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Climates have changed, are changing & will continue to change ......

Temperature anomaly (°C) relative to 1961-1990
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.. ) ) i E.g. Dengue ...
Can expect distribution and epidemic

potential of climate sensitive infectious * transmitted by Aedes

. . mosquitoes (Ae. aegypti
diseases to shift .... and Ae. Albopictus)

Dengue ~ climatically-sensitive vector-borne virus * Highly anthrophyllic
vectors

* Same vectors transmit
chikungunya, yellow
fever and zika (and Rift
Valley fever virus in
Africal)

* Vectors and diseases are
4 | i e expanding range &
ﬁs o severity of infections is

l:l Countries or areas where
dengue has been reported

The contour lines of the January and July isotherms indicate areas at risk, defined by the geographical limits of the northern and M .
southern hemispheres for vear-round survival of Aedes aeavoti. the princioal mosauito vector of denaue viruses. I n C re a S I n g

Dengue distribution (2013) From WHO  Not everyone infected
shows symptoms!



Recent spread of dengue to higher altitude parts of Asia (e.g. Nepal) suggests that

climate change may be a factor

Dengue epidemics in southern
Taiwan: a possible link to climate?
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Spread of dengue from late 1970s suggests more than climate change

1943-1959 ’
-
] ARt P SIS
R ¥ - 4 - GRS
1960-1969 = ’
g& -
a3 o S aWa N S
».Y‘ : e s)l L8
1970-1979 . - g a ., 2000-2013 b U - ; »
« - -
Number of reported DENV types
-
1 2 3 4
TRENDS in Microbiology

From Messina et al. (2014) Global spread of dengue virus types: mapping the 70 year history, Trends
in Microbiology 22: 138-146



Rate of spread of
new and existing
infectious diseases
raises questions
about conventional
disease surveillance
and containment
techniques ...

Quarantine — the first
public health initiative?
First mentioned in 12th
century, the re-
emergence of plague
around Bari in the 1690s
led to soldiers being used
to enforce restrictions on
movement ....
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Other factors behind the rapid spread of some infectious diseases
include land cover change, travel & trade, pollution etc




Just as modern technologies have facilitated the rapid spread of
infectious diseases, we can also use modern technologies to

monitor and anticipate their effects
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Timeline of technological
advances in animal
movement and human
mobility.

From Meekan et al. (2017)
The ecology of human

mobility. Trends in Ecology &
Evolution 32: 198-210



No agreed definition of Big Data

Generally (e.g. Kitchin 2013) large datasets that are characterised by the three vs
++:

* Hugeinvolume
* High in velocity
* Diverse in variety

And a 4t “v”: veracity (?)

And

e Exhaustive in scope — capture entire populations of data
* Fine-grained in resolution

* Relational — different datasets can be linked

* Flexible — easy to add to and to vary the scale

Also includes the technologies to analyse big data



Different sources of big data:
1) Directed — generated by digital forms of surveillance

2) Automated — generated by an inherent, automatic function, e.g. credit card
transactions, use of travel cards, tweets, interactions with the internet
(clickstream data etc) etc

3) Volunteered — gifted by users, e.g. crowdsourcing of data, social media posts
etc



The total amount of data produced and consumed is rapidly increasing
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Big data comes in different forms, and generally needs “cleaning”
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Big data creates new opportunities (e.g. new sub-disciplines of
infodemiology and macroecology) and brings new insights (e.g. link
between travel & spread of infectious disease)
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Huang, Z. et al. (2012) Web-based GIS: the vector-borne disease airline importation risk
(VBD-AIR) tool. International Journal of Health Geographies 11: 33



_ _ _ Information on risk of chikungunya infection (a)
Air network data (a) airports, (b) flight routes for 2011 4 suitability for Aedes alopictus vector (b)



Big data have the potential to:
* Augment existing surveillance systems
* Provide an early warning of a disease outbreak

* Provide a basis for research on health and related matters



Big data have the potential to:
* Augment existing surveillance systems
* Provide an early warning of a disease outbreak

e Provide a basis for research on health and related matters



(Mobile) Cellular phone data provide up-to-date information
on locations on individuals and their movements

