Charge transport in organic molecular materials from fragment orbital-based non-adiabatic molecular dynamics simulation

Jochen Blumberger

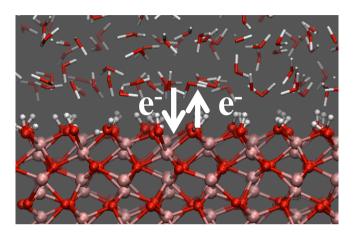
University College London Department of Physics and Astronomy

Workshop on spectroscopy and dynamics of photoinduced electronic excitations Trieste, 10.05.2017

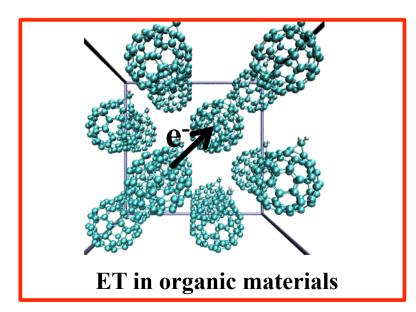
European Research Council

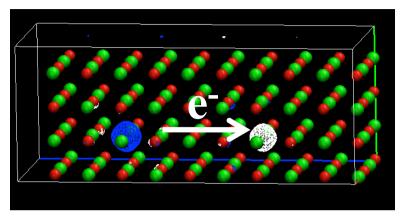
Commission

Electron transfer/transport in material science and biology

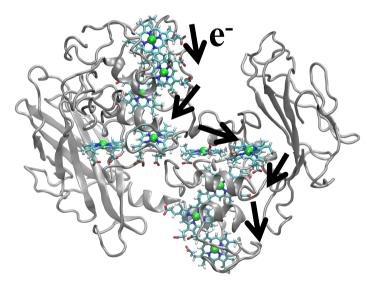


ET at photo-electrode/water interface





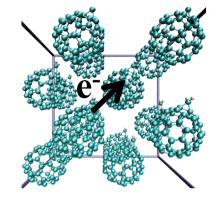
ET between defects in oxide materials



ET in bacterial `wire' protein

Overview

• A challenge for theory: Charge transport in organic materials

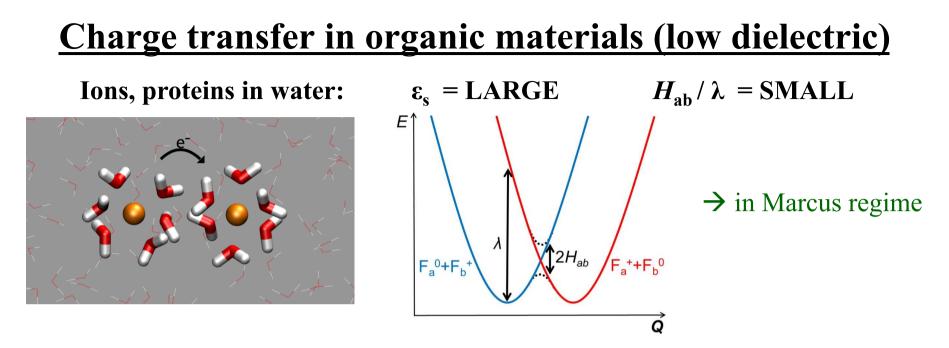


• Novel methodology:

Fragment orbital-based surface hopping (FOB-SH)

• Application of FOB-SH:

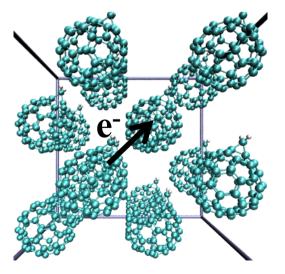
Hole mobilities in 1D chains of ethylene, rubrene

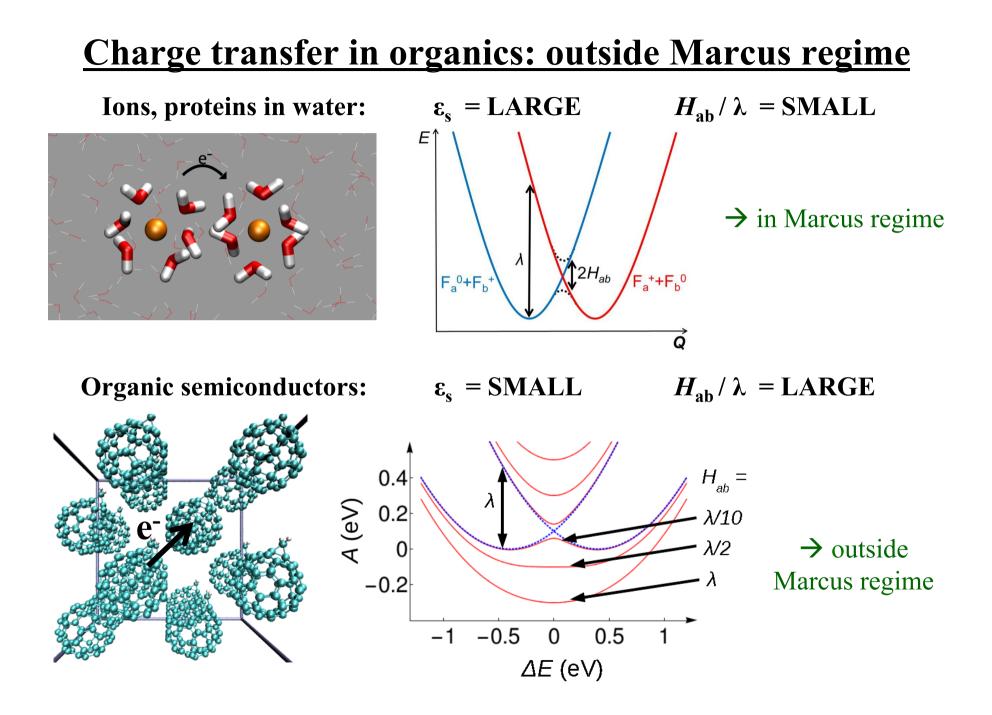


Organic semiconductors:

