaks calculated from the exact solutiashed
positions, but they must stay fixed. It will be shown below jines) for c=0.1. The analytical peaks have been slightly shifted to
for fluctuating cross-link strengths that numerical solutionsthe right for better comparison, otherwise they would be indistin-
for the eigenvalue density indicate that not even an approxiguishable from the numerical peaks.
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found in higher classes and/or in differers which happen 0.4 - . -
to have a root at the same position.

D. Numerical integration for special p(\)

The integral equatior{33) simplifies considerably for a
special choice op(\), namely,

_ 1 1
p()\)—Fex -l (70)

implying P,=n! Inserting the ansatg"(p)=:fo(p?/2) into
Eq. (34) leads to the following representation:

G(Q)=—1+ %f:dxfg(x), (71

FIG. 3. DensityD(y) of nonzero eigenvalues for the mean-field
. . . . . network forp(\) given by Eq.(70) for different concentrations.
V_\Iherefn(x) 1S the_ solution of the ordinary differential equa- The lines are the analytical results., the results from the numeri-
tion (see Appendix A2 for details cal solution of Eq(77)] while the data from the numerical diago-

nalization are shown by the symbols.
fo(X)=—ixfH(x)+2cexp —2c+iQx+fo(x)},

9% (p)=2¢+2ipK,(V2ip)
fo(0)=2c. (72)
P
| | | +aice oK, (V21 p) | "dyl (i)
This allows one to write down the general term in the 0
asymptotic expansion o&(Q) for small (). Close to the

critical point the lowest order moments are explicitly given Xexp[% 7]2+99(77)]
by
Vo 1 | 1 X 1 23 +4ice*26p|1(@p)f d 7K. (\2i7)
Zac|M1m2c) 5 T2 (73 g
xexpl L 24 go (77
e A 1
5 13 ) 1 Xp 1"+ 97 ()
M,= 5T > +O((1-2¢)77), C—35,
15(1-2¢)° 60(1-2c) since in this representation the integrands do not depemd on
(74) and the numerical integration thus needs to be done only
once per iteration, resulting in time and memory require-
M 47 16 O((1—20) 4 ments only of the order of the number of integration grid
= —+ =+ —2C - , . . . .. .
3 2401—2¢)°  1051—2¢)° points. This allows for high precision computations of

9%(p), G(Q), andD(y). _ _
Figures 3 and 4 show the results for the density of eigen-
1 values from a numerical integration of E7) using a Pade
C— = (75) . . . - . o
approximation in order to extrapolat®@ =y+ie to €=0.
There are several noteworthy points to be seen in these fig-
and ures:
First, we expect to see Lifshitz tails fatl ¢, 0<c<1/2,
for asymptotically smally. Precisely at the critical point
5762 1159 .
= + D(y) goes to a constant as—0. For cross-link concentra-
64351—2c)° 7207201-2c)® tions close to the critical one, we expect to see a crossover
between an approximately constant region at intermediate
-7 1 to a Lifshitz tail at very smally. Since small values of are
+0((1-20)77), c¢—3, (76) y Sthaty. > ra
2 hard to access numerically, this crossover makes it difficult
to observe the Lifshitz tail, except possibly for smallFor
giving additional support to the conjecture about the Lifshitzintermediatec the data in Fig. 4 can be described approxi-

4

tail Eq. (40). mately by a straight line but with a slope different from
For a numerical evaluation @&(()) it is more convenient — 3. This property will be confirmed by the results from the
to rewrite Eq.(33) in the form numerical diagonalization presented below.
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25 LI - - - vergence of the static shear viscosit ~t~4 with
\\\ \ A:gl. y apft)
o0 L A \\\ Y — -In(y)2+0.3 | The absence of scaling in the density of states is also
' N\ \ =045 relevant for the stress relaxation function. The presence of
\\\ \ "7 c=038 more than one characteristic scale for the eigenvalues implies
=15 | ’ NN T o0 more than one characteristic time scale for the stress relax-
g ation function. As a consequence, the stress relaxation func-
= tion does not scale either. This point will be discussed further
E10 below in the context of numerical diagonalization of the con-
nectivity matrix. Attempts to scale data for the time depen-
o5 | dent stress relaxation function fdgee Fig. 14 beloy
IV. NUMERICAL DIAGONALIZATION
0.0 '

-8 -6 A. Numerical methods

In(y)

In this section the eigenvalue densiti2éy) of three dif-
FIG. 4. Double logarithm of the densify(y) of nonzero eigen- ferent types of random network are studied numerically:

values as a function of Ip for several concentrations mean-field (N”_:) networks as well as two- and three-

dimensional simple square/cubic grids. For the first case,

A d kabl int is that the densitv of stat cross-links are allowed for all pairsj of nodes while for the
second remarkablé point IS that the density of SIates agy o networks only cross-links between neighboring nodes
seen in Fig. 3 is clearly not suited to a scaling ansatz. Ther:

fhay appear. For the finite-dimensional grids we apply peri-
are (at least two different scales contained in the plot: the y appear n ! > grids we apply per

odic boundary conditions in all directions. The size of the
first is the drop-off lengthy°(c) which describes the scale on ! ), y N I ree 2

. ) o networks is denoted by, with N=L9 (d=2,3) for the
which D(y) goei 0 forsmaHyo, the other is the p?S't'?nnXOf finite-dimensional cases. For the numerical treatment, we
the maximum,y™®{c). While y” goes to 0 forc— 3, y™

consider random graphs with a fixed numbérof vertices,

evidently does not; these two features together are obviously, ha cross-link concentration és= M/N Every cross-link
incompatible with a scaling ansatz of the forb(y) . '

has the same probability of occurrence. For the implementa-
~f(y/v*(c)) with some typical* . This finding is in agree- D y b

. . ; . tion of the graphs on the computer, ttepA library [17] was
ment with the observation from the exact solution for uni- ,coq Network sizes up tdl=10000 (MF), N=3136 (

form cross-link strength where scaling was not possible ei-:2) andN=4096 (d=3) were studied. For each system

ther. Here, however, the statement is even stronger sincg, o \,, 1, 16 different realizations of the disorder were con-

evenl'an fapproxirr?ate scalin% relat?on is ruled (E:t Nfote thesidered(lOOO for the largest sizgsDifferent concentrations
peculiar feature that a second maximum appeaf3(if) for of the cross-links between 0 and the percolation threshold

small y at the percolation threshold=3. This is not an Cor Were treated, where,,(MF) = 1/2, cyi(d=2)=1, and
. . . . . . . crl 1 Crl 1 MCrnl 1
artifact and is confirmed by the numerical diagonalization a%cm(d=3)~0-7464[18]-

shown in the figure. It may even indicate the presence of a
third scale since the emergence of a maximum can already tfﬁ
suspected in the curves for smalter

We consider the same two cases regarding the strength of
e cross-links as above: Either all cross-links have the same
strengthA =1 or their strengths are distributed randomly
with the probability density given in Eq70). Numerically,
the random values for the strengths of the cross-links are
drawn using the inversion meth¢d9]. A random number

The characteristic features of the spectrum as discussgg drawn that is uniformly distributed if0,1]. Then the val-
above have important consequences for the stress relaxatiges of\ := — 1/Inr are distributed according 1@0). For test-
function. In particular, the Lifshitz tail in the spectrum gives ing purposes also some systems were studied where the
rise to an anomalous long time decay of the stress relaxatiogrengths were uniformly distributed in the intery@l5,1.5.
function in the sol phase for ati<c,,;; . The true asymptotic |n all cases no significant deviations of the measurable quan-
behavior ofD(y)~exd —vh(c)/y], which is proven rigor- tities for different distributions could be observed. The main
ously in Appendix A 3, impliesy(t) ~exd —(t/7*)?] with B difference is that for cross-links of unit strength the distribu-
=1/3. However, we are unable to estimate the timescal@on D(y) of the eigenvalues is dominated by a sumdf
needed to reach the asymptotic regime. For smaller timeseaks below the percolation threshold while for cross-links
the stress relaxation function is characterized by effectivef continuous strength the distributidd(y) is purely con-
exponents, just as the spectra in Fig. 4 can be fitted to Liftinuous(see below
shitz tails with effective exponents that depend on cross-link The numerical method works as follows. Random net-
concentratiorc. works are created, with constant or random cross-link

The divergence of the time scalé(e)~¢ ? is deter-  strengths as needed. Then, for each graph the connected
mined by the functiorh(c). The expansion of the resolvent components are determingd0]. For each connected com-
for small() suggestg= 3. At the critical point the density of ponent the connectivity matrix is calculated, which is a real
eigenvalues is constant as-0, implying a logarithmic di- symmetric matrix. Therefore, for determining its eigenvalues

E. Stress relaxation
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FIG. 5. DensityD(y) of nonzero eigenvalues for the mean-field  FIG. 6. Double logarithmic plot of-In[D()] for different con-
network at the percolation threshotd=0.5 from numerical diago-  centrationsc of the mean-field network. The line shows a function
nalization. The solid line is the analytical result, which is hardly —In()/2+ const(Lifshitz tail), which is the behavior predicted by
distinguishable from the result fod=10 000. The inset magnifies theory.
the regionye[0,0.4], where the numerical results for the largest
system sizé\ =10 000 are shown by circles. small in order to observe the asymptotic behavior of the

density of states for small eigenvalues.
the QR algorithm and the Householder mett@d] can be
applied. Next, the eigenvalues are sorted in increasing order. C. Results for finite-dimensional systems
Each connected component has one smallest eigenvalue O.

: : Next, we consider three-dimensional systems, which are
Because of numerical errors usually the smallest eigenvalu y

is not zero but quite small, depending on the distribution Orgeheved to des_,cnbe _real polymer networks more appropri-
a&tely. The density of eigenvalues for the case where all cross-

the strengths of the cross-links. Consequently, the Sma”eIl:nks have the same strength(A)=8(\ —1), is shown in

eigenvalue is assigned the value zero. Finally, the e|genva-.g. 7 for N=16° andc=0.2. As in the mean-field case, a

ues of all components are collected, sorted again, and stor . . . . o N
for further eva[I)uation for each realization of tlge network collection of 5-peaks is obtained. Since this kind of distribu-
" tion is more difficult to analyze, we turn again to the model

where the strengths of the bonds have the distribufi@).
Results for the largest system sipé=16° and different

First, we consider the densify(y) of nonzero eigenval- cross-link concentrations are shown in Fig. 8. Below the per-
ues for the mean-field network at the percolation thresholaolation transitionc;~0.7464 the distribution exhibits a
c=1/2. Data for the casp(\)= 8(\ — 1) have already been maximum and converges to O for small eigenvalues, similar
presented in Fig. 1. Here we consider the case where the