C3xy

Cl x,

BTSxy

C2xy

Location Area

Cellular network comprises a network of
Base Transceiver Stations (BTS)

Each cell in the network has a Cell Identifier
(ID)

During movement between cells, the
network commands the mobile unit to
switch to the next cell

The cellular handover records all of the cells
through which the mobile unit passes

Cellular network is divided into larger, geo-
administrative zones (Location Areas, LA)

Cellular network must know the position of
all mobile units at all times to facilitate high
connection speeds



Mobile phone data collected either actively or passively

Active data collection involves
provoking production of
localisation information for a
specific mobile device (e.g.
through software or a GPS
device included in the phone)

Can be complemented with
semantic information

Generally requires agreement
of mobile unit owner to
participate
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Data collection & decoding using cell tracing on a mobile
phone (dotted line real trajectory, solid line = cell change
based trajectory




Passive data collection utilises
billing data, or Call Detail Records

Mobile phone operators collect a
large mass of data for billing
purposes/system management
Mass of data available

Main draw-back is the lack of
semantic information and the

need for validation

Also questions re privacy

Location information using Call Detail Records
(dotted line = real trajectory, solid line = route
based on CDR (2 SMSs and one call)



e.g. malaria in Zanzibar

Malaria infections in Zanzibar largely result from malaria imported from parts of mainland
Tanzania where malaria is endemic and subsequent transmission.
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From Le Menach et al. (2011) Travel risk, malaria importation and malaria transmission in Zanzibar
Scientific Reports 1:93
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Residents infected while
visiting endemic areas
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Mobile phone usage data used
to refine models of
importation of Plasmodium
falciparum malaria to Unguja
— help quantify risk from
infectious visitors and
returnees.

Most malaria on Unguja is
from returning islanders,

rather than visitors to the
island.

Improved malaria control
measures based as a result
contribute towards
elimination of malaria



Big data have the potential to:
 Augment existing surveillance systems
* Provide an early warning of a disease outbreak

e Provide a basis for research on health and related matters



Early warning of disease outbreaks
through tracking consumer behaviour

Simple idea = human behaviour as reflected in our data shadows can be used as
an early warning of disease outbreak and to track the spread of iliness

Lab results for known pathogens available

s Figure depicts the timelines of
to PHAC (+17) ,

pharmacy, clinical and laboratory
data relative to the estimated onset
of illness and the availability of the
information for the purpose of
respiratory surveillance.

From Muchaal et al. (2015)

ILI data available to PHAC (+10)

Lab results for known pathogens
available to Province (+10) |

Case Count

Antiviral prescriptions
available to PHAC (+5)

Dr. Visit (+3)

OT1C data available to
PHAC (+2)
I
Symptom Onset (0)

Evaluation of a national pharmacy-
based syndromic surveillance
system CCDR online 41 (9)

20 30 40 50 60 70 80 90 100
Days

Data on the purchasing of drugs from pharmacies available several days/weeks
before hospital data on positive disease tests available

Simple idea — but fraught with difficulties (e.g. agreement over definition of terms
such as fever, malaria, dengue, uncertainties in self-diagnosing etc)



Big data have the potential to:
* Augment existing surveillance systems
* Provide an early warning of a disease outbreak

 Provide a basis for research on health and related matters



Infodemiology in an age of Twitter

Social media platforms (SMPs) mean that the public is no longer a passive
recipient of information

Public now play a larger role in knowledge translation, including information
generation, filtering and amplification

Public health authorities can use information from SMPs to monitor public
perceptions of and responses to health risks, and the effectiveness/
penetration of health campaigns

E.g, public health researchers use Twitter — established in 2006 — to interact
with the public and to mine the platform for data