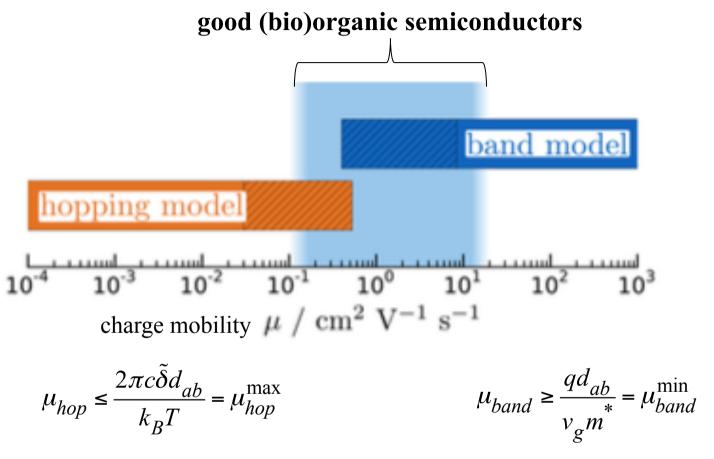
 $\varepsilon_{s} = SMALL$

 $H_{ab}/\lambda = LARGE$





Speed limits for charge hopping and band transport



ET rate << vibrational relaxation time

carrier mean free path > lattice spacing

Troisi, Org. Electron. 12, 1988 (2011)

- \rightarrow Charge transfer too fast for rate theories to apply
- \rightarrow Coupling charge transfer & nuclear dynamics too large for band theory to apply

- \rightarrow Charge transfer too fast for rate theories to apply
- \rightarrow Coupling charge transfer & nuclear dynamics too large for band theory to apply
- \rightarrow Solve coupled electron-nuclear dynamics directly (non-adiabatic dynamics)

Non-adiabatic dynamics methods

Ehrenfest molecular Dynamics

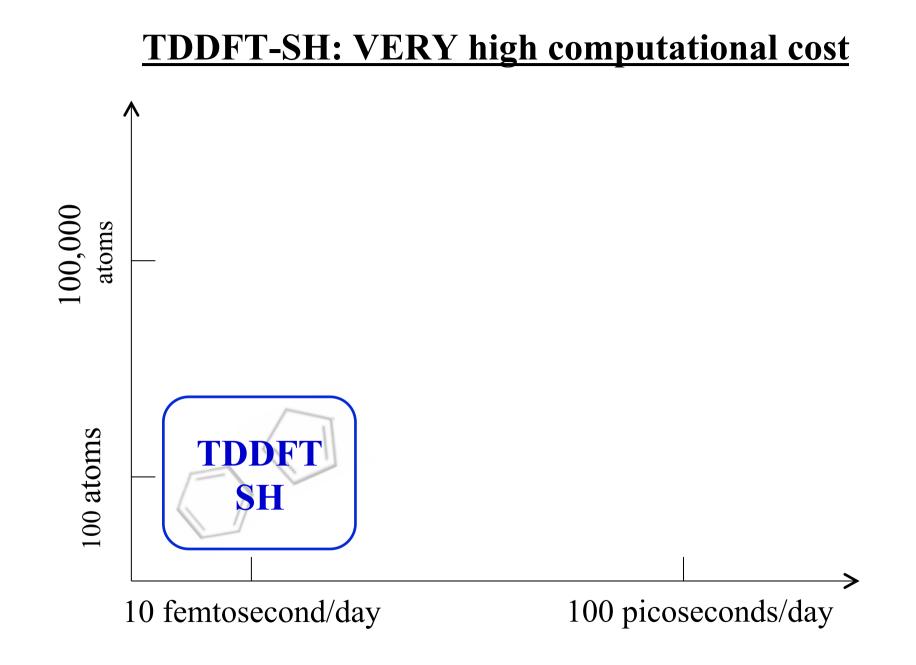
Fewest switches surface hopping (Tully)

Ab-initio multiple spawning (Martinez)

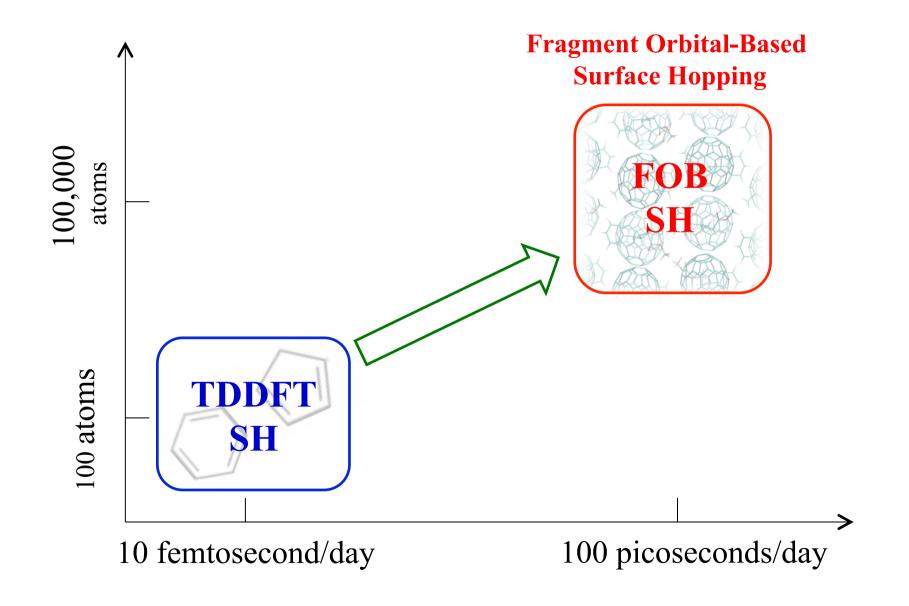
Ring-polymer MD with non-adiabatic transitions (Tom Miller,...)

Multiconfigurational time-dependent Hartree (Worth, Burghardt,...)

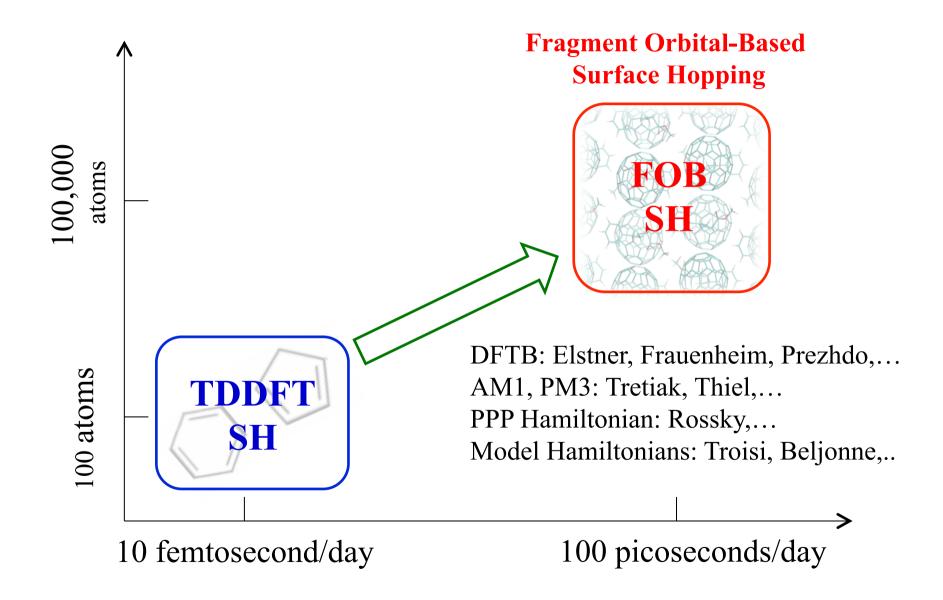
Exact factorisation of molecular wavefunction (Gross et al)



