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Heterogeneity

In the basic SIR-type models, we have assumed that the
population is homogeneous, that is, everyone is considered to
be identical (except for disease status) and to have random
contacts.

In general, disease systems contain many heterogeneities such
as,

I Population heterogeneity
I Spatial heterogeneity
I Temporal heterogeneity (seasonality).
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Population Heterogeneity

Populations can be heterogeneous in terms of (model parameters)

Susceptibility and infectivity

Rate of recovery and acquired immunity

Contact rates

Mortality and disease-induced mortality.

Heterogeneity (in model parameters) may depend on demographic
characteristics such as

Age

Socioeconomic status

Occupation

Degree of contacts

Gender

Species

Individual characteristics.
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Modeling Population Heterogeneity

We determine parameter values for each demographic category.
We can do this in three ways.

1. We can replicate the SIR model equations for different groups
representing different values of a demographic parameter
leading to high-dimensional ODE models with multiple groups.

2. We can assume that the demographic parameter is continuous
leading to partial integrodifferential equations.

3. We can assign a particular value for a number of different
demographic parameters to each individual in the population
and numerically simulate the interactions of the individuals
within the population and the subsequent progress of the
disease, leading to an individual-based model.

2017-05-10 6



Modeling Population Heterogeneity

We determine parameter values for each demographic category.
We can do this in three ways.

1. We can replicate the SIR model equations for different groups
representing different values of a demographic parameter
leading to high-dimensional ODE models with multiple groups.

2. We can assume that the demographic parameter is continuous
leading to partial integrodifferential equations.

3. We can assign a particular value for a number of different
demographic parameters to each individual in the population
and numerically simulate the interactions of the individuals
within the population and the subsequent progress of the
disease, leading to an individual-based model.

2017-05-10 6



Modeling Population Heterogeneity

We determine parameter values for each demographic category.
We can do this in three ways.

1. We can replicate the SIR model equations for different groups
representing different values of a demographic parameter
leading to high-dimensional ODE models with multiple groups.

2. We can assume that the demographic parameter is continuous
leading to partial integrodifferential equations.

3. We can assign a particular value for a number of different
demographic parameters to each individual in the population
and numerically simulate the interactions of the individuals
within the population and the subsequent progress of the
disease, leading to an individual-based model.

2017-05-10 6



SIR Model with Two Age Groups

SJ IJ RJ

rJJβJJ
IJ
NJ

+ rJAβJA
IA
NA γJ

SA IA RA

rAJβAJ
IJ
NJ

+ rAAβAA
IA
NA γA

Λ

ϕ ϕ ϕ
µJ µJ µJ

µA µA µA

SJ : Susceptible Juveniles SA: Susceptible Adults
IJ : Infectious Juveniles IA: Infectious Adults
RJ : Recovered Juveniles RA: Recovered Adults
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SIR Model with Two Age Groups

Λ: Recruitment rate of new juveniles.
rkl: Number of contacts per time between an individual in group k

with individuals in group l.
βkl: Probability of disease transmission per contact between an in-

fectious in group l with a susceptible in group k.
γk: Recovery rate of individuals in group k.
ϕ: Development rate (from juveniles to adults).
µk: Death rate of individuals in group k.
Nk: Total population of group k. Nk = Sk + Ik +Rk.

for k = J or k = A and l = J or l = A.
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SIR Model with Two Age Groups

dSJ
dt

= Λ −
(
rJJβJJ

IJ
NJ

+ rJAβJA
IA
NA

)
SJ − (ϕ+ µJ)SJ

dIJ
dt

=

(
rJJβJJ

IJ
NJ

+ rJAβJA
IA
NA

)
SJ − (γJ + ϕ+ µJ)IJ

dRJ

dt
= γJIJ − (ϕ+ µJ)RJ

dSA
dt

= ϕSJ −
(
rAJβAJ

IJ
NJ

+ rAAβAA
IA
NA

)
SA − µASA

dIA
dt

= ϕIJ +

(
rAJβAJ

IJ
NJ

+ rAAβAA
IA
NA

)
SA − (γA + µA)IA

dRA

dt
= ϕRJ + γAIA − µARA
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Next Generation Matrix for Two Age Group Model

K =

(
KJJ KJA

KAJ KAA

)
KJJ : Number of new juvenile individuals infected by one infectious ju-

venile individual assuming a fully susceptible population through
the duration of the infectious period.