B. Results for the mean-field system

strengths of the cross-links are distributed according Eq. 10° : : :
(70). In Fig. 5 the resulting density is shown for different
system sizes together with the analytical redualbtained 00 [ T 43102 .
from the numerical solution of Eq77)]. It can be seen that
the sizeN= 10000 is already sufficient to reproduce the ana- 10" r T
lytical behavior for a large range of eigenvalues. In particu- .
lar, the “dip” near y=0.15 is validated by the numerical = 1
data(see inset Because of the finite system sizes, arbitrarily &
small eigenvalues cannot be found; thus the numerics dis- 10
agree with the analytical result in that region. Nevertheless, 102
the analytical result lim_,D(y)>0 can indeed be con-
firmed by extrapolating the numerical data to infinite system 107
size.
The spectrunD (y) for different cross-link concentrations

c is presented in Fig. 3. Once more, the numerical (
=10000) and the analytical results agree very well. For
small y, the logarithm of the spectrum should behave as giG, 7. DensityD(y) of nonzero eigenvalues for the cubic net-
~—y V2 (Lifshitz tail). Figure 6 shows the logarithm of work with all bonds having the same strength=1 (c=0.2N
D(y) in a double logarithmic plot in complete analogy to =16°%. Similar to the case of the mean-field network, a sumsof
Fig. 4. Presumably, the system sizeMf 10 000 is still too  peaks with strongly varying heights is obtained.
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) ) ) FIG. 9. Finite-size scaling plot of the viscosity(c,L) for the
FIG. 8. DensityD(y) of nonzero eigenvalues for the cubic net- three-dimensional grid. A scaling behavior gfc,L) =L ¥"7[(c

work with p(\) given by Eq.(70) for different concentrations. ¢ )LY"] is assumed. Using=0.88 andk=0.75 the points for

The inset shows the finite-size dependence at the percolation thresD-: 10,13,16,20 collapse onto one curve near the critical concentra-
old for small eigenvalues. e

tion.

to the mean-ﬂe_ld case. At the transmdh(y) d|_verges aS  of finite-size scaling enables us to circumvent the problems
y—0 (see also_ insgtBelow we W'.“ sho_w that this behaV|or. which are posed by the lack of very small eigenvalues of
changes the divergence of the viscosity near the percolaﬂqnnite graphs

threshold. The eigenvalue densities for the two-dimensional| By plotting 7LX” against ¢—c.;)LY" with correct pa-
network look qualitatively simi]ar and are thefefof e Ot ametersy and k the data points Cfrgr different system sizes
shown here. The true asymptotic bghawor}aso is diffi- and c~c;; should collapse onto a single curve. We have
cult to access, ]ugt as in the mean-field case. taken the values(d=2)=4/3 andv(d=3)=0.88 from the
) The changes in the spectrum as C(_)mpareq to the_ mea.ﬂferature[lS] and adjusted/v. The best collapse neag,
field case al_so affect ;he stress relaxation, which we mves,tl\;\’as obtained withk(d=2)=1.19 andk(d=3)=0.75. The
gate next. First, the viscosity given by results are presented in Figs. 8=3) and 10 =2). The
_ =D(y) values we obtained for the different distributions of the
n:[l—TO(c)]f —dy cross-link strengths agree within the error bars.
°o Y The value ofk for two dimensions agrees very well with
clfpe resultk~1.17 found previously by Broderix et glioj,
using the high precision simulations of Gingold et [d2].

(78)

is considered. Here, irrelevant prefactors have been omitt
for simplicity; see Eq(18) for the complete expression. In
the numerical calculation we compute

N
! ! (79 0.15 §
== — A5 d=2 1
7 N ¥i>0 7i °
oL=10 R
for each realization and subsequently average over different sl=14 °
P [o>] —
realizations of the disorder to obtain. Whereas for the s 01 r :t:;g @
mean-field network the viscosity diverges logarithmically for = alo 40 »
C—Cgit, for finite-dimensional systems a divergengéc) E v L=56
~(cgit—C) ¥ is expected. The reason for the different diver- 0.05 - . B .
gences is the manner in whi&( y) behaves for smaly at v, °
the percolation threshold: for the mean-field network, . 8g °
lim,_oD(y) is finite, but for the finite-dimensional grids ol~ v g T f oo 1
D(y) diverges asy—0. The critical exponenk of the vis- _1'5 _1‘0 _'5 ('J

cosity can be determined from (1)L°

n(c,L)=L """l (c—ce)L "], (80) FIG. 10. Finite-size scaling plot of the viscosig{c,L) for the

. . . . two-dimensional grid. A scaling behavior of(c,L)=L " "3[(c
similar to the usual finite-size scaling relatiof22] for the —co)L Y] is assumed. Using=4/3 andk=1.19 the points for

percolation transition. _Heré is a universal function andis | =10,14,20,28,40,56 collapse onto one curve near the critical con-
the exponent describing the divergence of the correlatiogentration. Since finite systems are treated, the maximug(of is
length when approaching the percolation transition. The useelow the critical concentratioo,;=1 of the infinite lattice.
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The result for the three-dimensional cake=(0.75)is slightly 10’ . . .
worse in comparison witk~0.71[10,12. The reason is that o d=3
here only small system sizes up to*2@uld be treated due 10 —— A=0.830(2) 1
to the fact that all eigenvalues are calculated. If one is only = mean field
interested irk, it is computationally less expensive to com- A=1.029(5)
pute the Moore-Penrose inverse of the connectivity matrix. R
Thereby one might be able to study system sizes as large as
those used in Refl12]. For the realizations treated here, we 107 .
have checked other characteristic results concerning the per-
colation transition, like the critical exponemnt, which de- 10° |
scribes the behavior of the cluster-size distribution. The . °§:§'741(2)
finite-size scaling plots have a poor quality for this quantity, 10° L 0T L .
too, resulting in a rather low precision of the exponent val- 10° 100 10F 10" 10"
ues. Additionally, we have observed a systematic drift in our 10 o pps
results: By including even smaller system sizes, the scaling t
plot results ink=0.89, which differs even more from the
value obtained before. Consequently, we believe that larger FIG. 11. Stress relaxation functiop(t) at the the critical con-
system sizes are needed, to obtain a more reliable resudt forcentrationc=c;; for the three types of model considered here, with
via numerical diagonalization of random connectivity matri- continuously distributed strengths of the cross—_links in all three
ces. cases. Shown are the results for the largest sizes that could be
Next, the behavior of the stress relaxation functiagain treated with sufficient accuracy. For the part of the long-time be-

omitting irrelevant prefactors and using dimensionless timd'@vior which is accessible to the numerical simulationsy(&)
2dt/§agﬂt) P 9 ~t~ behavior is visible. From fitting we obtait=1.029 (mean

field), A=0.830(2) @=3), andA=0.741(2) @=2).

0

o The stress relaxation functiop(t) for different concen-
X(t):[l_To(C)]fO D(y)exp(—yt)dy (81)  trationsc of the cross-links is shown in Figs. 1@ean field
and 13 @=3). In both cases we find exponential decay for
the longest times due to finite system size. For intermediate
was investigated; see E(L7) for the complete expression. times a stretched exponential behavigt) ~ exd — (t/7)?] is
The functions were obtained by first calculatibfy) and  yjsible. At least for finite system sizes the expongrgeems
then numerically integrating it. It would take too much time tg pe nonuniversal; we find values ranging frggw: 0.5 for
on the computer to first calculajgt) for each realization by ~ small cross-link concentrations down g=0.2 close to the
directly summing up the contributions and then average ovepercolation threshold. We suspect that the accessible times
the disorder. Here, we have investigated systems with coryre too short to see the true asymptotic behavior, which at
tinuously distributed cross-link strengths because they resujgast in mean-field theory is known to be a stretched expo-
in continuous eigenvalue densities where it is easier to obtaifential with exponenB= 1/3, resulting from the Lifshitz tail

stable numerical data. _ in the density of states. For small timgét) decreases like
In Fig. 11 the numerical results for the mean-field net-t-2 gnqgy(0)=1 by definition.

work, thed=2 and thed=3 models for the largest sizes

(c=cqy) are shown. As mentioned before, the numerical 1000 - - - .
simulations are restricted to finite sizes of the networks and o°
to a finite number of realizations of the disorder. Therefore, ©¢=0.25  mean field &°
the eigenvalue densitid3(y) always have a smallest eigen-
value yi, with D(y)=0 for y<vy,,. Consequently, the
long-time behavior is dominated by an exponential decrease
exp(— ymint), irrespective of the true form of(t). This re-
sults in a negative curvature in the double-logarithmic plot
for long times. Thus, in the numerical results, the asymptotic
form of the relaxation function is visible only for intermedi-
ate times(see Fig. 11 At c=c; a x(t)~t 2 behavior is
expected. By fitting we obtaid\ =1.029(5) (mean field, 9 g
A=0.830(2) @d=3), andA=0.741(2) @=2). The result . . . .
for the mean-field case is known exactly to he=1. The 10
discrepancy is again due to the finite sizes of the networks:

Indeed, we have observed that for smaller networks a value |G, 12. Rescaled stress relaxation functiefn[x()t] as a
of the exponent is obtained that is even larger. So the resufinction of the time for the mean-field networld € 1.029) with
A=1 seems to be confirmed. The value for the threedifferent concentrations of the cross-links. The straight lines cor-

dimensional grid is compatible with the large range of resultsespond to stretched exponentials with expongsts0.332 and
obtained in experimen{s]. B=1.

100

—In[x (1]

10
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For finite-dimensional systems, the quality of the scaling-
plot is similar. Therefore, it is not possible to make a reliable
estimate for the dynamical exponenin that case.

100 V. CONCLUSIONS

Within our model, the dynamics of a cross-linked polymer
melt is determined completely by the eigenvalue and eigen-
vector spectrum of the connectivity matrx In this paper
we have focused on some properties that are determined by
the eigenvalues alonée.g., the stress relaxation functjon
since the eigenvectors are hard to obtain. We have used three
different methods to examine the eigenvalue spectrum: first,
the construction of an exact solution for the averaged eigen-
value density for a fixed cross-link strength, second, a very

FIG. 13. Rescaled stress relaxation functiein[x(t)t*] as a  Precise numerical solution for the case of varying cross-link
function of the time for the three-dimensional networld ( Strengths, and third, a numerical diagonalization of random
=0.830) with different concentrations of the cross-links. The connectivity matrices.
straight lines correspond to stretched exponentials with exponents The first method allowed for some exact results regarding
B=0.386 and3=1. the eigenvalue spectrum. It could be shown that the eigen-

value spectrum consists of a very complicated but countable

Moreover, this variation of the exponest makes it im- ~ Set of § peaks, some of which could be calculated and com-
possible to observe a scaling fompit) ~t ~2g(t/7), wherer ~ Pared with results from numerical diagonalization. Further-
is a typical time scale that diverges like- (c.;—c) “?when  More, we showed that the eigenvalue density does not show
approaching the percolation threshold. For the mean-fiel§€xact scaling behavior. _ _
network, the expectations from the Lifshitz tails are3 and The second model of fluctuating cross-link strengths has
A=1, while g(t) is the stretched exponential function, but the advantage that the eigenvalue spectrum becomes a con-
we have already mentioned that there seems to be no scalif§uous function instead of an inscrutable sumépeaks.
possible due to the existence of more than one scale. In Figdditionally, it allowed for a fast numerical integration
14 a scaling plot ofy(t) is shown.y(t)t® is plotted against Scheme. From thesg ngmer!cal solupons it could be inferred
tX (Cqrii— C)? for mean-field networks of different concentra- that the expected Lifshitz-tail behavior for smallseems to
tions c. We have used only the regions below the finite-sizeSet in only for extremely smaly, smaller than is accessible
asymptotic behaviorg=1). It can be seen that the quality numerically. For this reason, the stress relaxation function
of the collapse is rather bad, explained by the variatiop of d0€S not show a stretched exponential form with exponent
with ¢. One might think that near the transitian-c, the ~ B=3 Within the accessible time window. Instead, for the
scaling may be better. But there the collapse is even wors@mes that could be reached, there seems to be a regime
(not shown, because even larger systems are necessary ¥here an apparent stretched exponential with a cross-link
reach the asymptotic regime for the small eigenvalues, agoncentration-dependent and thus nonunivergals ob-
explained before. served. Furthermore, in numerical evaluations of the eigen-
value spectrum again scaling could not be observed, not even