Use cheap (but reasonably accurate) electronic Hamiltonians

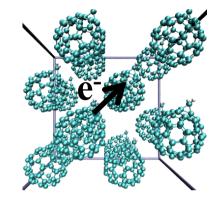


Use cheap (but reasonably accurate) electronic Hamiltonians



Overview

 A challenge for theory: Charge transport in organics materials



 Novel methodology: Fragment orbital-based surface hopping (FOB-SH)

 Application of FOB-SH: Hole mobilities in 1D chains of ethylene, rubrene

Fragment orbital-based surface hopping (FOB-SH)

Strategy: Minimalistic model that gives the right physical behaviour Being rigorous within that model

Fragment orbital-based surface hopping (FOB-SH)

Strategy: Minimalistic model that gives the right physical behaviour Being rigorous within that model

2 major approximations:

- 1. Exact electron-nuclear quantum dynamics replaced by mixed quantum-classical dynamics (here, surface hopping)
- 2. Time-dependent multi-determinantal electronic wavefunction replaced by a 1-particle wavefunction describing the excess electron or hole

Fragment orbital-based surface hopping (FOB-SH)

Strategy: Minimalistic model that gives the right physical behaviour Being rigorous within that model

2 major approximations:

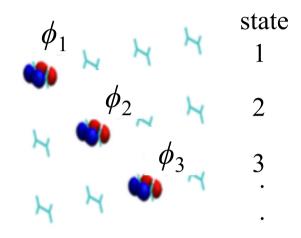
- 1. Exact electron-nuclear quantum dynamics replaced by mixed quantum-classical dynamics
- 2. Time-dependent multi-determinantal electronic wavefunction replaced by a 1-particle wavefunction describing the excess electron or hole
- → NO explicit core and valence electrons.
 Implicitly included by parametrization of electronic Hamiltonian.

FOB-SH: electronic equation of motion

J. Spencer, F. Gajdos, JB, JCP 145, 064102, 2016.

electron hole

State basis of SOMO orbitals



Electron hole wavefunction:

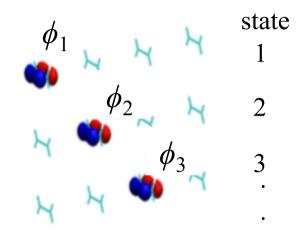
$$\psi(\boldsymbol{r},t) = \sum_{k} u_{k}(t)\phi_{k}(\boldsymbol{r},\boldsymbol{R}_{I}(t))$$

FOB-SH: electronic equation of motion

J. Spencer, F. Gajdos, JB, JCP 145, 064102, 2016.

electron hole

State basis of SOMO orbitals



Electron hole wavefunction:

$$\psi(\boldsymbol{r},t) = \sum_{k} u_{k}(t)\phi_{k}(\boldsymbol{r},\boldsymbol{R}_{I}(t))$$

Electronic Schrodinger equation:

$$i\hbar\dot{u}_{k}=\sum_{l}u_{l}\left(H_{kl}-i\hbar\left\langle \phi_{k}\left|\dot{\phi}_{l}\right\rangle \right)$$

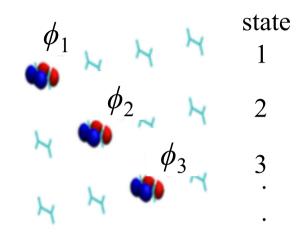
FOB-SH: nuclear equation of motion

J. Spencer, F. Gajdos, JB, JCP 145, 064102, 2016.

electron hole

nuclei

State basis of SOMO orbitals



Classical nuclear dynamics

$$\boldsymbol{F}_{I,i} = -\frac{\partial}{\partial \boldsymbol{R}_I} \boldsymbol{E}_i \quad \boldsymbol{E}_i = \boldsymbol{H}_{ii}^{diag}$$

*i*th adiabatic electronic state

Electron hole wavefunction:

$$\psi(\boldsymbol{r},t) = \sum_{k} u_{k}(t)\phi_{k}(\boldsymbol{r},\boldsymbol{R}_{I}(t))$$

Electronic Schrodinger equation:

$$i\hbar\dot{u}_{k}=\sum_{l}u_{l}\left(H_{kl}-i\hbar\left\langle \phi_{k}\left|\dot{\phi}_{l}\right\rangle \right)$$

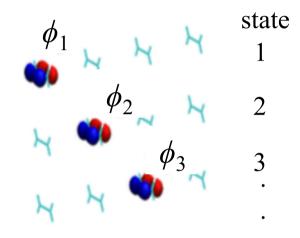
FOB-SH: nuclear equation of motion

J. Spencer, F. Gajdos, JB, JCP 145, 064102, 2016.

electron hole

nuclei

State basis of SOMO orbitals



Electron hole wavefunction:

$$\psi(\mathbf{r},t) = \sum_{k} u_{k}(t)\phi_{k}(\mathbf{r},\mathbf{R}_{I}(t))$$

Electronic Schrodinger equation:

$$i\hbar\dot{u}_{k} = \sum_{l} u_{l} \left(H_{kl} - i\hbar\left\langle \phi_{k} \left| \dot{\phi}_{l} \right\rangle \right) \right)$$

Classical nuclear dynamics

$$\boldsymbol{F}_{I,i} = -\frac{\partial}{\partial \boldsymbol{R}_I} \boldsymbol{E}_i \quad \boldsymbol{E}_i = \boldsymbol{H}_{ii}^{diag}$$