KJA: Number of new juvenile individuals infected by one infectious
adult individual assuming a fully susceptible population through
the duration of the infectious period.

KAJ : Number of new adult individuals infected by one infectious juve-
nile individual assuming a fully susceptible population through
the duration of the infectious period.

KAA: Number of new adult individuals infected by one infectious adult
individual assuming a fully susceptible population through the
duration of the infectious period.
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R0 for Two Age Group Model

R0 is the spectral radius of K (eigenvalue with the maximum
absolute value).

R0 =
1

2

(√
K2

JJ +K2
AA − 2KJJKAA + 4KAJKJA +KJJ +KAA

)
where

KJJ =
rJJβJJ

γJ + ϕ+ µJ

KJA =
rJAβJA
γA + µA

KAJ =
rAJβAJ

γJ + ϕ+ µJ

KAA =
rAAβAA

γA + µA
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Multi-Group ODE Models

We can divide the population into any number of groups.

We could include more than one demographic parameter but
the equations then become complicated.

We need to determine the contact matrix for each model.

However, the population is still assumed to be homogeneous
within each group.
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SIR Model with Continuous Age

∂S

∂a
+
∂S

∂t
= −

(∫∞
0 r(a, ã)α(a)β(ã)I(ã, t) dã∫∞

0 N(ã, t) dã
+ µ(a)

)
S,

∂I

∂a
+
∂I

∂t
=

(∫∞
0 r(a, ã)α(a)β(ã)I(ã, t) dã∫∞

0 N(ã, t) dã

)
S − (γ + µ(a))I,

∂R

∂a
+
∂R

∂t
= γI − µ(a)R,

where r(a, ã) = r(ã, a) is the contact rate between hosts of age a
and ã; α(a) is the susceptibility of hosts of age a; β(a) is the
infectivity of hosts of age a; and
N(a, t) = S(a, t) + I(a, t) +R(a, t); with specified initial
conditions, and boundary conditions,

S(0, t) =

∫ ∞

0
f(a)N(a, t) da,

and I(0, t) = 0, R(0, t) = 0. And, N(t) =
∫∞
0 N(a, t) da.

Adapted from Hethcote (2000)
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Spatial Heterogeneity

Modeling spatial heterogeneity is similar to modeling
population heterogeneity but we divide the population by
spatial location instead of by demographic characteristics.

We can model space as continuous or discrete.
I Continuous space leads to partial integrodifferential equations.
I Discrete space leads to multi-group ODE models (for example,

patch models) or cellular automata.

We can model movement of hosts or of infection.
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Continuous Space Models of Fox Rabies

∂S

∂t
= −KIS

∂I

∂t
= D

∂2I

∂x2
+KIS − µI

386  A. KALLI~N E T  A L .  

5. Generalizations and Other Models 

There are at least two good reasons for keeping a mathematical  model 
simple: there are fewer parameters  to estimate and since it is easier to 
analyse, crucial questions which have to be asked are highlighted. Clearly 
there is plenty of  room for generalisations in our model which might make 
it more realistic. 