—In[x (1]

10

10’ 10° 10 10 10

, , , , : approximately, since at least two, possibly three or more,
SR ] different y scales with different dependence could be iden-
107 tified. As a consequence, the stress relaxation function does
not scale either.
. 9 i The third method, numerical diagonalization, confirmed
10 .o 042 % all results obtained so far very well. In particular it showed
© - =02 ] that the stress relaxation shows stretched exponential behav-
= 10° s Gc=025 8 ior with a concentration-dependent exponefit and it
i <c=03 "i k showed the failure of scaling of the stress relaxation func-
10° v ¢=0.38 % tion. It confirmed, however, the experimental findings that at
»c=04 % the critical concentration the stress relaxation function de-
i +€=045 & cays algebraically with exponent. For the mean-field
107 model, both theory and numerics yield the expon&ntl.
10'_3 10'_2 10'_1 1(')0 1('), Furthermore, numerical diagonalization allows for go_ing be-
te-c,,)° yond the mean-field approach. Results were obtained for

connectivity matrices on two- and three-dimensional cubic

FIG. 14. Scaling plot for the stress relaxatiptt)t® as a func-  lattices. Unlike the mean-field case, the density of eigenval-
tion of t(c.—c)? for the mean-field networkN=10%, randomly ~ ues now diverges at the critical concentratiomas 0, and

distributed strengths of cross-linkaith the valuesA =1,z=3. consequently the viscosity shows a power law divergence as

021404-14
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opposed to a logarithmic divergence as seen in the meanvhich is of course equivalent to the integral equati{88),
field case. The critical exponent for the viscosity is found tobut much better suited for a low frequency expansion.
bek~1.19 d=2) andk~0.75 (d=3). The exponenA is To that end we rescale variables accordingxte\Qp
found to beA~0.74 ([d=2) andA~0.83 (d=3). These and ¥%(x)=g%(x/\). The self-consistent equation then
results are comparable to the experimental findifsg® the reads

Introduction. If dynamical scaling, Eq(1), holds, the criti-

cal exponentz is determined by the scaling relatidn=(z o e [ Q [ d
~Kk)/z, which givesz~4, also in good agreement with ex- W(x)=2ce fo dAp(A)exp S XX
periments.
The Rouse model has some limitations: Excluded volume i ) 0
effects, hydrodynamic interactions, and entanglement are xexp 5 X+ WE(X) . (Ad)

naturally beyond its scope. Hence we consider our work as a

first step toward a quantitative analysis of stress relaxation ifve look for a solution in terms of a power series(i
polymer gels and are presently working on extensions of the

dynamic model to include hydrodynamic as well as excluded 0 “ ,
volume interactions. v (X):J_ZO (Q)W(%). (A5)
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APPENDIX A: LOW FREQUENCY EXPANSION W) i
X)=2cexp —2c)exp =x“+W¥,(X A7
OF THE RESOLVENT o(X)=2cexp—2c)e P(z of )), (A7)

1. Generalp(A) which is solved by

The low frequency expansion is derived from an alterna-
tive form of the integral equatio33). We start from Eq.
(30) and recall an integral representation of theere\w denotes the principal branch of Lambents func-

n-dimensional Laplaciarisee also EQs(3.49—(3.5)) in  iion defined as the solution of
Ref. [13]] ’

Wo(X)=—W(—2c exp —2c)exp(ix?/2)).  (A8)

W(x)exg W(x)]=x. (A9)

dy x=9?[, -
f—z Q nlzexp{ o0 f(lyl) From Eq. (A7) one derives the following property of the
(27Q) lowest order solution:
Q( > n-1d )] ix W
=exp 5| —5+—— 5| {f(p) (A1) = XF00)

We use this representation in the numerator of @) and which allows for an exact computation of the integral

take the limitn— 0. To evaluate the denominator of E§0) % 17> d
we observe that if dXX\I’O(X)I——f dx—[1—¥y(x)]>=2c(c—1).
0 2 0 dx
(A11)
rI]'Lnof dxfo([X) =fo(0)+ O(). (A2) The next two terms are given by
. 1 P,[ d? d
Both steps taken together lead to the following self- Pi(X)= | ——— —— | ¥(x), (Al2)
consistent equation fag(p): 1-Wo(x) 2i | dx2 xdx
2 2
- L(# B T I VS
i, > d
><exp[7p +g (p)], (A3) X 2 Xdx Wo(x). (AL13)
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The integralsfdxx¥;(x) can be performed like EqA11), 1 X

using the properties of Lambert® function. The computa- Fn(y) = N E TrO(y—T))

tions, however, become increasingly tedious, so that higher k=1

order terms have been computed only for the special distri- K 1 X

bution p(\) (see below. =5 k21 T(1-E5O(y-Ty)], (A18)

2. Specialp(n . - .
pecialp(a) whereT ', is the connectivity matrix of thith cluster andEX

We start from Eq.(A3) and introduce the abbreviation s the projector on the null space Bf,. In the macroscopic
D,:=d’/dp®—d/pdp. For the special choicep(\) |imit N—o, this yields
=(1/\?)exp(—1/\), one can perform the average oy )

analytically, .
d ( . . F(y)=(1-¢)0(y)+ El To(T(1—EQ) O (y—T(7,))])

d) 1+iD /2 i "
N e o

due to self-averaging. The brackét--) means averaging
(Al4)  Over the set of all numbered tre¢%,} of size n of which
' there aren" 2. T'(7;,) denotes the connectivity matrix corre-

] ) ] ] S ) sponding to the tre&,. The average number of trees of size
The resulting differential equation simplifies, if we introduce n her vertex is denoted by, and is given by[15]

the functionf o (p%/2):=g"(p),

iD,\ ! iQ
1+ Tp) eX47p2+ g“(p)

n—2
fo(p?12)+ip?/2f4(p2I2)=2c exp —2¢c)exd iQp?/2 == (2ce %)= ;n—s/ze—nh(c)—f(n)/n
2cn! 2cy2m

+fa(p?/2)]. (A15) (A20)

Introducing the new variabbe= p?/2 leads to the differential according to Stirling’s formula witth(c)=2c—1—In(2c)

Eq. (72) quoted in the main part of the paper. For the low znd some functiori(n) with 0<f(n)<1.

frequency expansion it is convenient to introduce yet another The smallest nonzero eigenvalue B{7,) is certainly
variable,y=(1x, in terms of which the differential equation greater than or equal to the smallest nonzero eigenvalue of

for ho(2x):=fo(x) reads the linear cluster witm vertices, which is proportional to
B ” . niz, i.e.,
ho(y) —iyQhg(y)=2cexp(—2c)exdiy +hq(y)].
(A16) .
The ansathq(y) =37 o(Q)ih;(y) then yields T(T)=— (A21)

" (except for the zero eigenvaluaith somea independent of

Mn(y) = iyRn-2(Y) =ho(Y) 77 = o n. This results in
- _ T (1-Ep)@(y—T(Ty))]<(n—-1)0(y—aln?)
xexp( > (nvhj(y)) (A22)
=1 Q=0
a1y
The_ Ieft hand side is linear ih,(y), so that Eq.(A17) is F(y)<l-c+ E (n—1)r, for y>0. (A23)
easily iterated. n=\aly

3. Proof of the existence of a Lifshitz tail inD(y) For y—0, the sum can be approximated by an integral,

The aim of this Appendix is to prove that the density of 1 o
eigenvaluesD(y) shows a Lifshitz-tail behavior fory—0 F(y)sl-c+ j n~ 3% ~nh() (A24)
andc<1/2. For the proof, it is convenient to make use of the 2¢\2m ) vary
eigenvalue distribution functioR(y):=/7?_.dy'D(y’). This

can be done without loss of generality becaude(if) has a ~1— c+—1 Y " exp —h(c) 2 "
Lifshitz tail, so doesD (7). It will be shown thatF () lies 2ch(c)\2m\@ y '
between two bounds which, taken together, assert the Lif- (A25)

shitz behavior.

For a given realization of a system wiftli vertices(or  This is the lower bound foF (7).
polymers, the corresponding () can be written, using a For the upper bound, EGA19) will be used again. Ex-
decomposition into th& clusters of the realization, plicitly, one has fory>0
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121 or, even stronger,
F(y)=1—-c+— >, —(2ce )"
) 2c n; nr ) Jah(c)=<—lim y*2In[F(y)—1+c]<\a[h(c)+1],
'yﬂo
A32
x> TH(1-E)O(y-T(T,)]  (A26) o o _ (432
Tn} which is the sought-for Lifshitz-tail behavior.
1 &1
21—C+2— z —'(ZCE_ZC)n APPENDIX B: DETAILS OF THE EXACT SOLUTION OF
Cn=1 THE INTEGRAL EQUATION
X{;} TH(1— EB)@)(V_F(En))], (A27) 1. Solution of the integral equation
n

It is not obvious how to solve the fix-point equations 61,
where the inner sum has been restricted to the séheér because the coefficients of thth iteration are labeled by an
numbered tree§,}. There aren!/2 such linear trees, such index, and a subsequent iteration gives rise to coefficients
that that are labeled by a sequendg) ( We therefore try to map
the sequencel() that appears as index onto a number by
writing n=3y_,l,M¥ with someM e N. For this to be a
one-to-one map, we need to restrict gllto be <M. This
restriction will be removed later when we |8 —o0. The

1 (e ]
F(y)=1-cty- 2 e MO T (1-Eje(y
n=2

—T(Ln))]. (A28) sequencel{) can be reconstructed fromby writing n in the
Next, the trace, which is a sum of non-negative terms, isnumb’\(/?r system of bas#l. Let this be indicated byl
estimated by just one of the terms. In particular[(Ir = (N)i -

—EDO(y-T(£))]=0(y—a/n?), corresponding to the The fix-point equations can now be written down as
smallest eigenvalue of,,. This finally gives “ (2ca )(n)ﬁ"
K

1 a,=e *° — (B1)
F(y)=1-c+ ET e nh©+1] (A29) k=0 (n)y!
n=yaly
1 a2 z.=1+ ! (B2)
~l-C+————=exp —|—| [1+h(c)] n > :
2c[1+h(c)] p[ (y) ] o M
(A30) 0-1 kZO (n)k Zy

for the lower bound.

