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Matlab ASOND EI Tor Cholera and DJF SST
Rank Correlation 1983-2009

= =n

Matlab

1208 150

El Tor Cholera
—~E T [ T e

-05 -05 -0.4 -03 -02 -0.1 0.1 0.2 0.3 0.4 05 0.6

Dhaka ASOND EI Tor Cholera and DJF SST
Rank Correlation 1984—-2007

ST —

SST data: HadSST1:
Rayner et al. 2003




5/11/2017

) July—August Observed Precipitation Anomaly

Link between
cholera and ENSO
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— Observed precipitation
enhanced following El Nifio
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Spatial heterogeneity in
vulnerability

(in large urban environments of
the developing world)

Climate variability
feedbacks within the disease

system itself

(epidemiological processes that
depend on the current or past
state of the system = immunity;
control measures)

forecasting
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Limitation of temporal ‘correlative’ approaches:

1 — Spatial (and other forms) of population heterogeneity

2 — Nonlinear responses to environmental forcing

3 — Everything is seasonal... explanations for seasonality are hard
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Highly localized sensitivity to climate forcing drives
endemic cholera in a megacity

Robert C. Reiner, Jr.,*", Aaron A. King®®, Michael Emch®, Mohammad Yunus®, A. S. G. Faruque®,
and Mercedes Pascual® i

University of Michigan, Ann Arbor, MI; ®Fogarty International Center, National Institutes of Health, Bethesda, MD 20892; “University of North Caroli
Chapel Hill, NC; and dinternational Centre for Diarrheal Disease Research, Dhaka 1000, Bangladesh
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Motivation

mage courtesy of https/news.bbe.co.uk

= Spatial effects have not been considered before in the
response of cholera to climate variability. We may expect
global climate drivers such as ENSO to operate at regional

scales.

= We still have a poor understanding of proximal mechanisms
that mediate the effect of global climate drivers in urban
environments

= Statistical models in the literature cannot be used effectively
for prediction because of their short lead times (ranging from 0
to 1 months)
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Data Description

e Dhaka, the capital of Bangladesh,
contains more than 14 million people
(almost tripled in last 25 years, pro-
jected to double in next 25).

e The data we analyze is the number of
cases of cholera of the O1 El Tor bio-
type over 14 years (1995-2008), broken
down by thana (i.e. administrative re-
gion).
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Total El Tor Cases per thousand people
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Data Transformation
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Probabilistic model ( discrete state Markov chain model): probabilities a function
of group , season, neighbors’ states, and climate covariates.
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Model Description
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p(0,1)

[

p(1,1)

p(2,1)

Markov Chain Model

o We start with a simple Markov Chain
model to describe the data.

e This model assumes the only differ-
ence between any two observations is
what the value of the thanas were the
month before.
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Model Description

Multiple Markov Chain Model

e We add complexity by allow-
ing the transition matrices to
be different depending on the

Older Newetr area of the city where the thana
0 1 2 0 1 2 is located.
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Model Description
Older Newer
o 0] 1] 2 0] 1] 2 L. . .
T 00 Puo [ Poa [ Pos Too | Pox | Poa Multi-Dimensional Markov Chain Model
Z 1 |po| Py P2 Pio | P11 | P12
2 [pao | P2 | p2a P20 | Paa | Paa e To account for local spatial effects,
we expand the model to allow for a
Older Newer different transition matrix depending
5 L L 0 | 1]z on the maximum state of the nearest
E 0 | poo | Poa | Poz2 Poo | Poa | Pogz .
7z 1| po|P1a| P2 Pio | P1a | P12 nmghbors of that thana.
2| pap | P21 | P22 P20 | P21 | P22
Older Newer )
o 01| 2 0] 1|2 e All thanas must now be simultane-
7 2| Poo | Pos | Poa Poo | Pos | Po2 ously tracked, hence we now have a
Z 1| pio|Pra|pi2 Pio | P1a | P12 .. . .
2 [ Pao | Pat | P2z D20 | P21 | Pz multi-dimensional model (21 dimen-

