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Heterogeneity

Swiss TPH g
@ In the basic SIR-type models, we have assumed that the
population is homogeneous, that is, everyone is considered to
be identical (except for disease status) and to have random
contacts.
as,

» Population heterogeneity

@ In general, disease systems contain many heterogeneities such
» Spatial heterogeneity

» Temporal heterogeneity (seasonality).
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Population Heterogeneity Swiss TPH &
Populations can be heterogeneous in terms of (model parameters)
@ Susceptibility and infectivity
@ Rate of recovery and acquired immunity
o Contact rates

@ Mortality and disease-induced mortality.
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Population Heterogeneity

Populations can be heterogeneous in terms of (model parameters)
@ Susceptibility and infectivity

@ Rate of recovery and acquired immunity
o Contact rates

Swiss TPH g

@ Mortality and disease-induced mortality.
characteristics such as
o Age

@ Socioeconomic status
°

Heterogeneity (in model parameters) may depend on demographic
Occupation

@ Degree of contacts
o Gender

o

o

Species

Individual characteristics.
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Modeling Population Heterogeneity Sles Y &

We determine parameter values for each demographic category.
We can do this in three ways.

1. We can replicate the SIR model equations for different groups
representing different values of a demographic parameter
leading to high-dimensional ODE models with multiple groups.
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Modeling Population Heterogeneity Swiss TPH g

We determine parameter values for each demographic category.
We can do this in three ways.

1. We can replicate the SIR model equations for different groups
representing different values of a demographic parameter
leading to high-dimensional ODE models with multiple groups.

2. We can assume that the demographic parameter is continuous
leading to partial integrodifferential equations.
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Modeling Population Heterogeneity Swiss TPH g

We determine parameter values for each demographic category.
We can do this in three ways.
1. We can replicate the SIR model equations for different groups
representing different values of a demographic parameter
leading to high-dimensional ODE models with multiple groups.

2. We can assume that the demographic parameter is continuous
leading to partial integrodifferential equations.

3. We can assign a particular value for a number of different
demographic parameters to each individual in the population
and numerically simulate the interactions of the individuals
within the population and the subsequent progress of the
disease, leading to an individual-based model.
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SIR Model with Two Age Groups
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SIR Model with Two Age Groups swica TP S

Tkl:
B
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Nk'

Recruitment rate of new juveniles.

Number of contacts per time between an individual in group k
with individuals in group [.

Probability of disease transmission per contact between an in-
fectious in group [ with a susceptible in group k.

Recovery rate of individuals in group k.

Development rate (from juveniles to adults).

Death rate of individuals in group k.

Total population of group k. N = S + I + R.

fork=Jork=Aandl=Jorl=A.
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SIR Model with Two Age Groups swica TP S
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Next Generation Matrix for Two Age Group Model Swiss TPH g

K- <KJJ KJA>
Ka; Kaa

K 7. Number of new juvenile individuals infected by one infectious ju-
venile individual assuming a fully susceptible population through
the duration of the infectious period.

Kja: Number of new juvenile individuals infected by one infectious
adult individual assuming a fully susceptible population through
the duration of the infectious period.

Kay5: Number of new adult individuals infected by one infectious juve-
nile individual assuming a fully susceptible population through
the duration of the infectious period.

Kaa: Number of new adult individuals infected by one infectious adult
individual assuming a fully susceptible population through the
duration of the infectious period.
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Ry for Two Age Group Model Swiss TPH g

Ry is the spectral radius of K (eigenvalue with the maximum
absolute value).

1
Ro:§ <\/K3J+Kfm—2KJJKAA+4KAJKJA+KJJ+KAA>

where
ry7B877
Kjj=—"—""—
Yr+ e+ g
K= rABIA
YA+ 1A
4784
K — B4
Vgt et
L= rAABAA
YA + HA
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MU'ti—GI’OUp ODE Models Swiss TPH &

@ We can divide the population into any number of groups.

@ We could include more than one demographic parameter but
the equations then become complicated.

@ We need to determine the contact matrix for each model.