. The equations foa,, can be solved independently from those
The upper and the lower bound together imply

for z,. We start witha,,. Successively solving the system of
In|In[F(y)—1+c]| 1 equationgB1) by inspection gives

== (A31)

y—0 [Iny] 2 ag=e %, (B3)

[, (2cay)"
e*ZCT for 1<n<M (B4)
M-1 M
(2cay) Mk
2] —————for M=sn<mMM
an={ k=0 (n)\1 (89
M
M-1 M= (208K 4 Mkt M-tk ) Mot Mk
e 2 Sl m s for MM<n<mMM", (B6)
ko=0 kpm-1=0 (n)k0+Mk1-~-!

and so on. The coefficiemt, is obviously independent of all a%=@2¢ (B7)
other a,. This property will be called “class 0.” 0 '
aq, . ..,ay_1 depend only ora,: this will be termed “class L _ZC(Zce—ZC)n
1.” Analogously,ay, , . . . ,aym_; are in class 2 as they de- an= -y =L (B8)

pend only ona’s from classes 0 and 1.
Now we can letM tend to infinity. Classes 0 and 1 are If we drop the constrainh=1, Eq.(B8) automatically con-
simple (the upper index now denotes the class tains class 0.
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For the higher classes, as we are now considehhg

— oo, indexing via a numben is no longer possible. Instead,

PHYSICAL REVIEW B4 021404

2 |ka

(70)=0. (B16)

for class 2, we have to revert to using a finite sequence as
index. For class 3, even this is not sufficient and a nested@his is possible in some special cases, e.g.,fge1 in

sequencel(k_)) is needed:

a(| 72CH ak)lk

————, lengthof(l,)>1, (B9)

2cad )

e ( a(ki))
!

If the constraint[length of (,)>1] is dropped and if the

3 _

explicit expressions for tha from the lower classes are re-

class 2. Sincel(1)=1, it follows that Eq.(B16) is satisfied
if and only if exactly one entry ofl{) equals 1 whereas all
the others are 0. Adding up all of the weights yields
e 2 (2ce —1)e*® “+1] as the total weight ofé(y
—1) from class 2.

The z?ﬂk) have several noteworthy properties, most of
which are easy to prove by induction owarand are there-
fore listed below without proof.

(1) z(I B is a rational function ofy with integer coeffi-

cursively inserted, all classes up to class 2 are contained igients.

one formula, Eq(B9). An analogous statement holds for Eq.

(B10).
In general, for classn, the index will be of the form
(I ) with m nesting levels. The general result is thus
()

(2ca(”,‘(f‘(1v NECH

(B11)

With the same reasoning as above we can calculate the

Z,. We find the same classes, and the results are

o__ @ B12
Z=q-1 (B12
Q-—nZ
A% (B13)
Q-1-nz’
2 20
1-2 le
Q- L yzZh 't
0oy Hw) )
2 )= (B15)
T 0-1- X g LS 1)

(e )b )

2. Properties of the solution

(2) The degree of the numerator is the same as that of the
denominator.

(3) The coefficient of the highest power is 1 in both nu-
merator and denominator.

(4) z?,“k) is a strictly monotonically decreasing function
(except at its poles

(5) All roots and poles ofz{?k) are located on the non-
negative real axis.
(6) z?l“k) has exactly as many poles as roots. Roots and

poles alternate, starting with a root at 0.

(7) There is exactly one more root zj’,‘k) than there are
poles in=;_ol,zit

(8) The sumz; |(az{?k)/ay)(y[ﬁ‘k)i)|*l over all roots«y?,‘k)i
of z['l‘k) equals 1. As stated in the text, this can be proved

using Cauchy'’s integration theorem.

Consider now some??k) and choosel{) such that only
thenth entry is nonzero. Then we have

-1
'}’_Inz:'.n
m —
2%,..., OO = Ty Ty m (B17)
n

Between two of its polesgsee the list of properties aboye
zZ"1is a continuous function that maps one to one onto the

real numbers; therefore there exists{%in this interval such
that Z?I] )(y[“)—o Moreover, when,— %, the y,m converge

to the rooty; * of z7~* in this interval. Smcezm Lis

monotonically decreasingy" <an L. This implies that for
every peak in the spectrum there are infinitely many other
peaks to the left of it in any arbitrarily small interval around
this peak. This also applies recursively for each of these

If one asks for the total weight of a particular peak at, saySatellite peaks. Only the peak at 0 is different: as stated in the
somey, (up to classm), one has to find all finite solutions list above, all roots ofz(j, are =0 and thus there are no

(1) of the diophantic equation

satellite peaks 0b(y).
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The density of states p(u) of an N X N real, symmetric, random matrix with elements 0, 1 is cal-
culated in the limit N — oo as a function of the average “connectivity” p, i.e., of the mean number of
nonzero elements per row. For p— oo, the Wigner semicircular distribution is recovered. For finite
p the distribution has tails extending beyond the semicircle, with p(u)~(ep /,u")“2 for u*— . Ap-
plications to the theory of “Griffiths singularities” in dilute magnets are discussed.

I. INTRODUCTION

There has been recent interest”? in spin systems in
which the exchange interactions are very dilute, but of
infinite range, in such a way that the average coordina-
tion number is finite. This is achieved by letting the bond
occupation probability be p /N, where N is the number of
sites. Then the mean coordination number is p.

There are many reasons to study such models. While
the finite coordination number is characteristic of sys-
tems with short-range interactions, the infinite-range
forces lead to exactly soluble models.""? In addition, such
models allow one to study the interplay between magnet-
ic order and percolation."? Finally, the technical prob-
lems posed by these models have strong formal similari-
ties with those encountered in many problems of com-
binatorial optimization, such as graph-partitioning,’ >
matching,® and traveling-salesman’ problems.

Our own motivation originally arose from the desire to
understand the role of Griffiths singularities® in both the
statics and dynamics® of dilute spin systems at tempera-
tures between the critical temperatures of the dilute and
non-dilute systems (the “Griffiths phase”!®). It has been
argued!! that this temperature regime is characterized by
unusual behavior of the spectrum of the inverse X ' of
the matrix of susceptibilities. In particular X ' should
have eigenvalues arbitrarily close to zero, corresponding
to localized eigenstates. The phase transition should
occur when the eigenstate at the mobility edge goes soft,
i.e., when the mobility edge reaches zero eigenvalue.!"!2
It would be very nice to be able to construct an exactly
soluble model, such as mean-field theory, exhibiting this
effect, and dilute, finitely coordinated, infinite-range mod-
els seem promising. Unfortunately, determination of the
matrix X ! is itself a difficult nonlinear problem. There-
fore, as a first step, we look at the simpler problem of the
eigenvalue spectrum of the exchange matrix J. Note that
at high temperatures these matrices are related,!"'? since
X~ '=TI—J+0(1/T), where I is the unit matrix.
~ While the above considerations provide the authors’
personal motivation, the eigenvalue spectrum of a large
random matrix is an interesting problem in its own right,

37

and has a long history.”* The simplest case is when the
elements of the matrix are identically distributed in-
dependent random variables with zero mean. For this
case one obtains, in the limit of large matrices, the
famous “semicircular” distribution of Wigner.'"* We re-
cover this result in the limit that the mean ““‘connectivity”
p (i.e., the mean number of nonzero elements per row) of
the sparse matrix tends to infinity. For any finite p, how-
ever, we will show that there are states beyond the sem-
icircle, and that the density of statezs in the tails of the
distribution varies as p(u)~(ep /u*)".

The outline of the paper is as follows. In Sec. IT we
present the model, and in Sec. III give its formal solution
in terms of a nonlinear integral equation. In Sec. IV the
integral equation is solved perturbatively to O (1/p). The
leading term reproduces the semicircle law while the
O (1/p) correction may be interpreted in terms of a shift-
ed band edge. In perturbation theory, however, there are
no states at large eigenvalue. To obtain such states it is
necessary to extract a nonperturbative contribution from
the integral equation, and this is done in Sec. V. Section
VI contains a summary and discussion of the results.

II. THE MODEL

We consider a real, symmetric N X N matrix J whose
elements J;; are (up to the symmetry J;;=J;) indepen-
dent, identically distributed, random variables, with

probability distribution

1_% 8(J.) +L=[8(J,

P(J,)= i)+ 5 n 85

)

—D+8(;+D]. (1)

For a particular realization of the matrix J, the normal-
ized density of states p(u) can be obtained from the
Green’s matrix

Gu)=(J—pl)~! ()

©1988 The American Physical Society
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1 .
p(u)—NﬂImTrQ(u—HS), (3)

where § is a positive infinitesimal.
To compute p(u) it is convenient to introduce the gen-
erating function

exp

Z(p)= f_“w lH de,

';‘ [#;‘p%_"zj"ijd’iqu ' i ,

4)

where now p contains implicitly a small positive imagi-
nary part which ensures convergence of the integrals.
From Egs. (2)-(4) one obtains

()=~ 1m 2102
PR="Nm o

(5)

This gives the result for a particular realization of the dis-
order. To make further progress we invoke the replica
method to average over the disorder. The average densi-
ty of states is obtained from Eq. (5) by replacing InZ by
[InZ],,, where [ 1,, indicates a disorder average. The
latter may be computed from the replicated generating
function [Z"],, via the limit

[InZ],,=lim ([Z"],,—1/n . 6)

III. THE SOLUTION

Introducing replica variables {¢7}, a= .,h, and
averaging over the random-matrix elements with the dis-
tribution (1) yields, after dropping subextensive terms,
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[Z"l=[" [[L47 |

X exp éuz(dﬁ-’)z

i,a

11\72] [cos [§¢?¢;J—1]J :

(N

To proceed further, it is necessary to decouple the

different sites in (7) by the introduction of auxiliary vari-

ables (““Hubbard-Stratonovich transformation”) in the

usual way. To do this we will follow the method of De

Dominicis and Mottishaw.!* Consider generating func-
tions of the form

z,(w.fi=[ D¢expl 3 W)

%2f[2¢?¢?} . ®
ij a

where D¢ =], ,(d¢?), W (o) is a “weighting function,”
and the function f(3,x,) is assumed to have a power-

series expansion. Such an expansion can be rearranged in
the form

e

+22bx +E Ebrsxaxﬂ

a,fB rs
a<B

+ X Zbgxixpel, 4. 9)

a,B,y st
a<B<y
Inserting this expansion in (8), with x , =¢%¢% 7, and intro-
ducing ) auxiliary fields q3’,q0",.... conjugate to
3 (82,3 (62 (48, . yields, up to constants,

Z,(W.f}=[ Dgexp |- lzb @I+ Sblg) P+ }
aa</.;? rs
+NI [ [H ds, |exp {2 W(¢a)+pg{¢a}] , (10)
a=1 a
—
where [ Déh{g,)expFis,)
(r) r <h{¢a}>¢= (13)
819a)=/(0)+3 5,45 (90) [ Do expF{g,)
+3 zb,sqg,;) J(dp)+ (11) Flo.} =23 W(d,)+pgid,} (14)
a,B rs a

a<f

In the limit N — oo, the integrals over the auxiliary fields
can be evaluated by steepest descents, to give

(r) — ((¢a)r)¢ ,
g = (8 (dp))s
etc., where { ), is defined by

(12)

for an arbitrary function A.

At this point we can use Eq. (12) to substitute for the
“order parameters” {q} in Eq. (11). The function g{¢,}
can then be expressed in terms of f{¢,} as

gl =(r (S bt ])w ,

which is a nonlinear integral equation for g {¢,}.

(15)
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Note the generality of the above approach. If Z,, is re-
garded as the replicated partition function for a spin sys-
tem with ‘“spin variables” {¢,}, then W(¢) specifies the
spin weight function, while f(x) characterizes the bond
distribution.