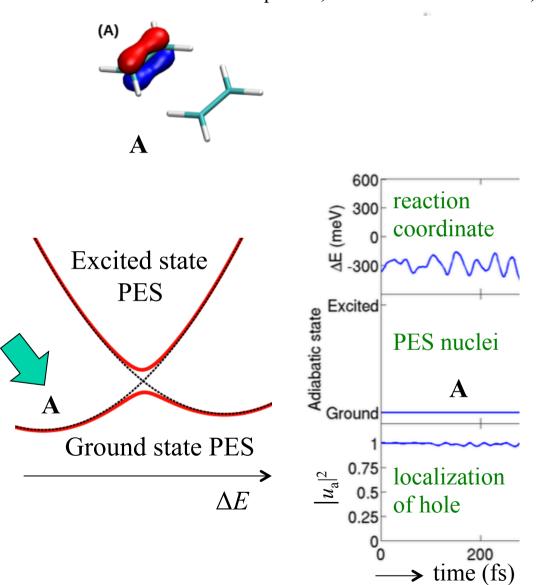
*i*th adiabatic electronic state

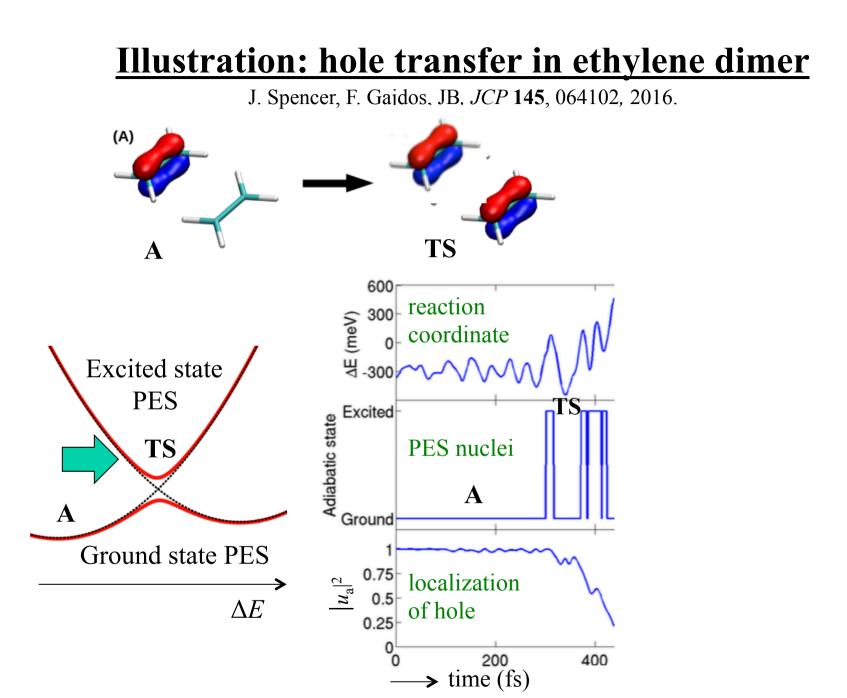
Stochastic hopping from surface $E_i \rightarrow E_j$ with probability

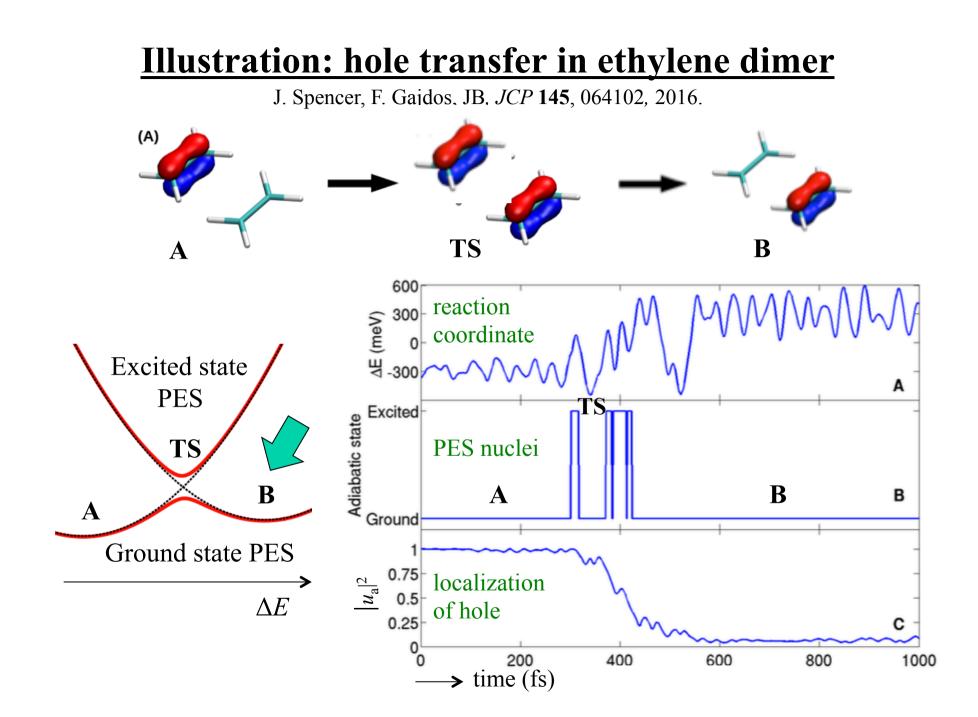
$$p_{j \leftarrow i}(u_k, H_{kl}, d_{kl})$$

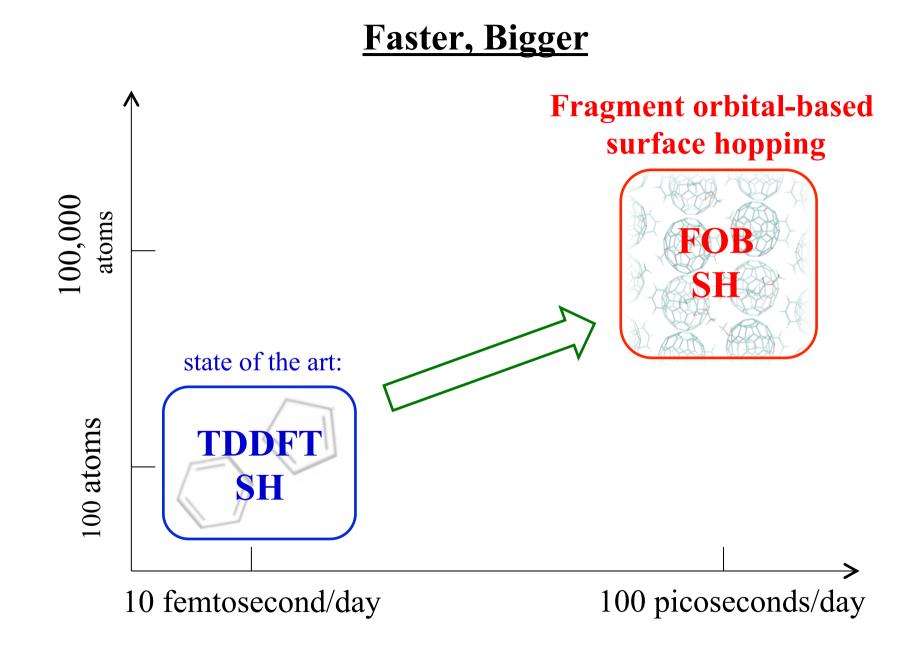
Illustration: hole transfer in ethylene dimer