@ However, the population is still assumed to be homogeneous
within each group.
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SIR Model with Continuous Age Swiss TPH &

oS . as _ (fooo r(a}d)a(a)ﬁ(d)l(a,t) da N M(a)> S,

da Ot N (a,t)da

oI oI <f0°0 r(a,a)a(a)p(a)l(a,t) da

it — I
9a " o1 JoS N(a,t)da >S v+ ua)l;
OR OR
a0 T~ R,

where r(a,a) = r(a, a) is the contact rate between hosts of age a
and a; a(a) is the susceptibility of hosts of age a; §(a) is the
infectivity of hosts of age a; and

N(a,t) = S(a,t) + I(a,t) + R(a,t); with specified initial
conditions, and boundary conditions,

S(0,1) /f N(a,t)da,

and 1(0,t) =0, R(0,t) = 0. And, N(t) = [;* N(a,t) da.

Adapted from Hethcote (2000)
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Spatial Heterogeneity

Swiss TPH g

@ Modeling spatial heterogeneity is similar to modeling
population heterogeneity but we divide the population by

spatial location instead of by demographic characteristics.
@ We can model space as continuous or discrete.

» Continuous space leads to partial integrodifferential equations
patch models) or cellular automata.

» Discrete space leads to multi-group ODE models (for example,
@ We can model movement of hosts or of infection.
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Continuous Space Models of Fox Rabies Swiss TPH g
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Metapopulation Models Sivfiss P g

@ Models of interacting populations.

@ For example, multiple connected SIR models for the spread of
influenza across cities.
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Rabies in N’'Djamena, Chad Swiss TPH g
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N'Djaména

Swiss TPH g
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Vaccination Campaigns

Density of vaccinated dogs in 2013
" Vaccination posts

Swiss TPH g
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Incidence Data in Dogs

incidence per 10,000 dogs

15

10

Swiss TPH &

Cumulative Incidence of Dog Rabies

vaccination campaigns ‘

2013

2014

2015 2016

o Different models were fit to 4 years of weekly incidence data
from N'Djamena.
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Homogeneous Model Soee TR g

rBI o

S Susceptible, F: Exposed, I: Infective, V: Vaccinated
w: birth/death, d: disease induced death, e: importation
va(t): vaccination, A: immunity loss, §: transmission,
o rate of progression from exposed stage

2017-05-10 «O>4F > EPDACQ 21



Swiss TPH g

Homogeneous Model Equations

5 _ | Ny + AV () — (valt) + 0)S(t) — BSOI(),

d%’” — BSOI() — (o + WE(W) + 2,
d;f) — 0E(t) — (5 + wID),
d‘;@ — va(H)S(t) — (A + WV (1),

In the absence of importation (¢ = 0):

__ 9BNo
M= e+
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Calibration of Homogeneous Model Swiss TPH &

Cumulative Incidence of Dog Rabies

vaccination campaigns
15 homogeneous model
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@ Different models were fit to 4 years of weekly incidence data
from N'Djamena.
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Metapopulation Model Sz P g
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Metapopulation Model Swiss TPH g
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Metapopulation Model Swiss TPH g
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Metapopulation Model
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Model Equations Swiss TPH g

Consider n subpopulations.

dSCl;t(t) = uNok(t) + AVi(t) — (va(t) + u)Sk(t)
— BrSk(t) Z ;L (t)

D _ g6, Z s Ti(8) — (o -+ W) ER(2),

Wll) _ 5 y(e) (0 (o),

dVCf;@ = v (1) Sk(t) — (A + ) Vi(®),

with M such that
1. mg; = My for all Z',j
2. my; > my; for all j
3. > G-y mkj = 1forall k
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Calibration of Metapopulation Model Swiss TPH &

Cumulative Incidence of Dog Rabies

vaccination campaigns
15 homogeneous model
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o Different models were fit to 4 years of weekly incidence data
from N'Djamena.
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Calibration of Models with Importation swica TP S

Cumulative Incidence of Dog Rabies

vaccination campaigns
15 homogeneous model
g metapopulation model
_8 homogeneous model with import
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@ Different models were fit to 4 years of weekly incidence data
from N’'Djamena.
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Calibration of Models with Importation swica TP S

Cumulative Incidence of Dog Rabies

vaccination campaigns
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o Different models were fit to 4 years of weekly incidence data
from N'Djamena.
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Discrete-Time Population-Based Models
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Discrete-Time Models Sfias [P g

@ Continuous time models are easier to analyse than
discrete-time models. However, for some diseases, or certain
situations, discrete time may be more appropriate.

» Reproduction of falciparum malaria blood stage parasites is on
a 2 day cycle.

» Mosquitoes have discrete stages in their feeding cycle that can
be modeled with a one day time step.

@ Discrete-time models consist of difference equations.