The random-matrix problem under consideration here
is specified by W(¢)=(i/2)ud? and f(x)=cos(x)—1.
Inserting these into Eq. (15), and using (13) and (14), gives
an explicit equation for g {¢,} which can be written com-
pactly by treating ¢=(¢,,...,d,) as a vector in the n-
dimensional replica space:

J d"ylcos(¢-1)— 1]expF ()
- fd"¢epr(¢)

F(y)=Sud+pg(¥) (17

g(¢) , (16)

It is clear that Eq. (16) possesses a solution in which g (¢)
is a function of x = | ¢ | only, and we will just consider
this solution, i.e., we will not pursue the possibility that
rotational symmetry in the replica space is spontaneously
broken. The angular integrals in Eq. (16) may then be
evaluated in n-dimensional polar coordinates, and the
n —0 limit taken, to give

Ji(xy), (18)

- —x [~ LI
glx)=—x fo dy exp 2,uy +pg (y)
where J is the Bessel function of order 1.

Equation (18) is our central result. It remains to ex-
tract the average density of states [p(u)],, [which we will

henceforth call simply p(u)] from g(x). Using Egs.
(5)—(7) one obtains
b 2y _ 1 2
plu)= nﬂRe% ((¢)*) 4= MRe<¢ Y - (19)
From Eq. (16) one has
§(B)1=— 1Pyt o == )t

the last equality following from rotational invariance.
Thus if

g(x)=—1a,(ux*+0(x*)

then
p(y)=—11;Rea2(y) . (20)

In Sec. IV, Eq. (18) is solved perturbatively in 1/p,
while in Sec. V the leading nonperturbative term is ex-
tracted. Equation (18) has many similarities to the analo-
gous equation derived by Kim and Harris'® for the densi-
ty of states of a random hopping model on a Cayley tree,
and we will follow closely their method of analysis below.

IV. THE LARGE-p EXPANSION

In order to facilitate and systematize the large-p expan-
sion it is convenient to make the following changes of
variable:
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x2=2is/u, y*=2iu/p, u*=pE?*, @n
L2 )

glx)=g| | == =—yl(s), (22)
7 P

and to replace J, in (18) by its power-series expansion, to
obtain

S o
y(s)=—E—2- fo du exp[ —u +y(u)]

r

1

rlr+ 10 23

The fact that u has a positive imaginary part means that
the integration contour should end up in the fourth qua-
drant. This will be important for extracting the nonper-
turbative part in Sec. V. For the purposes of the pertur-
bative treatment, however, one can take the integration
contour to be the positive real axis. Note that if

y(s)=b,(u)s +0(s?)

then
I)(‘L = — I]llb “ . 24)

To derive the 1/p expansion we observe that higher
powers of s in the expansion (23) of y(s) are associated

with higher powers of 1/p. Therefore we write

r ~ b(l]

r

, b=3 .

=0 P

p

y(s)=p 3 b,

r=1

Substituting into (23), expanding the right-hand side as a
power series in 1/p, integrating term by term, and equat-
ing coefficients of s"/p” */, gives

1

o _ -
AT 23
1 btll) 2b(20)
bV =— — 4+ , (26)
1 EZ (l_b(IO))Z (I_b(lO))3
1
(0) __
b2 T 2EY1—b )2 @7

etc. Note that, according to (24), the density of states is
determined solely by b,. From (25)-(27) one finds

: 4 172
bPV==1—- |1——
1 2 E? ) (28)
1/21-4 -1
EZ
b =" |1- |1——5 -
M="Tg o -3 (29)
These results can now be inserted into (24) to give
2
plu)= ——5(ui —p*)'"?
T
2
x |1+ 1= o | L], (30)
p He p
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where
pi=4lp +1+0(1/p)],

and p(u)=0 for u?’>u?. The leading term is the
“semicircle” law derived by Wigner for the nondilute
random matrix. The O (1/p) correction leads to a shift in
the band-edge location p., but does not lead to any states
at large eigenvalue. Note that the normalization
f plu)du=1 is satisfied order by order in perturbation
theory.

V. THE NONPERTURBATIVE TERM

The leading nonperturbative contribution to p(u) is
computed via a saddle-point evaluation of the integral in
Eq. (23), using the lowest-order approximation for y(s),
following the method of Kim and Harris.!® The idea is to
pick up the leading contribution to the imaginary part of
the coefficients {b,} in the regime u*> pu?, where they are
entirely real in perturbation theory. The lowest-order ap-
proximation, y(s), is obtained by letting p — « in the ar-
gument of the exponential in (23), i.e.,, by putting
y(s)=>b,s in the right-hand side of (23) to give

N

(s)= —
Yols)=p JEN1—b1)

exp

—1] . (3D

Now we set
z Bgs /p -t 32)

While at this point the Bg’s are the same as the bg’s of
Sec. IV, the use of upper-case symbols here is intended to
avoid subsequent confusion. Putting (32) in (23) gives

BK.-aKf du exp —u+2Bu/p “Hukot, (33)
r=1
where
ag=—o— L (34)

E* (K —1)K!

Choosing the integration contour C as shown in Fig. 1,
where u * is the saddle point of the integrand, gives

Imu
u *
- . 4 Reu
C1
Ca

FIG. 1. Integration contour used to extract the nonperturba-
tive contribution to the density of states. The point u* is the
saddle point of the integrand in Eq. (36).
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BK—aKf du exp ~u+2Bu/p’_ u
r=1
+ag fc du exp[ —u +yolu)]uX -1, (35)
2

where we have inserted the lowest order approximation
(31) in the integral along C,.

We wish to compute the leading nonperturbative con-
tribution to each By, i.e., the contribution proportional
to the first power of the (exponentially small) integral

szcz du exp[ —u +yo(u)] . (36)

Since it will turn out that the saddle point u * is of order
p for large p, contributions to By involving the integral
along C, are of order pX ~'I. Hence we have to keep
track of all the B,s in Eq. (35. Now set
Bx=B”' +B}"+ ---, where now (and in contrast to
Sec. IV) B is the perturbative contribution to By, while
B\ is the nonperturbative contribution of order I'. To
leading order in the nonperturbative contribution, we re-
quire only B{” and B{!’. Expanding (35) to leading order
in BY, K >2, and dropping higher-order perturbative
corrections, yields

By =ag fcl du exp[ —(1—b)uJuX !

1+ 2 Br(l)ur/Prvl ]
r=2
+ag fczdu exp[ —u +yo(u)Juk 1. (37)

Recalling that B! is of order pX I, and retaining
only the leading terms for p — «, we obtain

Bl =ay fc duexp[ —u +yow)u®-1, K>2. (38)
2

The case K =1 must be treated separately, since f c,
and f ¢, in Eq. (37) give comparable contributions

B{'=E~*[_ du exp[—(l—bl)u]EZB,‘“u'/p'—

+E"?I .

Substituting for B!", r >2, from Eq. (38), and evaluating
f c, term by term, yields

B{V=E~%1—b,)2 f du exp[ —u +y(u)]

X {exp[u/E*p(1—b;)]—1}

+E~? . (39)

To leading order we can replace u by the saddle-point
value u* in the (order unity) factor in curly braces in Eq.
(39). Combining the result with the perturbative contri-
bution derived in Sec. IV yields the following implicit
equation for b; =B ;:
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1
+L 1

bl=

EX1—b,) p E%1—b,)

I u*

= N —_— S A— R
eV T B TP B b)) H

(40)

It remains to evaluate the integral I, Eq. (36). After
the change of variable u =pz, the integral has the form,
using (31) for yy(u),

I=pe? sz dz exp[pw(z)],

where

w(z)=—2z +exp

__z
EX1—b,)
The saddle point z* =u* /p is the solution of dw /dz =0,
i.e.,

z*=E*1—b,)In[EX1—b,)],
and

w(z*)=EX1—b){1—In[EX1—b})]} .

Integrating away from the saddle point along the steepest
descent contour gives the final result, expressed in terms
of u?=pE?, as

2 1
Ip)=Xu) |—i + 2 ——c |, 41
73] m l+3‘/7“‘/Q(#) 41)
where

5, (172
Q(u)=1+ I—E% :

u

. 2
4 uoeQu)/2

X(,u)=—271e"’ TzeL uvolu),

u Q)

and u? is given below Eq. (30).

The density of states is obtained from (24), with b,
given by Eq. (40). For general values of u the final result
is neither simple nor illuminating. To avoid encumbering
the reader with more algebra, we content ourselves here
with deriving the result in the limit u? >>u?2, which serves
to demonstrate the central point that nonperturbative
terms lead to states outside the perturbative band, and
particularly, states at arbitrarily large eigenvalue. In this
limit one has Q (u)—2 and

InX(u)~p?In(ep /u?), p?>>u? . (42)

In the same limit one can also replace b; by zero in the
right-hand side of Eq. (40) to obtain

In[ —Imb ()]~ In[ —ImJ ()]~ InX (1) . (43)
Combining (24), (42), and (43) yields finally
Inp(p)~ —p’In(u?/ep), u>>u? . (44)

As a final point we note that if one solves Eq. (40) for
p=p, such that Imb, =0, one finds that the nonperturba-

tive term moves u; off the real axis. Thus the density of
states for any finite p covers the entire interval (— 0, o0 ),
the weight in the “tails” being given by (44).

VI. CONCLUSION

We have computed the density of states of a random
matrix with elements 0, 1, and mean connectivity p. In
the limit p-— o, the ‘“semicircular” distribution of
Wigner'* is recovered, with no weight outside the sem-
icircle in the limit of an infinite matrix. The general
features (sharp band edges, no weight outside the band)
of the Wigner distribution are preserved order by order
in perturbation theory in 1/p. We have shown, however,
that for any finite p nonperturbative terms lead to a
small, but finite, density of states for any u, no matter
how large.

Returning to dilute spin systems, we note that for a
Gaussian spin model (spin weight function exp[W(s)]
=exp[ —s2/2]), the inverse susceptibility matrix is given
exactly by X "l= TI—J. If the couplings are rescaled by
a factor 1/V/p, so that J;; takes the values 0,+1/Vp,
and the limit p — « taken, one recovers the semicircular
distribution with band edges at pu.==2. In this limit,
therefore, which corresponds to a nondilute, infinite-
range, spin-glass model, the Gaussian spin model is well
defined above a critical temperature T, =2. As soon as
nontrivial dilution is introduced (via finite p), however,
and the J eigenvalue distribution develops infinite tails,
the Gaussian spin model becomes ill defined (X! has
negative eigenvalues) at any finite temperature. For
physical spin weights (e.g., the Ising model,
exp[W(s)]=8(s*—1), or the g model,
W(s)=—rs’—us*), nonlinear terms in the relation
between X! and J renormalize the eigenvalue distribu-
tion of X~ ! so as to keep all eigenvalues positive above
the critical temperature of the dilute system.!"'? One of
the goals of studying the simple, mean-field-like dilution
models considered in this paper is the hope that they will
lead to an understanding, within a soluble model, of how
such renormalization effects take place. In particular it
would be nice to know how the renormalized density of
states [i.e., p(u) for X ~!] vanishes for u—0. This is par-
ticularly interesting for the especially simple case of the
m-vector model in the limit m — «. For this latter mod-
el the dynamics (assumed relaxational, with no conserva-
tion laws) is determined completely by the statics.!” The
presence of arbitrarily small eigenvalues of X! then
leads to nonexponential relaxation at temperatures above
the critical point of the dilute system, i.e., throughout the
Griffiths phase.!” The latter is expected to be a complete-
ly general phenomenon in random systems, and we hope
that the techniques introduced in this paper may eventu-
ally lead to a quantitative understanding of the Griffiths’s
phase within the context of a soluble model.
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Abstract. We compute the spectral density for ensembles of of sparse symmetric
random matrices using replica, managing to circumvent difficulties that have been
encountered in earlier approaches along the lines first suggested in a seminal paper by
Rodgers and Bray. Due attention is payed to the issue of localization. Our approach is not
restricted to matrices defined on graphs with Poissonian degree distribution. Matrices
defined on regular random graphs or on scale-free graphs, are easily handled. We also
look at matrices with row constraints such as discrete graph Laplacians. Our approach
naturally allows to unfold the total density of states into contributions coming from
vertices of different local coordination.