I f  we want to model more than the front we must take into account  
reproduction in the fox population.  We expect this to affect the tail of  the 
front as discussed above. Assuming that So is the carrying capacity in a 
particular rabies-free habitat, we can add a logistic populat ion growth term 
to the equation for the susceptible foxes to obtain in place of  the first of  
equations (1) 

OS/Ot = - K I S  + flS(1 - S /So)  (9) 

where /3 is the (linear) birth rate. We assume that the rabid foxes do not 
reproduce. The corresponding non-dimensional  system, equivalent to 
equation (4), is then 

Ou/Ot = O2u/ax2 + u( v -  r) 
(10) 

Or~Or = - u v + b v ( l -  v) 

where b = / 3 / K S o =  r/3/tt. The travelling epizootic "wave"  which results is 
illustrated in Fig. 6, at least near the front. Note the similarity with Fig. 1. 
A linear analysis ahead of  the wave again gives the lower bound of  the 
speed of propagat ion as c = 2,/1 - r. In simulations we find the oscillations 
damp out so that v approaches  r and u approaches  b(1 - r) far behind the 
front. These damped  oscillations might persist if the incubation period or 

1.0 ~ 
Scaled [ v (susceptibles) fox 
density 0 8 - j 

02- 
_ ~  u(infectives) 

-100 -05 (3 50 100 150 
D,stance (km) 

FIG. 6. The shape of the travelling wave solution when the susceptible foxes have logistic 
population growth with a net birth rate of  0.5 per year, that is b =0.05 (b is the net birth rate 
times the life expectancy of  an infective fox). Here the mode1 parameter r = 0 . 5 .  

S P A T I A L  S P R E A D  A N D  C O N T R O L  O F  R A B I E S  385 

Note that if So is not too close to $ ,  so that r (=  So~So)  is not too close 
to 1, then the wave-speed, given by equations (7), does not vary much with 
fox density. Again, this is in agreement with empirical observation. 

One way of  using our model is to make tentative predictions as to how 
an epizootic might spread if introduced into a region where the initial 
distribution of  (susceptible) foxes is known: a knowledge of  this could 
prove helpful in combatting the epizootic. In principle, this should be 
possible to do by computer  using the parameter estimates above. However, 
our attempts to perform such simulations on a map of Britain were relatively 
crude (a finite element space discretization with 226 nodes giving 452 
coupled ordinary differential equations) due to a lack of  accuracy and 
resolution necessitated by computational restrictions. Taking estimates for 
the initial distribution of susceptible foxes from MacDonald  (1980), together 
with the speed of propagation given by equations (7) and the results from 
our simulations as a guide, we have drawn by hand the map shown in Fig. 
5 to illustrate how a small population of infective foxes introduced around 
Southampton might spread throughout Britain. 

i 

FIG. 5. The projected spatial spread of rabies in Great Britain if introduced in the vicinity 
of Southampton, based on the distribution of foxes given by MacDonald (1980), the formula 
(7) for the wavespeed c = 2[D(KSo-~z)]  t/2, and the results of crude numerical simulations 
of the model equations (1). The map depicts how the wavespeed of the epizootic depends on 
the (susceptible) fox density, and predicts that the disease would reach Manchester in about 
6 years. This projected spreading is, of course, only suggestive, and is based on the analysis 
for the model parameters given in the text plus the assumption that the critical fox density S c 
is around 1 fox/km. If the true value of S¢ is lower, the important difference is how far the 
epizootic front will spread into Scotland and Wales (where the native fox density is lower). 

Källén et al. (1985)
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Metapopulation Models

Models of interacting populations.

For example, multiple connected SIR models for the spread of
influenza across cities.

City
1

City
2

City
3

City
4
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Rabies in N’Djamena, Chad
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N’Djaména
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Vaccination Campaigns
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Incidence Data in Dogs
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Different models were fit to 4 years of weekly incidence data
from N’Djamena.

(from Mirjam Laager)
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Homogeneous Model

S E I

V

rβI σ

να(t)λ

S: Susceptible, E: Exposed, I: Infective, V : Vaccinated
µ: birth/death, δ: disease induced death, ε: importation
να(t): vaccination, λ: immunity loss, β: transmission,
σ: rate of progression from exposed stage
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Homogeneous Model Equations

dS(t)

dt
= µN0 + λV (t) − (να(t) + µ)S(t) − βS(t)I(t),

dE(t)

dt
= βS(t)I(t) − (σ + µ)E(t) + ε,

dI(t)

dt
= σE(t) − (δ + µ)I(t),

dV (t)

dt
= να(t)S(t) − (λ+ µ)V (t).