J. Spencer, F. Gaidos, JB. JCP 145, 064102, 2016.







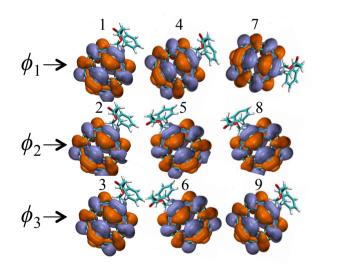


1. Fast calculation of electronic Hamiltonian

J. Spencer, F. Gajdos, JB, JCP 145, 064102, 2016.

Electronic Hamiltonian:

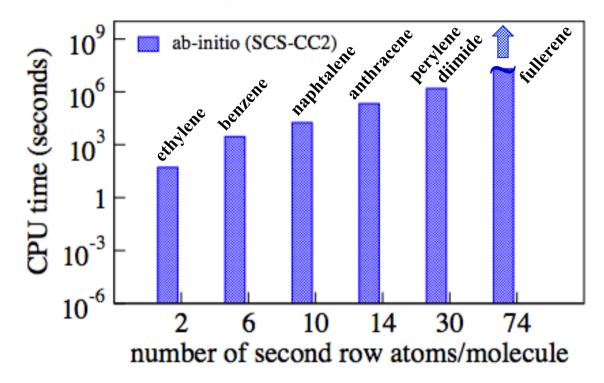
$$H_{kl} = \left\langle \phi_k \left| H \right| \phi_l \right\rangle$$



		force field					Analytic overlap / method (AOM)				
	K			K			H_k	l = 0	$\overline{C}\overline{S}_{kl}$		
		H_{12}	0 (H ₁₄	0	0	0	0	0		
	H ₂₁	, H ₂₂	H ₂₃	0	H ₂₅	0	0	0	0		
<i>H</i> =	0	$H_{_{32}}$	$H_{_{33}}$	0	0	$H_{_{36}}$	0	0	0		
	H_{41}	0	0	$H_{\rm 44}$	$H_{\rm 45}$	0	$H_{\rm 47}$	0	0		
	0	H_{52}	0	$H_{\rm 54}$		$H_{\rm 56}$	0	$H_{_{58}}$	0		
	0	0	$H_{_{63}}$	0	$H_{_{65}}$	$H_{_{66}}$	0	0	$H_{_{69}}$		
	0	0	0	$H_{_{74}}$	0	0	$H_{_{77}}$	$H_{_{78}}$	0		
	0	0	0	0	$H_{_{85}}$	0	$H_{_{87}}$	$H_{_{88}}$	$H_{_{89}}$		
	0	0	0	0	0	$H_{\rm 96}$	0	$H_{_{98}}$	H ₉₉		

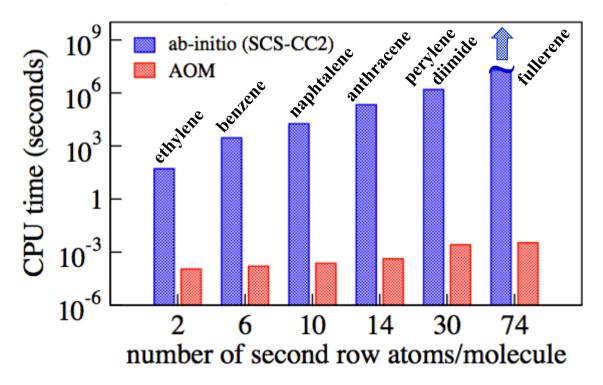
Reference ab-initio (SCS-CC2) calculation of H_{kl}

F. Gajdos, JB et al. J. Chem. Theor. Comput. 10, 4653 (2014).



AOM: Speed-up

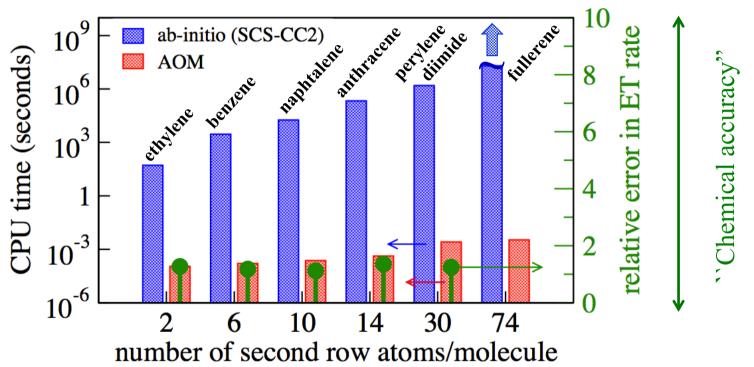
F. Gajdos, JB et al. J. Chem. Theor. Comput. 10, 4653 (2014).



→ speed-up of 9 (6) orders of magnitude wrt ab-initio (DFT)
→ reaches relevant system sizes (30-100 atoms/molecule)

<u>Accuracy</u>

F. Gajdos, JB et al. J. Chem. Theor. Comput. 10, 4653 (2014).



- \rightarrow speed-up of 9 (6) orders of magnitude wrt ab-initio (DFT)
- \rightarrow reaches relevant system sizes (30-100 atoms/molecule)
- → Error in ET rate *i*←*j* < factor of 2 → AOM chemically accurate