Taxonomy of use of twitter generated data in health articles, 2010-2015*

Articles,
Taxonomy Description No. (%) Examples
Use of Twitter
data
Content Assessment of body of tweets for themes in relation to a specific subject 77 (56)  Smoking, diabetes, obesity, concussion
analysis
Sentiment Assessment of body of tweets for positive or negative discussion of 21 (15)  Schizophrenia, vaccination, trans health
analysis a specific subject
Image Assessment of images within body of tweets for themes in relation to 1(1) #thinspo
analysis a specific subject
Surveillance  Monitoring of Twitter traffic for mentions of a particular topic above the 36 (26)  Influenza, Ebola, adverse drug reactions
normal background level of discussion
Prediction Using Twitter to estimate prevalence of disease or behavior 7(5) Heart disease mortality, influenza infection, Affordable Care Act
enrollment, asthma emergency department visits
Engagement  Assessing impact of discussion on Twitter by analyzing presence of an 19 (14)  Nutrition public health marketing campaign, social media impact of local
account, number of retweets, favorites, followers, etc. health departments, social media adoption by pharmaceutical
companies
Network Assessing the relationship and interactions between Twitter users about 5(4) Communities of cancer patients, sharing of health information by health
analysis a certain topic organizations

*See Sinneberg et al. (2017) Twitter as a tool for health research: A systematic review. AJPH 107, e1-8.



Tweets Followers Pricing Support Contact Us

Export your Twitter searches to Excel

»»

Advanced Search Help

https://birdig.net/twitter-search

Application Programme Interface (API)s such as BirdIQ provide a means of downloading
information on tweets that can then be analysed (location, content etc).

BirdlQ allows information to be exported as an EXCEL file

NCapture exports social media information to Nvivo
http://www.qgsrinternational.com/support/fags/what-is-ncapture

Other online tools — such as the One Million Tweet Map — maps the tweets for a particular
hashtag or keyword



The one million tweet map powered by mdbtimize

Tweets since page load  [f#] 12points
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last 4 hours -
If you want to start with a blank map, click

on reset map button (reload the page to
see all tweets again).
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: . x
A geographical clustering engine for online : We got one dengue fever by punjab govt.
maps to display and analyse big a139u3) thanks 4 rescue
geolocalized data. ) from @arslanamini at 05/10/2017 11:35

http://onemilliontweetmap.com/




e.g. Ebola Virus Disease outbreak, 2014

JULY 25 2014
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Daily geographic spread of tweets
mentioning Ebola Virus Disease

(EVD).

Following July 29 2014 health
advisory announcement by CNC,
US — awareness of EVD spread,
but possibly at expense of
attention to Chikungunya
outbreak in Caribbean
everywhere but in Caribbean

From Odium & Yoon (2015) What can we learn about the Ebola outbreak from tweets? AJIC 563-571



e.g. HIN1 pandemic, 2009
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Tweets containing HIN1, swine flu, or both from May to December 2009. Lines =
absolute number. Bars = relative percentage. Blue = “swine flu” or swineflu. Red =
HIN1. Green = (“swine flu” or swineflu) AND HIN1

From: Chew & Eysenbach (2010) Pandemics in the age of twitter: content analysis of
tweets during the 2009 H1N1 outbreak PLoS ONE 5, 14118



Relative proportion of tweets sharing personal experiences, 1 May-31 December, 2009. Figure was
scaled to the highest peak on Oct. 20. Red = indirect (family/friend) experience. Yellow = personal/
direct experience. Blue = vaccination experience. A = June 11: WHO pandemic level 6 announcement. 1

= QOct 6: HIN1 vaccinations arrive in the US.
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Relative proportion of tweets expressing misinformation, 1 May-31 December, 2009. Figure was scaled to
the highest peak on Sept. 20. A =June 11: WHO pandemic level 6 announcement. 1 = Aug 2: CBS reports
on parental concerns about HIN1. 2 = Sept 18-21: Ten swine flu lies told by the mainstream media. 3 =
Nov 27: WHO and drug companies in collusion. 4 = Dec 25: Carbon monoxide poisoning can create same

symptoms as HIN1



Quick summary
(Re)-emergence & spread of (existing and) new infectious diseases occur at a high rate
facilitated by human activity, including climate change impacts

Rate means that conventional surveillance methods — where they exist — are not fit for
purpose

Big data offer opportunities to health researchers/practitioners
But not straightforward, as big data

are not the same as total data

may not be representative

require new forms of analysis — current statistical techniques not designed to handle
the variety, volume and velocity of big data?