sions, one for each thana).
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Model Description
Spring Summer
Older Newer Older Newer
- 0 1 2 0 1 2 - 0 1 2 0 1 2
I 0 Poo| Poa| Po2 0| Poo | Poa | Poa2 I 0| Pop | Poa | Po2 0| Poo | Poa | Poa
% 1| o | P | Pa 1| po | P | P % 1| o | P | Pa 1| po | Pa | a2
2| P20 | P21 | P22 2| P2o | Poa| P22 2| P20 | P21 | P22 2| P2o | P2a| P22
Older Newer Older Newer
~ 0 1 2 0 1 2 - 0 1 2 0 1 2
£ 0| Poo | Poa | Poa 0] Pog | Poa | Poa £ 0| Poo | Poa | Poa 0] poo | Poa | P2
Z 1P| P11 | P12 1| po | P11 | P12 Z 1P| P11 | P12 1| pio | P11 | P12
2| p2o| P2 | P2a 2| p2o | P21 | P22 2| p2o | P21 | P22 2| pao | P21 | P22
Older Newer Older Newer
. 0 1 2 0 1 2 - 0 1 2 0 1 2
£ 0| Poo | Poa | Poa 0| poo | Poa | Poa £ 0| Poo | Poa | Poa 0| poo | Poa | Poa
Z 1| Po|Pa| Mg 1| po| P | Pz Z 1| Po|Pa| Mg 1| pmo| P | Pz
2| P20 | P21 | Paa 2| P20 | P2a | P22 2| P20 | P21 | P23 2| Pao | P2a | P22

Multi-Dimensional Inhomogeneous Markov Chain (MDIMC) Model

¢ Allowing the transitions to vary by season, our model is no longer temporally homoge-
neous, but allows for the known two-peak-per-year dynamics to emerge. Unfortunately
there are way too many variables in this model. Only Spring and Summer are shown here
in a four season model. One could imagine a different set of matrices for each month.
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Penso (1 1) = P(1, J)*[1+ T (SST, )]

anom) -

f(SST

P(X;;_! = j|Xp i1 = i.{ll’l\é};}: Xi+-1 =v,ENSO = &)
EJ | | -]

=P; ; p) % Neigh(i, j,v,D(k)) x Seas(i, j,t,D(k)) x Nino(j, s, D(k))
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= Spatial heterogeneity: the dynamics between groups are significantly
different (p-value=0.0001)

Local effect: the state of neighboring districts matters (p-value =0.01) but
a weaker effect

Interaction between spatial structure and climate forcing: the parameters
governing the effect of ENSO are significantly different between the groups
(p-value= 0.03); and similarly for flooding (p-value= 0.015)

> ENSO is a significant covariate (p=value < 0.0001); lag
of 11 months for the spring months and 9 months for
the fall ones.

> Flooding is also significant (p-value < 0.0001)
> Flooding still significant when tested in the presence

of ENSO (p-value = 0.008) and vice-versa (p-value <
0.0001)

Reiner et al. (PNAS 2012)
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Socio-economic conditions
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Summary so far:

» Cholera outbreaks in Dhaka (and Bangladesh) are driven by
climate variability (ENSO and flooding). The effect of El Nifio is
partly through precipitation and associated flooding.

» Population susceptibility shows pronounced geographic
variation within Dhaka, with a part of the city acting as a
susceptible core, in a way that highlights the key role of sanitary
and associated socio-economic conditions.
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Search algorithms to identify ‘groups ‘ of locations with
similar dynamics ...

Bayesian approach to
classify districts based on a
dynamical model and time
series data:

There are S"z‘f;' = 16,777,215 distinct groupings. Baskerville EB, Bedford T, Reiner RC,

Pascual M (2013) Nonparametric
Bayesian grouping methods for spatial
time-series data. arXiv:1306.5202.
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‘ Longer-term weather cycles such as ENSO have been
invoked to-“explain’ outbreaks of malaria and other
diseases. . ... none of these andlySes allows an alternative
explanation involving intrinsic cycles.” (Rogers et al., 2002)
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Natural cycles of the

disease

Annual
cycles
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when two cycles interact...
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coexisting
cycles
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Climate variable