In the absence of importation (ε = 0):

R0 =
σβN0

(σ + µ)(δ + µ)
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Calibration of Homogeneous Model
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Different models were fit to 4 years of weekly incidence data
from N’Djamena.
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Metapopulation Model

2017-05-10 24



Metapopulation Model

2017-05-10 24



Metapopulation Model

S          E          I 
       V
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Model Equations

Consider n subpopulations.

dSk(t)

dt
= µN0k(t) + λVk(t) − (ναk(t) + µ)Sk(t)

− βkSk(t)

n∑
j=1

mkjIj(t),

dEk(t)

dt
= βkSk(t)

n∑
j=1

mkjIj(t) − (σ + µ)Ek(t),

dIk(t)

dt
= σEk(t) − (δ + µ)Ik(t),

dVk(t)

dt
= ναk(t)Sk(t) − (λ+ µ)Vk(t),

with M such that

1. mij = mji for all i, j
2. mii ≥ mij for all j
3.
∑n

j=1mkj = 1 for all k
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Calibration of Metapopulation Model
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Calibration of Models with Importation
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Calibration of Models with Importation
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Discrete-Time Models

Continuous time models are easier to analyse than
discrete-time models. However, for some diseases, or certain
situations, discrete time may be more appropriate.

I Reproduction of falciparum malaria blood stage parasites is on
a 2 day cycle.

I Mosquitoes have discrete stages in their feeding cycle that can
be modeled with a one day time step.

Discrete-time models consist of difference equations.

Numerically integrating differential equations converts them
to difference equations.
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Discrete Time SIR Model

S(t+ 1) = S(t)(1 − rβI(t)/N)

I(t+ 1) = I(t)(1 + rβS(t)/N − κ)

R(t+ 1) = R(t) + κI(t)

r: Number of contacts made in one time step.
β: Probability of disease transmission per contact.
κ: Proportion of infectious individuals that recover in one time

step.
N = S + I +R is the total population size.
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Individual-Based Models

Simulate the dynamics of infection in each individual at
discrete time steps.

Stochastic models because mean field approximation is no
longer possible.

Advantages

Include many different demographic characteristics.

Include superinfection and dynamics of individual infections.

Include temporal variation and other sources of heterogeneity.

Disadvantages

Little mathematical analysis is possible.

Can be computationally expensive.
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Contact Network Models

Contacts between individuals are usually not equally likely but
occur on networks.
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OpenMalaria

OpenMalaria is an open source C++ platform to simulate
falciparum malaria immunology, epidemiology, and control
with an ensemble of individual-based models.

Developed at the Swiss TPH and Liverpool School of Tropical
Medicine.

https://github.com/SwissTPH/openmalaria/wiki

Allows the comparison of the effectiveness and
cost-effectiveness of multiple malaria control intervention
strategies in reducing transmission and disease.
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Individual-Based Simulations

T=1  T=2  T=3  T=4 

ID 1 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Individual-Based Simulations

T=1  T=2  T=3  T=4 

ID 1 

dead 
ID 4 

ID 2  treat 

ID 3 
new 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 increasing 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Model Overview

Malaria	
  infec+on	
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Addressing Uncertainty

Stochasticity in Outcomes

Multiple random seed values

Parameter Uncertainty

Model fitting

One-dimensional/multi-dimensional sensitivity analysis

Probabilistic sensitivity analysis

Model Uncertainty

Ensembles of different models
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Ensemble of Models

Mass-action models for single infections

Decay of blood-stage immunity

Case management models

Morbidity models

Correlations in heterogeneity and variation in force of
infection, comorbidity and access to treatment
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Calibration and Validation

Use 61 data sets from field
studies with different objectives
to fit up to 27 parameters

Incidence of infection

Age-prevalence of
parasitemia

Seasonality of parasitemia

Age-density of parasites

Age-incidence of clinical
disease, hospitalisation and
mortality.