1. Introduction

Since its inception by Wigner in the context of describing spectra of excited nuclei [1],
Random Matrix Theory (RMT) has found applications in numerous areas of science,
including questions concerning the stability of complex systems [2], electron localisation
[3], quantum chaos [4], Quantum Chromo Dynamics [5], finance [6, [7], the physics of
glasses both at elevated [8, 9] and low [I0, 11] temperatures, number theory [12], and
many many more. For an extensive review describing many of the applications in physics

see, e.g. [13].

In the present paper we revisit the problem of determining the spectral density for
ensembles of sparse random matrices pioneered two decades ago in seminal papers by
Bray and Rodgers [14, [15]. The problem has in recent years received much renewed interest
in connection with the study of complex networks, motivated, for instance, by the fact
that geometric and topological properties of networks are reflected in spectral properties
of adjacency matrices defining the networks in question [16, [I7]. Also, phenomena such
as non-exponential relaxation in glassy systems and gels [I5, 18] — intimately related
to Lifshitz tails [I9] and Griffiths’ singularities in disordered systems [20] — as well as
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Anderson localization of electronic [2I] or vibrational [22] states have been studied in
sparsely connected random systems, as finite dimensional versions of these problems have
proven to be extremely difficult to analyse. A wealth of analytical and numerical results
has been accumulated on these systems in recent years. Progress has, however, been
partly hampered by the fact that full solutions of the Rodgers-Bray integral equation
[14], in terms of which spectral densities of the sparse random matrices in question are
computed, have so far eluded us. Asymptotic analyses for large average connectivities
[14], [15], and other approximation schemes such as the single defect approximation (SDA)
and the effective medium approximation (EMA) [23, 24, [17] or very recently [25], as well
as numerical diagonalization (e.g. [20]) had to come in for help.

In what follows we describe some significant progress in the understanding of this problem,

based upon advances in the statistical mechanical analysis of sparsely connected spin-
glass like systems seen in the last couple of years [27, 28] — in the present context in
particular the proposal of a stochastic population-dynamics algorithm [28] to solve the
nonlinear integral equations appearing in the solution of these problems, and the recent
generalization of these methods to systems with continuous degrees of freedom, such as
models of sparsely connected vector spins [29], or finitely coordinated models for low-
temperature phases of amorphous systems [30].

It is well known that the average spectral density of an ensemble M of N x N matrices
M can be computed from the ensemble average of the imaginary part of their resolvent
via

;W@yzgﬁmﬁn[&ﬂ—Mrl, (1)

in which T is the N x N unit matrix, and A\, = X\ —ie, the limit ¢ — 07 being understood.
Following Edwards and Jones [31], one can express this result in terms of the Gaussian
integral

N dul

Iy = /H W exp {—5 %‘:Ui(ke% - Mz‘j)uy} (2)

as

M= -2t L Wy = LRe S0 (3)
PN = 70N Mgy AN T N 2

using the replica method to evaluate the average of the logarithm in (B]) over the ensemble
M of matrices M under consideration. The ‘averages’ (u?) in (B]) are evaluated with
respect to the ‘Gaussian measure’ defined by (2)) [ This has been the path taken in [14];
we shall initially follow their reasoning.

1 Note that we are using probabilistic notions in a loose, metaphorical sense, as the Gaussian measures
used in these calculations are complex.
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Disregarding the complex nature of the ‘Hamiltonian’ in the evaluation of (2)), the
mathematical problem posed in (2)), ([B]) is analogous to the evaluation of an ‘internal
energy of a disordered system with quenched disorder. Within the general class of finitely
coordinated amorphous model systems considered in [30], the one represented by (2), (3]
constitutes a particular sub-class, viz. that of harmonically coupled systems, for which the
analysis was found to be much simpler than for systems involving anharmonic couplings.
Indeed, while the solution of the latter required the self-consistent determination of
probability distributions over infinite dimensional function-spaces, it was realized in
[30] that solutions of harmonically coupled systems could be formulated in terms of
superpositions of Gaussians, and that the self-consistency problem reduced to the (much
simpler) problem of a self-consistent determination of the probability distribution of their
variances.

It can be fairly argued that this last insight is, in fact, easier to obtain within a Bethe-
Peierls or cavity type approach [28], in which (2]) is recursively evaluated for given
instances on graphs which are locally tree-like, ignoring correlations among subtrees
— an approximation that becomes exact, e.g., for random graphs that remain finitely
coordinated in the thermodynamic limit. This approach is taken in a separate publication
[32], in which (finite) single-instances and promising algorithmic aspects of the problem
are being highlighted.

Although [30] describes all technical details needed for a replica analysis of the present
problem, we shall nevertheless reproduce the key steps here, both to keep the paper self-
contained, and to point out along the way where the impasse in [I4] arises, and how it is
circumvented.

The remainder of the paper is organized as follows. In Sec. 2, we describe the replica
analysis of the problem posed by (2)), (3], specializing to matrices defined on Poissonian
(Erdos-Renyi) random graphs. It has been known for some time [31], 14] that the replica-
symmetric high-temperature solution — i.e., a solution preserving both, permutation-
symmetry among replica, and rotational symmetry in the space of replica — is exact
for problems of the type considered here. Accordingly, a representation that respects
these symmetries is formulated in Sec. 2.1. It is at this point where our formulation
departs from that of [I4]. In Sec. 3 we present results for a variety of examples,
and compare with numerical diagonalization results for large finite matrices to assess
their quality. In sufficiently sparse graphs, one expects localized states to appear. The
signatures of localization within our approach are discussed throughout Sec. 3, with
inverse participation ratios (IPRs) as a diagnostic tool looked at in Sec. 3.2. A detailed
investigation of Anderson localization for (discrete) Schrédinger operators on sparse
random graphs will be reserved to a separate publication [33]. Matrices with bimodal
instead of Gaussian random couplings are studied in Sec. 3.3. As the formal structure of
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the self-consistency problem remains unaltered when the Poissonian random graphs are
replaced by graphs with other degree distributions [30], we can exploit this fact to present
results for regular and scale-free random graphs in Sec. 3.4. Modifications needed to treat
matrices with row-constraints, such as discrete graph Laplacians are outlined in Sec. 3.5.
Our approach naturally allows to unfold the total density of states into contributions
coming from vertices of different local coordination, and we finally present an example of
such an unfolding in Sec. 3.6. The final Sec. 4 contains a brief summary and an outlook
on promising directions for future research.

2. Replica Analysis

2.1. General Formulation

Here we briefly outline the evaluation of (2]), (3] for sparse symmetric matries M of the
form

M;j = cij K5 (4)

in which C = {¢;;} is a symmetric adjacency matrix of an undirected random graph
(with ¢;; = 0), and the non-zero elements of M are specified by the K;;, also taken to be
symmetric in the indices. Within the present outline we restrict ourselves for the sake of
simplicity to adjacency matrices of Erdos-Renyi random graphs, with

c
{CZ]} HP CZ] Cij,Cji and p(cm) (1 - N) 5cij,0 + Nécij,l )
1<j
exhibiting a Posisssonian degree distribution with average coordination c. We note at the
outset that formal results carry over without modification to other cases [30]. There is
no need at this point to specify the distribution of the K;, but we shall typically look at
Gaussian and bimodal distributions.

The average (3]) is evaluated using replica In Zy = lim,,_o % In 7%, starting with integer
numbers of replica as usual. After performing the average over the distribution of the
connectivities one obtains

e e et 5 (o (), )

in which (...) g refers to an average over the distribution of the K;;. A decoupling of sites
is achieved by introducing the replicated density

:%Xi:l;[é(ua—um) s (6)
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with w denoting the replica vector u = (uy,us, ..., u,), and enforcing its definition via
functional ¢ distributions,

1= / DpDp exp {—i / dup(u) (Np(u) = > TTo(ua - u)>} . (7)
This gives (using shorthands of the form dp(u) = dup(u) where useful)
7y = /Dp/Dﬁ exp {N [g/dp(u)dp('v) <<e'xp <iKZuava>> - 1)

du,

— [ duip(u)p(u) +1In | ] -exp | i p(x) — EAe >l , (8)
1 e 32

allowing to evaluate N~'InZ% by a saddle point method. The stationarity conditions
w.r.t. variations of p and p read

ip(u) = c / dp(v) (<exp (z’K Zuv) >K - 1) , 9)

exp <Z plu) — % Ae D ui)

plu) = (10)

[ duexp (z plu) — 2N, uZ)

The way in which sites are decoupled constitutes the first point of departure between our
treatment and that of [I4] and subsequent analyses inspired by it (e.g. [34, 35]). In these
papers the averaged exponential expressions in the exponent of (),

f(uz ' vj) = f(zuiavja) = <eXp (iKZuiavja)> -1 ) (11)

is expanded, and an infinite family of multi-replica generalizations of Edwards Anderson
order parameters (and corresponding Hubbard-Stratonovich transformations) are used to
decouple the sites, much as in the treatment of the dilute spin-glass problem by Viana
and Bray [36]. The authors then use the expansion and the infinite set of self-consistency
equations for the multi-replica generalizations of Edwards Anderson order parameters to
construct a non-linear integral equation for a function g defined via a suitable ‘average’
of f; see [14] for details. Our treatment in this respect is closer in spirit to the alternative
approach of Kanter and Sompolinsky [37] who treat local field distributions (which in the
general context of disordered amorphous systems discussed in [30] become distributions
of local potentials) as the primary object of their theory.

However, the difference between our treatment and that of [I4] is at this point still
superficial. Indeed, we have the correspondence

ip(u) = cg(u) (12)
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between our ‘conjugate density’ p and the function g of [14]. With this identification, ()
and (I0) can be combined to give

[dv f(u-v) exp (cg('v) — %)\5’02)
Jdv exp (cg(’u) - %AEDQ)

which is the Rodgers-Bray integral equation for general distributions of non-zero bond
strengths.