2. Fast calculation of nuclear gradients

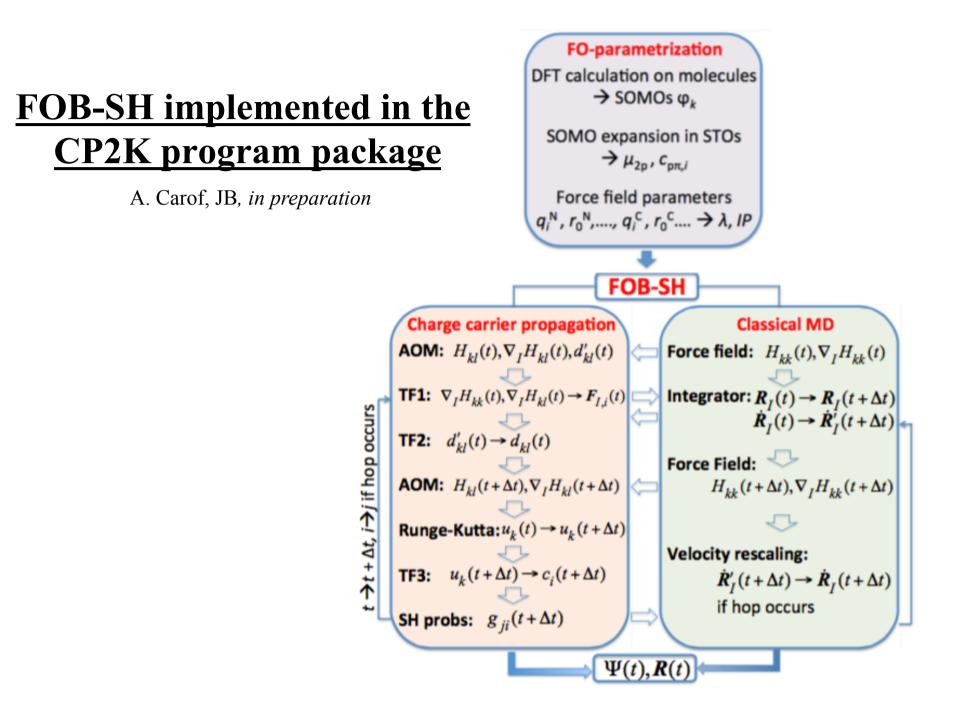
J. Spencer, F. Gajdos, JB, JCP 145, 064102, 2016.

$$F_{I,i} = -\sum_{kl} U_{ik}^{T*} \nabla_I H_{kl} U_{li} \quad \text{nuclear force on adiabatic electronic surface } i$$

$$\nabla_I H_{kl} = C \nabla_I S_{kl} \quad \text{off-diagonal gradients in SOMO basis} \quad (\text{diagonal gradient from force field})$$

$$\nabla_I S_{kl} = d_{I,kl} + d_{I,lk}^* \quad \text{overlap gradients in SOMO basis}$$

$$d_{I,kl} = \left\langle \varphi_k \middle| \nabla_I \varphi_l \right\rangle \quad \text{NACV in SOMO basis} \quad (\text{finite difference})$$



Issues to consider in surface hopping simulations

• Electronic wavefunction remains overly coherent after surface crossing

Decoherence correction: (i) instant collapse of wf to active electronic state (ii) exponential damping of inactive electronic states

• Total energy conservation after hop

Rescaling of nuclear velocity (i) using total velocity vector (ii) velocity component parallel to NACV

- After unsuccessful (frustrated) hops: should velocity be reversed? yes
- How to detect trivial surface crossings: (i) flexible SH

(ii) Self-consistent FSSH (Prezhdo et al)

Validation of FOB-SH approach

• Total energy conservation

$$\frac{\mathrm{d}E_{tot}}{\mathrm{d}t} = 0 \quad (NVE \text{ ensemble})$$

• Detailed balance (DB)

Probability of adiabat
$$i = \frac{\exp(-\beta A_i)}{\sum_j \exp(-\beta A_j)}$$

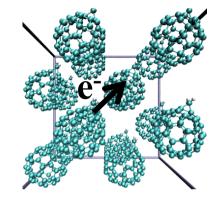
 A_i the free energy of adiabat i

• Internal consistency (IC)

 $IC(t,i) = \frac{\text{fraction of trajectories on adiabat } i \text{ at time } t}{\text{average electronic population of adiabat } i \text{ at time } t} = 1 \quad \text{for all } t, i$

Overview

 A challenge for theory: Charge transport in organics materials



• Novel methodology:

Fragment orbital-based surface hopping (FOB-SH)

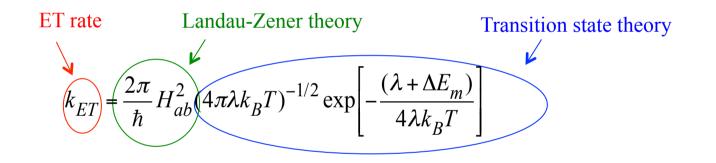
• Application of FOB-SH:

Hole mobilities in 1D chains of ethylene, rubrene

Questions

J. Spencer, L. Scalfi, A. Carof, JB, Faraday Disc 2016.

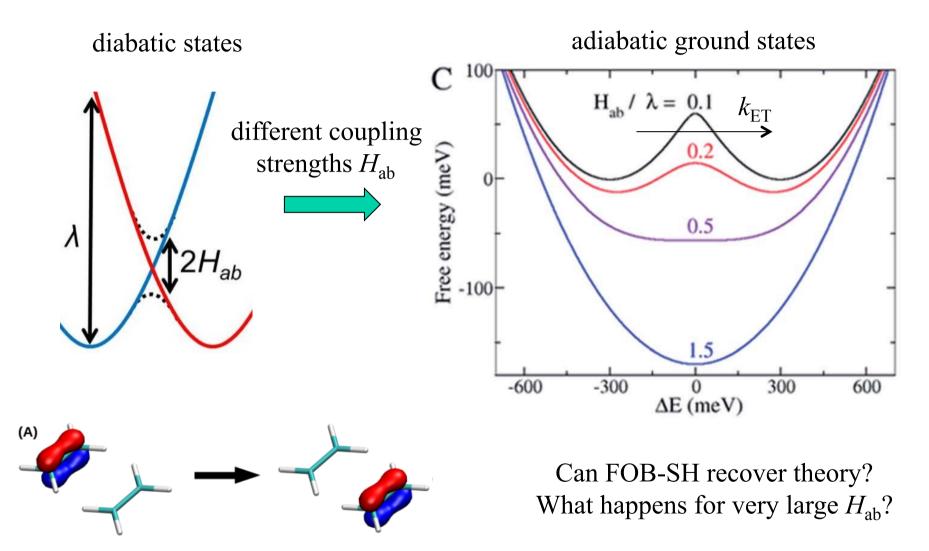
• Can FOB-SH recover Marcus Theory ET rates in the regime where Marcus Theory is valid?