Models components are validated
separately and the entire model is
validated in certain
geographically specific settings.

Age-prevalence of parasitemia 

Pr
ev

al
en

ce
 

0.2 
0.4 
0.6 
0.8 

1 

0.2 
0.4 
0.6 
0.8 

1

Sugungum 

Matsari 

Age (years) 

Namawala 

0.1 1 10 2 5 20 50 

0.2 
0.4 
0.6 
0.8 

1 

Field data (CI) Model  

Maire et al. (2006)
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Human Demography

Human age structure is set to local demographic data.

The population size and age distribution is kept constant
through the simulation through migration.

Humans are simulated through one life span to determine
immune status.
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Modeling Within-Host Dynamics

Each infection in each individual is modeled separately:
I Empirical model (Maire et al., 2006)
I Stochastic mass-action (difference equation) models fit to

descriptive statistics (Molineaux et al., 2001)
I Stochastic mass-action (difference equation) model fit to both

individual level data and population level data. (Penny et al.,

unpublished)

Asexual parasite densities fit to malaria therapy data.

Infectivity to mosquitoes weighted sum of past asexual
parasite density.

Immunity (Dietz et al., 2006)
I Reduces force of infection
I Decreases asexual blood stage parasite densities
I Increases pyrogenic threshold
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Empirical Within-Host Model

Starting point is the empirical
distributions of densities by age
of infection for untreated
patients (malariatherapy)

Choice of exposure proxy made
empirically (by fitting models to
field data)

Simulated densities are sampled
from a distribution centred on
the expected parasite density.

50 100 150 200 250 
Days since inoculation 

P
ar

as
ite

 d
en

si
ty

 

Asexual parasites 
Gametocytes 

Data of a typical patient 

50 100 150 200 250 
Days since inoculation 
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Empirical Within-Host Model

Starting point is the empirical
distributions of densities by age
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patients (malariatherapy)

Choice of exposure proxy made
empirically (by fitting models to
field data)
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Empirical Within-Host Model

Starting point is the empirical
distributions of densities by age
of infection for untreated
patients (malariatherapy)

Choice of exposure proxy made
empirically (by fitting models to
field data)

Simulated densities are sampled
from a distribution centred on
the expected parasite density.
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Empirical Within-Host Model

Starting point is the empirical
distributions of densities by age
of infection for untreated
patients (malariatherapy)

Choice of exposure proxy made
empirically (by fitting models to
field data)

Simulated densities are sampled
from a distribution centred on
the expected parasite density.
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Model of Clinical Events

Humans in any of five possible states
I Not sick
I Uncomplicated fever (malarial or non-malarial with or without

parasites)
I Severe malaria
I Dead (malaria, indirect, non-malaria death)
I Out-migrated

Clinical malaria is determined by parasite density and fever
threshold (dependent on immune status)

Probability of non-malarial disease is determined by local
health systems data.

A decision tree model determines events in case of an illness
using local health systems data.
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Overview of Model for Malaria in Mosquitoes

Model mosquito feeding cycle and malaria infection in female
mosquitoes with periodically forced difference equations

Extensions of pre-existing models (Saul et al. (1991), Saul (2003),
and Killeen and Smith (2007))

Heterogeneous population of hosts
I Individual humans
I Any number and type of non-human hosts

Allow multiple mosquito species or types

Include annual seasonality

Evaluate key entomological quantities to compare to field data

Include various coverage levels of different interventions

Include decay of effectiveness of interventions over time
(resulting equations are no longer periodic)
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Modeling Malaria in Mosquitoes

Eggs

Larvae

Pupae

Adults
Infected
Adults

Infectious
Adults
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Effects of Vector Control Interventions
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Elimination with a Transmission Blocking Vaccine

 

Smith et al. (2011)
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Sensitivity of Net Effectiveness
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