9(u) = : (13)

2.2. Replica Symmetry

To deal with the n — 0 limit in these equations, assumptions concerning the invariance
properties of the solutions p(u) and p(wu) of ([@) and (I0]) — alternatively of the solution
g(u) of (I3)— under transformations among the replica are required. It has been
established for some time [31] [14] that the replica-symmetric high-temperature solution
— i.e., a solution preserving both, permutation-symmetry among replica, and rotational
symmetry in the space of replica — is exact for problems of the type considered here.
It is here where the paths taken in the present paper and in [I4] really bifurcate. In
[14], the assumption g(u) = g(u), with u = |u] is used to perform the angular integrals
in n-dimensional polar coordinates in (I3, resulting in an integral equation for g(u) in
the n — O-limit. This integral equation has also been obtained using the supersymmetry
approach [38]. It has, however, so far resisted exhaustive analysis or full numerical solution.

In the present paper we follow [30], and represent p and p as superpositions of replica-
symmetric functions, using the observation made in [30] that superpositions of Gaussians

of the form
2

/ an( exp [ (—w)gua] ’

- c/dﬁ eXpé(_d})_u iy (15)

would provide exact solutions for harmonically coupled systems. Note that these

(14)

expressions do indeed preserve permutation symmetry among replica as well as rotational
symmetry. In (IH) the constant ¢ is to be determined such that 7 is normalized,
Jdm(w) = 1. We note that these representations make sense only for Re w > 0 and
Re @ > 0; later on we shall find that these conditions are self-consistently met for solutions
of the fixed point equations. Expressing (8) in terms of 7 and 7, we get

70 = / DD exp {N [Gi[r] + Goli, 7] + Gs[7]]} (16)
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As n — 0, the functionals GG;, G5 and G35 evaluate to

G [r] :ng / drr(w)dm(w) <m%> , (17)
Golfr,m] = — ¢ —né [ di@)dn(w) m% , (18)

e e 2k
Gl = en o) [tamhe g 05

in which we have introduced the shorthands {d#}, = [T5_, d7(&), and {0} = S5, &,
a Poissonian connectivity distribution

(19)

pelk) = & expl 4] (20)

with average connectivity (k) = ¢, and the ‘partition functions’

Z(w) = /du exp {—%ﬁ] = m, (21)
Zoh) = [ \/i%/i exp [—%(i)\a%—{dj}k)uﬂ _ (W)W L (22)

1 2m
B ) = [t osp [ (e st g = 2
s (w,w', K) udv exp | =g {wu” +w'y iKuv NEEEY (23)

Note that the O(1) contributions of G5 and G3 in the exponent of () cancel in their sum.

The stationarity condition of the functional integral (8) w.r.t variations of p and p is
reformulated in terms of stationarity conditions w.r.t variations 7 and 7,

Z(w +w Zy(w, W, K)>
di( / dr(w < s (24)
/ (w)Z(w') K
w_|_w Zy (w—l— {d)}k_1) N
dr( kps /{dw}k [In 28 TALTRL) g (o5)
/ Z2(@)Z(w) Ifgl Z(@) ITe=1 Z ()
with p and i Lagrange multlphers to take the normalization of 7 and 7 into account.

The conditions that (24]) must hold for all w and similarly that (25) must hold for all &
can be translated [28] into

= E/d7r (W) 5 (& — Q' K))>K : (26)
z “pelk / {dithis 0 (@ = Q{@}-)) | (27)

in which Q(w’, K) and Q({&},_1) are defined via

Z(w+ QW K)) = % s QW K)= % , (28)
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and
k—1
QU{ote1) = A+, (29)
/=1

respectively. Given that 7 is normalized, it follows from (2€) that the same is true for 7,
provided ¢ = ¢, so the fixed point equations take their final form as

— /dw ) (5 - Q' K)), . (30)
kz “pelk) [{dihies 8 (@ = Q{@}-a)) - (31)

These equations can be seen as special cases of the general framework derived in [30],
when restricted to harmonically coupled random systems. In [30] it is shown that they
hold — unmodified — for non-Poissonian degree distributions as well, as long as the
average connectivity in these systems remains finite.

Note that for all € > 0, # and ® — self-consistently — have support in Re w > 0
and Re @ > 0 as required. The equations take a form that suggests solving them via a
stochastic population-based algorithm, as described in Appendix A.

For the thermodynamic limit of the spectral density we obtain from (2), (3)) and (I6])-(23)
that

p(A) = —Im ch /{dﬂ}k m

1 Re({w}r + €)
= o [ e P e @)

This expression has a natural 1nterpretat10n as a sum of contributions of local-densities of

state of sites with connectivities k, weighted according to their probability of occurrence.

Referring to (3), we may further identify the
1 i
2
o =—Im ——— 33
A ) W (33)
as realizations of the variance of (Gaussian) marginals on sites of coordination k.

With an eye towards disentangling singular (pure point) and continuous contributions to
the spectral density, we find it useful to define

Pla.) = 3 pelh) J1d7h 6 (a = Re {&h) 8 (b~ Tm {&h) . (34)

with a > 0 by construction. The density of states can then be expressed as an integral
over P,

—_/dadb b a+e

- @t o7+ (bt V) (35)
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Noting the singlular nature of the above integrand in the limit ¢ — 0 for a = 0, we propose
to isolate possible singular contributions to the spectral density by writing

P(a,b) = Py(b)é(a) + P(a,b) . (36)

This gives

da db - a—+e
db Py(b)Lo(b + N) / Pla.b
/ ol +A)+ (a,0) (a+e)2+(b+N2 (37)

in which £. denotes a Lorentzian of width . Our results below strongly suggest that,
when the limit € — 0 is taken — thereby L.(x) — 6(z) — a non-zero value of

Po(=A) = lim [ db Py(B)L.(b+ ) (38)

gives the contribution of the pure-point spectrum, originating from localized states, to
the overall spectral density.

This concludes the general framework.

3. Results

In what follows, we report results for a variety of different ensembles of sparse random
matrices, in order to explore the capabilities and limitations of our approach. In order to
properly appreciate the results presented below, it is worth pointing out that within our
stochastic population-dynamics based approach to solving the fixed point equations (B30)
and (BI]), the integrals (B2)), or (B3), (37) are evaluated by sampling from a population.
Denoting by A the number of samples (a;, b;) taken, we have, e.g.,

_ 1| 1N a; + €
p(A) ~ — (bi +A) + = 39
SN 2 Lelbit wz; (a; + €)%+ (b; + \)? (39)

>0

i=1
a;=0

S

as an approximation of (37)). The e — 0-limit is clearly singular in the first contribution to
@B9). If b; + X # 0 for all b; in the sample, one obtains zero in the & — 0-limit, whereas one
obtains a diverging contribution, if b; + X = 0 for at least one b; in the sample. The second
alternative will quite generally be an event of probability zero, so a small regularizing
e > 0 must be kept in order to ‘see’ this contributions (if it exists). In what follows, we
shall refer to the two contributions to (37), as ps(A) and p.(A), with

i (b + \) Z ¢ te (40)
pel(A 7r/\/ (@ + €2+ (b + N2
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The population-dynamics algorithm itself is run with a small regularizing ¢ > 0 (as
required in (2) to guarantee existence of the integral). While running the algorithm, we
use ¢ = 107%%, which is close to the smallest representable real number in double-precision
arithmetic on the machines used for the numerics.

3.1. Poisson Random Graphs — Gaussian Couplings

Our first results pertain to sparse matrices defined on Poisson random graphs, with
Gaussian couplings. The left panel of Fig. [Il shows spectral densities for the case of mean
connectivity ¢ = 4, having Gaussian random couplings with (K7;) = 1/c. For this system
we find an integrable power-law divergence of the form

p(\) == 0.05|\| 700 A—0, (41)

and a 0 peak at A = 0, the latter originating from isolated sites in the ensemble. Results
of numerical diagonalizations (using a sample of 500 N x N matrices with N = 2000 are
shown for comparison, and the agreement is excellent.

08 08 F

06 06

p()
p()

02 02

Figure 1. Spectral density for matrices defined on Poissonian random graphs with ¢ = 4
(left panel) and ¢ = 2 (right panel), having Gaussian random couplings with (K7;) = 1/c.
Full line: results obtained from the present theory; dashed line: results obtained from a
sample of 2000x2000 matrices. In both cases ¢ = 1073% was used in the evaluation of

(39).

The behaviour changes rather drastically if the average connectivity is reduced to ¢ = 2
— a value closer to the percolation threshold ¢, = 1. In this case the spectral density shows
strong fluctuations, when evaluated with the same small regularizer. These originate from
75 in ([0), and are related to the pure point spectrum associated with localized eigenstates
coming from a collection of isolated finite clusters of all sizes in the ensemble. These
exist for ¢ = 4 as well, but their contribution is too small to be easily notable when
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combined with p; in (B9). In addition, there is a central § peak as in the ¢ = 4-case which
appears to be separated from the main bands by a gap; see the second panel in Fig
The agreement with results of numerical diagonalization is fairly poor as it stands; in
particular, exponential tails of localized states extending beyond the apparent edge of the
central band are missed in this way. However, when (39) is evaluated with a regularizing
¢ = 1073 comparable to the resolution of the A-scan, the agreement is once more excellent
as shown in Fig[2l It is worth noting in this context that numerical simulations, in which
binning of eigenvalues is used to determine the the spectral density also imply a form of
reqularization, and they do not distinguish continuous and singular contributions to the
DOS if the distribution of the singular contributions is itself reasonably uniform.

When displayed on a logarithmic scale, the results clearly reveal two interesting features:
(i) a localization transition at A. =~ 2.295, characterised by a vanishing continuous
contribution p. to (89) for |A\| > A., and (ii) exponential (Lifshitz) tails [19] in the spectral
density, related to localized states represented by the singular contribution 75 to (39)), and
exhibited only through regularization. We shall substantiate this analysis in the following
sub-section by looking at the behaviour inverse participation ratios. The same phenomena
are seen for ¢ = 4, where \, ~ 2.581.

3.2. Inverse Participation Ratios and Localization

In order to substantiate our identification of singular and continuous contributions to the
spectral densities we look at Inverse Participation Ratios (IPRs) of eigenstates as obtained
from numerical diagonalizations. Given eigenvectors v of a (random) matrix, their IPRs
are defined as

Nl
IPR(v) = —==L7 (42)

2
N .9
( i:lvi)

As eigenvectors can always be chosen to be normalized, we see that IPRs remain of order
1 for localized states which have a few O(1) eigenvector components — the extreme case
being IPR(v) = 1 for v; = d;;, — whereas they are O(N~') for fully extended states for
which v; = O(N~1/2) for all 4.

Here we only produce a qualitative comparison for the two cases studied in the previous
subsection, comparing IPRs computed for systems of size N = 100 and N = 1000, and
using scatter-plots of IPRs vs eigenvalues to exhibit the salient features. As clearly visible,
there remains a substantial fraction of states at all A in the ¢ = 2 case, which do not exhibit
the N~! scaling of IPRs expected for delocalized states; the tails, and a small central band
in particular appear to be dominated by localized states. By contrast in the ¢ = 4 case
there is a notable depletion of states with O(1) IPRs, except for A = 0 and in the tails of
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Figure 2. Upper left panel: Spectral density for matrices defined on Poissonian random
graphs with ¢ = 2 as in the previous figure, but now evaluated with a regularizing
e =107% in BJ) (full line). At the resolution given the result is indistinguishable from
the numerical simulation results (dashed line). Upper right panel: zoom into the central
region comparing results obtained with the small regularizer, exhibiting a gap around
the central peak (full line), with a larger regularizer ¢ = 1073 (short dashed line) and
with results of numerical diagonalization (long dashed line). The same comparison is
made in the lower panel for a larger portion of the spectrum on a logarithmic scale.
The regularized ¢ = 10~ 3-results are on this scale indistinguishable from those of the
numerical simulations. Note the localization transition and the Lifshitz tails as discussed
in the main text.

the spectrum. These findings are entirely consistent with our identifications made in the
previous subsection. We note that the role of regularization in identifying localized states
has been pointed out before using heuristics related to the evaluation of local densities of
state [22].