@ Numerically integrating differential equations converts them
to difference equations.
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Discrete Time SIR Model Swiss TPH &

= S(t)(1 —rBI(t)/N)
I(t+1) = I(t)(1 +rBS(t)/N — r)
R(t+1) = R(t) + £I(2)

Number of contacts made in one time step.
Probability of disease transmission per contact.
k: Proportion of infectious individuals that recover in one time
step.
N =S+ 1+ R is the total population size.

= 3
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Individual-Based Models
OpenMalaria
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Individual-Based Models Sfias [P g

@ Simulate the dynamics of infection in each individual at
discrete time steps.

@ Stochastic models because mean field approximation is no
longer possible.

Advantages

@ Include many different demographic characteristics.
@ Include superinfection and dynamics of individual infections.

@ Include temporal variation and other sources of heterogeneity.

Disadvantages

@ Little mathematical analysis is possible.

@ Can be computationally expensive.

2017-05-10 1«Or4F > EPDACQ 32



Contact Network Models Sles Y &

L.
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Contacts between individuals are usually not equally likely but
occur on networks.
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OpenMalaria SwissTPH S

@ OpenMalaria is an open source C++ platform to simulate
falciparum malaria immunology, epidemiology, and control
with an ensemble of individual-based models.

@ Developed at the Swiss TPH and Liverpool School of Tropical
Medicine.

@ https://github.com/SwissTPH/openmalaria/wiki

@ Allows the comparison of the effectiveness and
cost-effectiveness of multiple malaria control intervention
strategies in reducing transmission and disease.
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Individual-Based Simulations Sles Y g

ID 2 @*%*% *@

treat
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Individual-Based Simulations Sles Y g

ID 2 @*%*% *@

treat

ID3 B A R e R

new infection
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Individual-Based Simulations Sles Y g

ID 2 @ /2}\{5\ *% *@

treat
R i = Y = o =%
new infection —— increasing immunity ——
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Individual-Based Simulations Sles Y g

ID 2 @ /2}\{5\ *% *@

treat
R i = Y = o =%
new infection —— increasing immunity ——

pa L AR
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Vet G SwissTPH g

Vector control, Pre-  |—- Malaria infeCt'ion Of

erythrocytic vaccine, ; e
Blood stage vaccine
prophylactic drugs the human

Infectious Asexual blood stage
mosquitoes Immunity

/ A
Vector control, ¢
transmission-

blocking vaccines, | High parasite density
gametocidal drugs| 1
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Emerge'nt Intermittent preventive Cllnlcal events
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and treat, mass drug Uncomplicated clinical
1 administration malaria

Severe malaria

Vector control |
== Positive relationship Mortality
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Addressing Uncertainty Sfias [P g

Stochasticity in Outcomes

@ Multiple random seed values

Parameter Uncertainty

@ Model fitting
@ One-dimensional /multi-dimensional sensitivity analysis

@ Probabilistic sensitivity analysis

Model Uncertainty

@ Ensembles of different models

2017-05-10 «O>«Fr «ErVal p=



Ensemble of Models

Swiss TPH &

@ Mass-action models for single infections
@ Decay of blood-stage immunity
o
o
o

Case management models
Morbidity models

Correlations in heterogeneity and variation in force of
infection, comorbidity and access to treatment
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Calibration and Validation ST g

Use 61 data sets from field Age-prevalence of parasitemia
studies with different objectives sl -
to fit up to 27 parameters 061
. . . 0.4 -
@ Incidence of infection 021 Sugongum
A | f S
@ Age-prevalence o £ 0 54
parasitemia ® 6]
z 0.4
@ Seasonality of parasitemia a %27 Matsar
. . 1
o Age-density of parasites 038 -
. . . . 0'6 7
@ Age-incidence of clinical 04
disease, hospitalisation and 27 Namawala
1 0.1 1 2 5 10 20 50
mortality. Ase (years)
Models components are validated { Field data (Cl) 2= Model

separately and the entire model is
validated in certain

geographically specific settings.
Maire et al. (2006)
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Human Demography

Swiss TPH g

@ Human age structure is set to local demographic data.

@ Humans are simulated through one life span to determine
immune status.

@ The population size and age distribution is kept constant
through the simulation through migration.
2017-05-10
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Modeling Within-Host Dynamics swica TP S

@ Each infection in each individual is modeled separately:
» Empirical model (Maire et al., 2006)
» Stochastic mass-action (difference equation) models fit to
descriptive statistics (Molineaux et al., 2001)
» Stochastic mass-action (difference equation) model fit to both
individual level data and population level data. (Penny et al.,
unpublished)

@ Asexual parasite densities fit to malaria therapy data.

