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What is syndromic surveillance?

o Syndromic surveillance collects, analyses, and disseminates
data on disease symptoms to provide early warnings about

public health threats in near-real-time (Buehler et al., 2009).

o A key rationale of syndromic surveillance is that it may detect
health threats faster than traditional surveillance systems

(e.g. laboratory reports).

o This may permit more timely, and hence potentially more

effective public health action to reduce morbidity and mortality.




Syndromic surveillance

o The investigation of potential outbreaks faces a
great deal of uncertainties

e Similar symptoms/syndromes between diseases

Each outbreak has a unigue manifestation

o What will the next big event look like?

Health-care seeking behaviour

Reporting uncertainties

o Diagnosis is as good as the ability of the medical professional

Population coverage of the systems




Syndromic surveillance in England

o In England, the Real Time Syndromic Surveillance Team
(ReSST) at Public Health England (PHE) obtains and
analyses data from four National Health Service (NHS)
healthcare settings:

» Atelehealth consultation system (NHS-111)
* in-hours General Practitioner consultations (GPIHSS)

o out-of-hours and unscheduled General Practitioner consultations

(GPOOHSS)

e emergency department attendances (EDSSS)




Aberration detection

o The syndromic indicators (e.g. counts of fever, cough,
diarrhoea, gastroenteritis) from these syndromic surveillance
systems are compared on a daily basis with the expected
number of consultations to identify anomalous patterns

(aberrations)
o To do so, they use a statistical multi-level model (RAMMIE)

o A data value outside expected bounds is an indicator of
potentially important unusual activity.

» Although exceedances may be random events of little concern.
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Aberration detection capabilities

o To fully evaluate the role of syndromic surveillance within
public health, it is critical to assess the types of events that
can be detected, how long such systems take to detect the
event, and of equal importance, those events that cannot be

detected.




Knowledge gap

o Research evaluating the performance of syndromic

surveillance systems is scarce.

o Most previous studies have used:

» asingle disease type (Fan et al., 2014)

e one or two syndromic data sources (e.g. Bordonaro et al., 2016).
o No studies have investigated whether detection capabilities

vary according to time of year




Knowledge gap

o Previous studies have seldom considered the uncertainties
arising from:
e potential differences between outbreaks,
» the probability of people consulting health services monitored by a
syndromic surveillance system,

e The proportion of people being coded to a particular syndromic

indicator by a health professional.




Addressing the gap

o We developed an evaluation framework for the evaluation of
syndromic surveillance systems that aims to account for these

uncertainties and allows their investigation

o The framework has five main stages

1. Outbreak
simulation

2. Conversion 5. Aberration

detection

to syndromic
data

4. Impose
outbreak data
to baseline

3. Baseline
computation




Scenarios

o We developed scenarios to evaluate our
framework:

e A national outbreak of influenza similar to
A(H1IN1)pdmO09 (swine flu) occurring in England as a
consequence of international travelling

o Alocal outbreak of cryptosporidiosis in a metropolitan
area as a consequence of failure in a water treatment
plant




1. Outbreak simulation: Influenza
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1. Outbreak simulation: Cryptosporidium
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Model parameters

o To explore uncertainty, we simulated models using
the 10, 50, and 90" percentiles of the distribution
of values for each of the following parameters:

Cryptosporidium

R, Number of exposed people
Incubation period Number of oocysts released
Infectious period Probability of infection
Fraction of asymptomatic Incubation and infectious period
Infectivity reduction on Proportion of asymptomatic

asymptomatic @




2. Conversion to syndromic data
o Each system has a
different coverage A
o Not all symptomatic
people will consult a Consultations
health-care system
o People may be coded
_ o Coverage
to different indicators
by health
Symptomatic

professionals




2. Conversion to syndromic data

o Not all symptomatic people will report on the first
day of symptoms

o We used a health-seeking behaviour model
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3. Baseline simulation

o Expected number of cases and its 99% confidence
Intervals for 2015 based on historical data using a
mixed effects statistical model

o The upper bound of the Cl used as alarm
threshold

o We simulated 100 time series for each baseline

- . Alarm threshold
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4. Test data

o We added the downscaled outbreak data to the 100
simulated baselines

o Outbreak data were imposed onto the baseline
every other day across the whole year

Time




5. Aberration detection

o By chance, about 1% of the simulated baseline
data will exceed the alarm threshold

o To reduce the impact of false alarms, we
considered detection as the time the alarm
threshold was exceeded for three or more days.




5. Aberration detection
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Cases

Results

o We analysed 4,422,600 time series per indicator
e 243 outbreaks x 100 MC baselines x 182 initial dates
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Results

o All outbreaks were detected by all systems

o TD decreases as the size of the outbreak increases

o Outbreaks likely to be detected at day 102, 61, and 47 when there

are likely to be 9.4, 12.6 and

o 14.2 symptomatic individuals.

o GPIHSS detected the outbreaks considerably before any other

system

Current coverage
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Results

o Not all systems had the same coverage
o What if they did?

 GPIHSS was still one of the best systems for detection
e TD reduced slightly
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Seasonal effects

o On average, outbreaks starting in Feb-July had a
lower TD compare to one starting in Aug-Jan

e Outbreaks starting in July had TD=40 days compared to
TD=47 days Iif started in November (GPIHSS)
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Results Cryptosporidium

o Outbreaks of cryptosporidiosis will be more local in nature

o The ability to detect outbreaks of different sizes varies by indicator.

o Small and medium size outbreaks (i.e. ~854 and ~1,281

o exposed people per day) are not consistently detected

o EDSSS was unable to detect any outbreak
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Results cryptosporidiosis

o Even after increasing the coverage to 100% most
outbreaks go unnoticed

o A reduction in the TD iIs noticed
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Seasonal effects
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Access to healthcare

o No significant effect was detected

Days to detection
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o We highlight the importance of using different
system-syndrome indicators for event detection.

e For example, syndromic surveillance data from EDSSS
In England are useful for the detection of pandemic
Influenza but not for the identification of local outbreaks
of cryptosporidiosis.
o Interestingly, emergency department data are the
most widely used source of syndromic survelillance

data worldwide




o The framework allows the exploration of the
uncertainties related to the characteristics of the
outbreaks as well as the features of the systems

o We argue that our framework constitutes a useful
tool for public health emergency preparedness
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