We shall return to this issue in greater quantitative detail in a separate paper devoted to
Anderson localization in discrete random Schrédinger operators defined on sparse random
graphs [33].
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Figure 3. Scatterplots showing eigenvalue against IPRs for Poissonian random graphs
with ¢ = 2 (first row) and ¢ = 4 (second row). The graphs in the left column correspond
to N = 100, those in the right column to N = 1000.

3.8. Poisson Random Graphs — Bimodal Couplings

We can also look at coupling distributions different from Gaussian for the non-zero
couplings, e.g. fixed K;; = 1/y/c or bi-modal K;; = +1/y/c. As noted before [14], both
give rise to the same spectral densities on large sparse (tree-like) graphs due to the absence
of frustrated loops. It can also be seen as a consequence of the appearance of K? in (28)).

We choose a Poissonian random graph at the percolation threshold ¢ = 1 as an example
that allows us to highlight both the strengths and the limitations of the present approach.
It is known that all states will be localized for this system. In Fig ] we compare results of
a A-scan with resolution 6\ = 1073, using a regularizer ¢ = 10~* for the scan. The smaller
panels exhibit numerical diagonalization results, as well as a comparison between the two
using a zoom into the region around A\ = 1.

On the side of the strengths, we note that the spectral density obtained from our algorithm
is able to display more details than can be exposed by simulation results obtainable at
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Figure 4. Comparison of spectral density for K;; = +£1/4/c, on a Poissonian random
graph with ¢ = 1 as computed via the present algorithm (main panel) with results from
numerical diagonalisation of N x N matrices of the same type with N = 2000 (lower
left) and a direct comparison in the region around A = 1.

reasonable effort. On the downside, one might note that the results for this system attain
the status of semi-quantitative results, as they do depend on the chosen regularization,
though in fairness it should be said that the same applies to the results obtained via
numerical diagonalization where results vary with the binning resolution. In the present
case this is due to the fact that the spectrum for most parts consists of a dense collection
of § peaks [39]. A notable deficiency is the broadening of delta-peaks into Lorentzians of
finite width, which creates artefacts around isolated delta-peaks, exemplified here by the
peak at A = 0. Since the origin of this deficiency is understood, more precise details can,
if desired, be recovered by choosing a smaller regularizing ¢.
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3.4. Regular and Scale-Free Random Graphs

In the present section we consider matrices defined on regular and scale-free random
graphs.

3.4.1. Regular Random Graphs Our theory applies unmodified to matrices defined on
graphs with degree distributions other than Poissonian, as long as the mean connectivity
remains finite. We use this fact to obtain spectra of matrices with Gaussian random
couplings defined on regular random graphs with fixed connectivity ¢, choosing <KZ2]) =
1/c for the couplings. Results for ¢ = 4 and ¢ = 100 are shown in Fig. [l The ¢ = 4 results
are compared with simulations, with results analogous to previous cases, including the
presence of a localization transition at A\, ~ 2.14

The second example is chosen as a test to see the semicircular law [40] reemerge in the
limit of large (though finite) connectivity. This limit can also be extracted from the fixed
point equations. It is somewhat easier to verify for results pertaining to single instances
[32] than for the ensemble.

0.7

0.6 [

05 [

04

p()
p()

0.3 [

0.2 [

01 fF

Figure 5. Spectral densities for a random graph with fixed connectivity ¢ = 4 (left),
and on a random graph with fixed non-random connectivity ¢ = 100 (right).

3.4.2. Scale-Free Graphs We have also looked at a scale free graph with connectivity
distribution given by p(k) = Pyk™" with v = 4 and a lower cut-off at £ = 2. Results
shown in Fig. [6l reveal a continuous central band, and localized states for |A| > A, ~ 2.85
much as in the other cases. For the present system, the tails in the spectral density follow
a power law of the form p(\) ~ A1727 [17, 41].

Comparison with exact diagonalization results is facilitated by a fast algorithm that
allows to generate sparse graphs with arbitrary degree distribution [42].
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Figure 6. Spectral density for for K;; = £1/y/c on a random graph with power-law
degree distribution of average connectivity ¢ ~ 2.623. Left panel: results obtained with
small regularizer (full line), and numerical diagonalization results from a sample of 500
matrices of dimension N = 2000 (dashed line). Right panel: the same results displayed
on a logartithmic scale, this time with results regularized at e = 10~3 (short dashed line)
included.

3.5. Graph Laplacians

Let us finally look at matrices row-constraints, such as related to discrete graph-
Laplacians.

The discrete graph Laplacian of a graph with connectivity matrix C' = {¢;;} has matrix
elements

Aij = Cij — 52']' Z Cik - (43)
k
A quadratic form involving the Laplacian can be written in the form
1 1 9
i i

As before we shall be interested in more general matrices with zero row-sum constraint
of the form
Mij = Cinij — 52']‘ Z CikKij . (45)
k

To evaluate the spectral density within the present framework one would thus have to
compute

78 = [T d g S+ 55 3 (o (5 Dt - ) >K 1)

a
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instead of (Bl). The required modification has, of course, been noted earlier [15, [43].
The resulting problem constitutes precisely (the harmonic variant of) the translationally
invariant systems, for which the framework in [30] was developed in the first place. The
general theory can be copied word for word, and the fixed point equations (B0), (31
remain formally unaltered except for the change in Z(w,w’, K) in (23), owing to the
modified interaction term, which gives rise to a modified expression for Q(w’, K) in (28).
We obtain

A Kuo'
WS K) = =05

(46)
instead of (28]). Fig.[Mlshows the spectrum of a Laplacian for a Posisson random graph with
¢ = 2, comparing our solution (upper left panel) computed with e = 1073 with numerical
diagonalization results in the upper right panel. We use K;; = 1/c for the non-zero matrix
elements in this case. As in the other cases, we observe a localization transition, here at
A ~ —3.98. Results obtained with a small regularizer ¢ = 1073% exhibiting only the
continuous part of the spectrum are shown in the lower panel.

3.6. Unfolding Spectral Densities

As a last item in this study we look at the possibility of unfolding the spectral density
according to contributions of local densities of state, coming from vertices of different
coordination, as suggested by Eq. (82). This method has been used in [30] to look at
distributions of Debye-Waller factors in amorphous systems, unfolded according to local
coordinations. In the present context it may provide an interesting diagnostic tool to help
understanding localization phenomena.

Fig [§ exhibits the spectrum of the graph Laplacian shown in the previous figure along
with its unfolding into contributions of local densities of state with different coordination.
The present example clearly shows that — somewhat paradoxically — the well connected
sites are the ones providing the dominant contributions to localized states in the lower
band-edge Lifshitz tails. The clearly identifiable humps in the figure correspond from left
toright to k=9 k=8 k=7 k=06,k =25,k =4, and k£ = 3, which easily allows
to identify the corresponding contributions to the spectral density, the contribution of
k = 2 gives rise to several notable humps in the spectral density, and together with the
k = 1 contribution is mainly responsible for the dip at A = —1. The k£ = 0 contribution
is mainly responsible for the §-peak at A = 0 (which is broadenend into a Lorentzian of
width e = 1073 due to the regularization, as discussed earlier.
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Figure 7. Spectral density for the Laplacian on a Poissonian random graph with ¢ = 2
as computed via the present algorithm. Upper left panel: € = 10~ 3-results; upper right
panel: results from numerical diagonalisation of N x N matrices of the same type with
N = 2000. Lower panel: continuous part of the spectrum obtained using ¢ = 1073% as a
regularizer.

4. Conclusions

In the present paper we have used a reformulation of the replica approach to
the computation of spectral densities for sparse matrices, which allows to obtain
spectral densities in the thermodynamic limit to any desired detail — limited only by
computational resources. Our method is versatile in that it allows to study systems with
arbitrary degree distributions, as long as they give rise to connectivity distributions with
finite mean. A cavity approach that emphasises results on finite instances will appear
elsewhere [32]. As expected (and well known), the Wigner semi-circle reemerges in the
large ¢ limit as discussed in [32]. Large and small A asymptotics remain to be investigated.
Our method allows to expose the separate contributions of localized and extended states
to the spectral density, and thereby to study localization transitions. We shall explore this
issue in greater detail in a separate publication. Indeed, with results for graph-Laplacians
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Figure 8. Spectral density for the Laplacian on a Poissonian random graph with ¢ = 2
(full upper line), shown together with its unfolding according to contributions of different
coordination, as discussed in the main text.

in hand, the step towards a study of discrete random Schrodinger operators and Anderson
localization in such systems is just around the corner [33]. A generalization to asymmetric
matrices using both the cavity method and a replica approach for the ensemble along the
lines of [44] is currently under investigation in our group [45]. Other problems we have
started to look at are spectra of modular systems [46] and small world networks.

We believe our results to constitute an improvement over previous asymptotic results as
well as over results obtained by closed form approximations. They may open the way to
further interesting lines of research. Let us here mention just a few such examples: within
RMT proper, one might wish to further investigate the degree of universality of level
correlations in these systems [47]; one could refine the random matrix analysis of financial
cross-correlations [7] by taking non-trivial degree distributions of economic interactions
into account, or one might wish to look at finite connectivity variants of random reactance
networks [48], taking e.g. regular connectivity 4 to compare with results of numerical
simulations of such systems on two-dimensional square lattices.
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Castillo, Tim Rogers and Koujin Takeda for illuminating discussions. Jort van Mourik also
kindly supplied instances of scale free-random graphs to allow comparison of ensemble
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Appendix A. Population Dynamics

The stochastic algorithm used to solve [B0), ([BI]) takes the following form. Populations
{wi;1 <@ < N,} and {@;;1 < i < N,} are randomly initialized with Re w; > 0 and
Re @; > 0.

Then the following steps are iterated

1. Generate a random k ~ Zp.(k).

2. Randomly select k — 1 elements from {@;;1 < i < N, }; compute
k—1

Q=id+> i, (A1)

=1

and replace w; by €2 for a randomly selected i € {1,..., N,}.

3. Select j € {1,...,N,} at random, generate a random K according to distribution of
bond strengths; compute
. K2 A Kw,
Q=— : <or Q= for zero row—sums) . (A.2)
w; K —iw;

and replace @; by € for a randomly selected i € {1,....N,}.

4. return to 1.

This algorithm is iterated until populations with stable distributions of {@;;1 <1i < N,}
and {w;;1 <i < N,} are attained.

A variant of this algorithm when implemented on instances of real graphs generates the
belief-propagation or cavity equations for this problem, as studied in [32]. It can be derived
directly in terms iterative evaluations of (2)) on locally tree-like graphs.
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