AAVE

Model + statistical inference methods

Intrinsic dynamics
)

Extrinsic drivers
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ENSO No ENSO

N v

PARAMETER ESTIMATION

Sequential Monte Carlo method

MODEL COMPARISON

www.keywordpictures.com Based on likelihood

Parameters were estimated with a method that maximizes the likelihood and allows for
the inclusion of both measurement and process noise , as well as hidden variables

lonides et al. PNAS 2006, King et al. Statistical inference for partially observed

Markov processes (R package) http://pomp.r-forge.r-project.org
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B : seasonality and ENSO
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Likelihood maximization * flexible model formulations ; continuous time

by iterated filtering (based - unobserved variables (e.g. susceptibles)
on sequential Monte Carlo

methods --- particle filters) « stochasticity , trends

can accommodate: » measurement error (under-reporting)

¢ — particle cloud
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See Laneri et al (PloS Comp. Biol. 2010)
for inclusion of covariates
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Fig 2. Comparison of simulated and predicted monthly cases with those
reported for Dhaka, Bangladesh.

A Mechanistic temporal model Out-of-fit’ data

B Statistical spatio-temporal model

Avg. cholera cases per 10000
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Martinez PP, Reiner RC Jr, Cash BA, Rodd X, Shahjahan Mondal M, et al. (2017) Cholera forecast for Dhaka, Bangladesh, with the 2015-2016 El

Nifio: Lessons learned. PLOS ONE 12(3) e0172355 https //d0| org/lO 1371/journal.pone.0172355
: . X ?id=10.1371 .
B PLOS |
]

TENTH ANNIVERSARY

36


http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172355

5/11/2017

A Demra station B Mirpur station
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» Model with ENSO better explains the retrospective data
including the large epidemic of 1998

» It also predicts the low incidence of ‘out-of-fit’ data
during non-EL Nino years

» It overpredicts the response to the 2015-16 event.

» This appears to reflect a decrease susceptibility to
flooding in the city, and perhaps a decadal change in
rainfall conditions
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Transmission electron micrograph of rotavirus particles
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http://pathmicro.med.sc.edu/virol/rotaviruses.htm
http://www.babymed.com/infections/rotavirus
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Periphery

Martinez et al., PNAS 2016
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Table 1. A likelihood-based comparison of the different models

Model log-likelihood ~ SE  no. param AIC LR Test

With flooding effect -1577.6 0.33 25 3205.2
Without flooding effect -1582.2 0.35 23 32104 p-value = 0.01
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Month

Month

Month

>> Higher force of infection in the core

>> Especially, during the monsoons

>> Transmission in the core continues outside
the two main seasons (no deep troughs)
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> Dense urban areas can enhance transmission and facilitate
more endemic dynamics

» In these areas, enhanced responses to climate forcing may
be seen even in infections that are not considered climate
sensitive to begin with

» These responses are reflected primarily in changes to the
seasonality

» More epidemic behavior, in areas where disease persistence
throughout the year is more marginal, will exhibit responses
to climate forcing at multiannual rather than seasonal scales

5/11/2017

45



5/11/2017

Contents lists available at ScienceDirect

£ Advances in Water Resources

journal homepage: www.elsevier.com

Seasonality in cholera dynamics: A rainfall-driven model explains the wide range of
patterns in endemic areas

Theo Baracchini®, Aaron A. King®, Menno J. Bouma® ¢, Xavier Rod6 ¢, Enrico Bertuzzo ¢, Mercedes Pascual ***

* School of Architecture, Civil and Environmental Engineering, Ecole Polytechinque Fédérale de Lausanne, Switzerland

Department of Ecology and Evolutionary Biology, University ¢ an, MI, United States of America
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Climate variables and seasonality

@ Patna
@ Dacca
Midnapore
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Seasonality of rainfall and temp
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The model
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The historical Bengal
region encompasses
all the seasonal
patterns observed
worldwide

Monthly data:
1891-1941
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Conclusions and Implications

* Cholera epidemics appear primarily limited by the local depletion of
susceptibles

*  Explicit ‘space’ matters (the dynamics are distributed in space orin a
network)
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