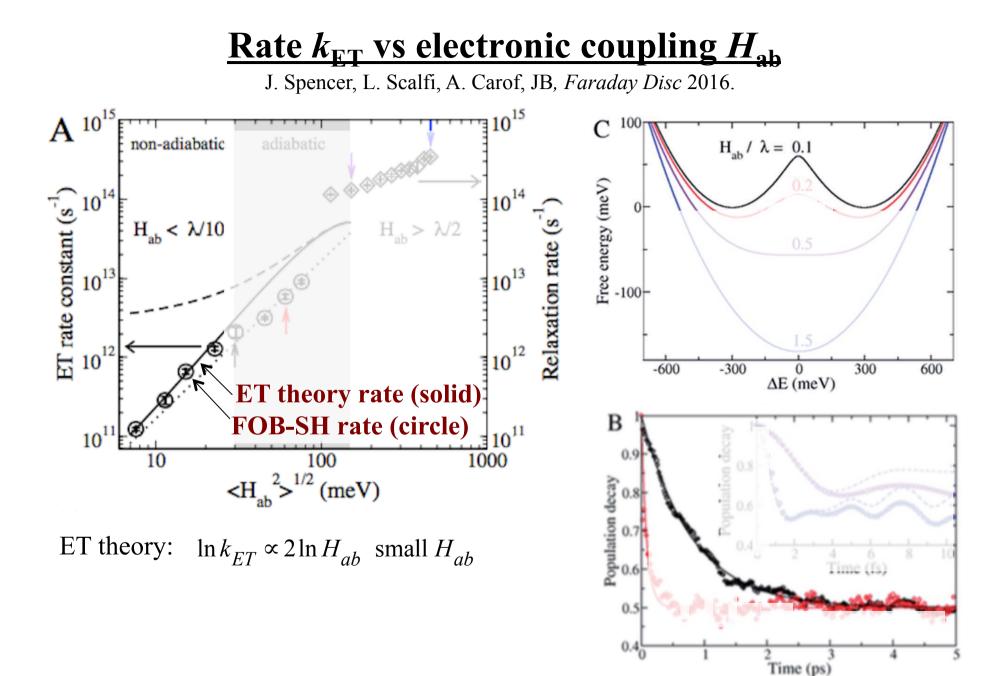


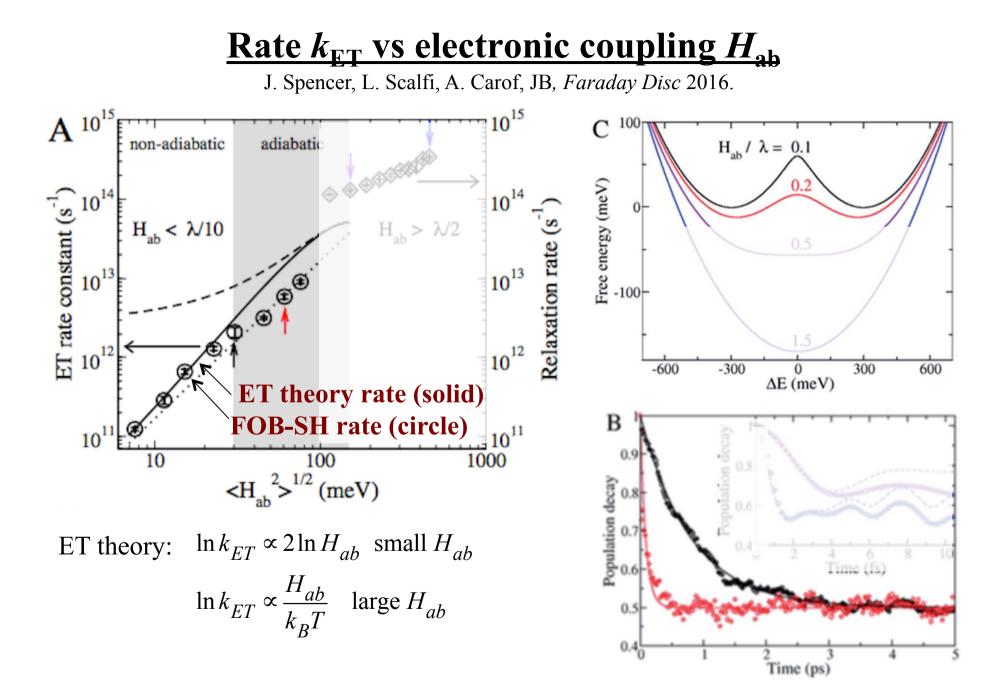
• What happens beyond that regime?

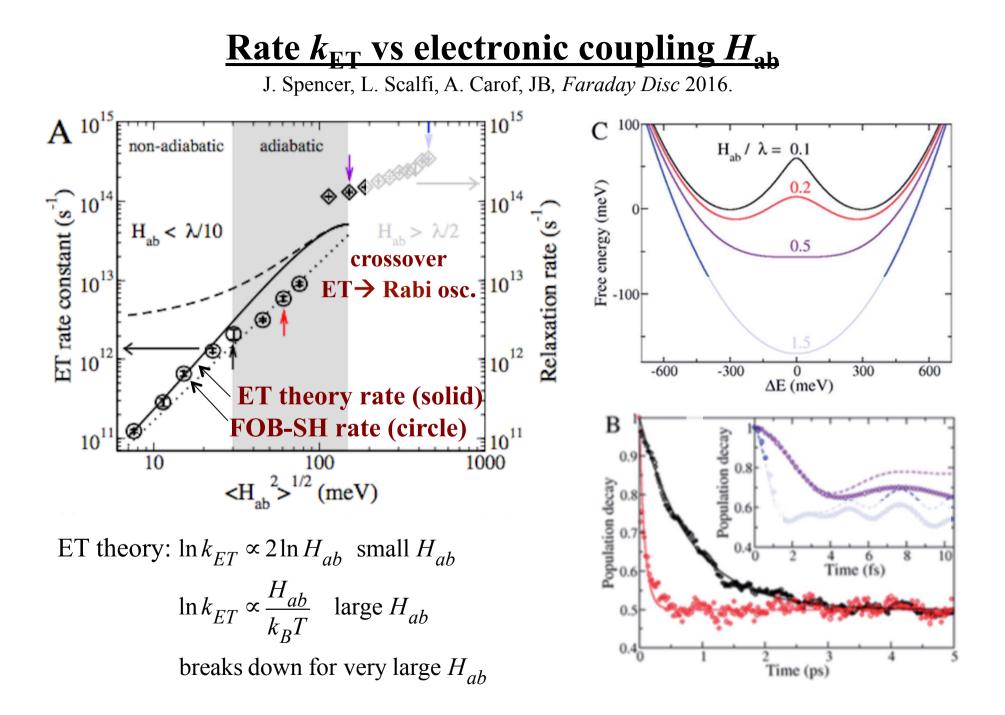
Rate $k_{\rm ET}$ vs electronic coupling $H_{\rm ab}$