@ Infectivity to mosquitoes weighted sum of past asexual
parasite density.

@ Immunity (Dietz et al., 2006)

» Reduces force of infection
» Decreases asexual blood stage parasite densities
> Increases pyrogenic threshold
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Empirical Within-Host Model

@ Starting point is the empirical
distributions of densities by age
of infection for untreated
patients (malariatherapy)

2017-05-10 COr T >
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Data of a typical patient

—— Asexual parasiteq
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Empirical Within-Host Model Swiss TPH 51

@ Starting point is the empirical Geom. mean of simulations
distributions of densities by age ’;AlV_E HIOSTS .
of infection for untreated Z@'{gﬁgﬁ:@” datn,
patients (malariatherapy)

Expected parasite density

50 100 150 200 250
Days since inoculation
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Empirical Within-Host Model SwissTPH &

@ Starting point is the empirical Geom. mean of simulations
distributions of densities by age ’;AlV_E HIOSTS .
of infection for untreated Z@'{g;;:;y” datn,
patients (malariatherapy)

PREVIOUSLY
EXPOSED

Expected parasite density

50 100 150 200 250
Days since inoculation
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Empirical Within-Host Model

@ Starting point is the empirical
distributions of densities by age
of infection for untreated
patients (malariatherapy)

@ Choice of exposure proxy made
empirically (by fitting models to
field data)

@ Simulated densities are sampled

from a distribution centred on
the expected parasite density.

2017-05-10 COr T >
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Geom. mean of simulations

NAIVE HOSTS
Empirical mean from
alariatherapy data

PREVIOUSLY
EXPOSED

Expected parasite density

50 100 150 200
Days since inoculation

250

Effect on parasite
densities
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Model of Clinical Events

Swiss TPH g
@ Humans in any of five possible states

» Not sick

>

Uncomplicated fever (malarial or non-malarial with or without
parasites)
Severe malaria

Dead (malaria, indirect, non-malaria death)
Out-migrated

health systems data.

@ Clinical malaria is determined by parasite density and fever
threshold (dependent on immune status)
@ Probability of non-malarial disease is determined by local

@ A decision tree model determines events in case of an illness
using local health systems data.
2017-05-10
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Overview of Model for Malaria in Mosquitoes Swiss TPH g

@ Model mosquito feeding cycle and malaria infection in female
mosquitoes with periodically forced difference equations

@ Extensions of pre-existing models (Saul et al. (1991), Saul (2003),
and Killeen and Smith (2007))

@ Heterogeneous population of hosts

> Individual humans
» Any number and type of non-human hosts

Allow multiple mosquito species or types
Include annual seasonality
Evaluate key entomological quantities to compare to field data

Include various coverage levels of different interventions

Include decay of effectiveness of interventions over time
(resulting equations are no longer periodic)
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Modeling Malaria in Mosquitoes Swiss TPH g
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Effects of Vector Control Interventions Swiss TPH g

Larval contro| iy Emergence of new
mosquitoes everyday

Loeeresene

W& Death while host-seeking
Death while
ovipositing LLIN, IRS, House-screening,
W Attractant traps ’ ' l Repellents, Attractant
\ traps, Barriers

Host-seeking May encounter any

~
,’K number of different \%
A » types of hosts | I I

Alive but no host encountered

Ovipositing
' LLINs, IRS,
RS Treated livestock
Death
W [ while
Death while feeding
resting
LLINSs, /‘Aﬂrgctant traps, Fed
Mosquitocidal
drugs W
Figure from Paul Libiszowski Death while escaping hOSt_ . . X ) )
LLINs: long-lasting insecticidal nets; IRS: indoor residual spraying
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Swiss TPH

ine

ing Vacc

Block

ission

h a Transmi

imination wit

El

— N
2 - i y
2 - e
£ . £
£ . £
© - o
T T T T T T T T T T T
oL 80 90 ¥0 <¢O 00 OV 80 90 ¥O0O <CO OO0

Jeyenb Jad uosiad Jed seposid]

15 20

10
Years since start of intervention

Smith et al. (2011)

47

Ay

v
A
i}
v
A
il
v

2017-05-10



Sensitivity of Net Effectiveness Swiss TPH g
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