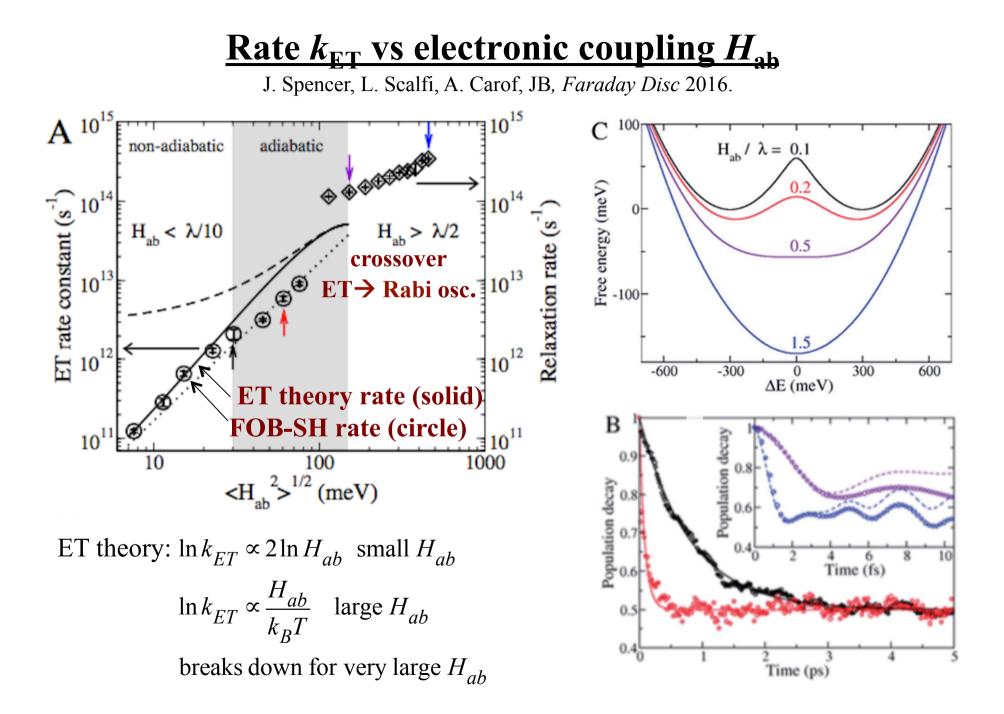
J. Spencer, L. Scalfi, A. Carof, JB, Faraday Disc 2016.





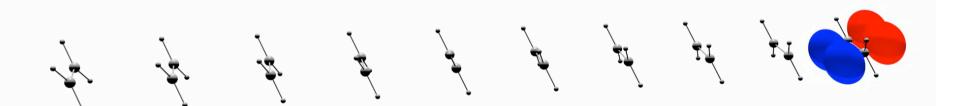






Hole transport along ethylene chain from FOB-SH

J. Spencer, F. Gajdos, JB, JCP 145, 064102, 2016.



Adiabatic state 8

J. Spencer, F. Gajdos, JB, JCP 145, 064102, 2016.

- ~1000 trajectories
- hole mobility

$$\mu = \frac{eD}{k_{\rm B}T}$$
$$D = \frac{1}{2} \frac{d}{dt} \left\langle \left\langle \psi_n(t) \middle| x \middle| \psi_n(t) \right\rangle_x^2 \right\rangle_n$$

for T = 100-1000 K

J. Spencer, F. Gajdos, JB, JCP 145, 064102, 2016.

- ~1000 trajectories
- hole mobility

$$\mu = \frac{eD}{k_{\rm B}T}$$
$$D = \frac{1}{2} \frac{d}{dt} \left\langle \left\langle \psi_n(t) \middle| x \middle| \psi_n(t) \right\rangle_x^2 \right\rangle_n$$

for T = 100-1000 K

• 3 electronic couplings

small (2 meV) medium (20 meV) large (140 meV)

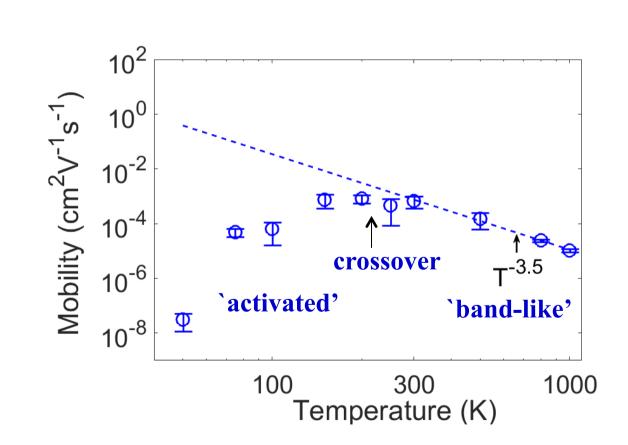
J. Spencer, F. Gajdos, JB, JCP 145, 064102, 2016.

- ~1000 trajectories
- hole mobility

$$\mu = \frac{eD}{k_{\rm B}T}$$
$$D = \frac{1}{2} \frac{d}{dt} \left\langle \left\langle \psi_n(t) \middle| x \middle| \psi_n(t) \right\rangle_x^2 \right\rangle_n$$

for T = 100-1000 K

• 3 electronic couplings small (2 meV)



XXXXXX

4

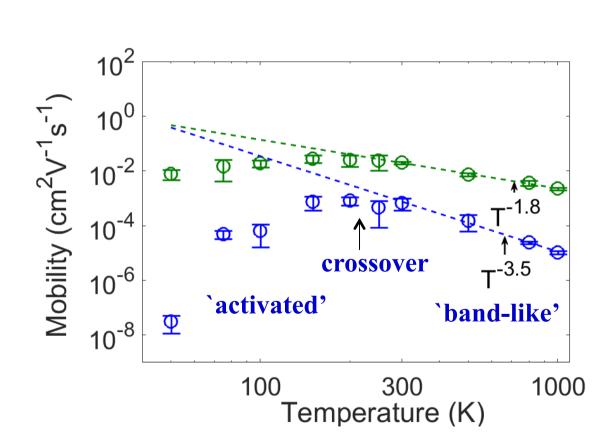
J. Spencer, F. Gajdos, JB, JCP 145, 064102, 2016.

- ~1000 trajectories
- hole mobility

$$\mu = \frac{eD}{k_{\rm B}T}$$
$$D = \frac{1}{2} \frac{d}{dt} \left\langle \left\langle \psi_n(t) \middle| x \middle| \psi_n(t) \right\rangle_x^2 \right\rangle_n$$

for T = 100-1000 K

• 3 electronic couplings small (2 meV) medium (20 meV)



Y

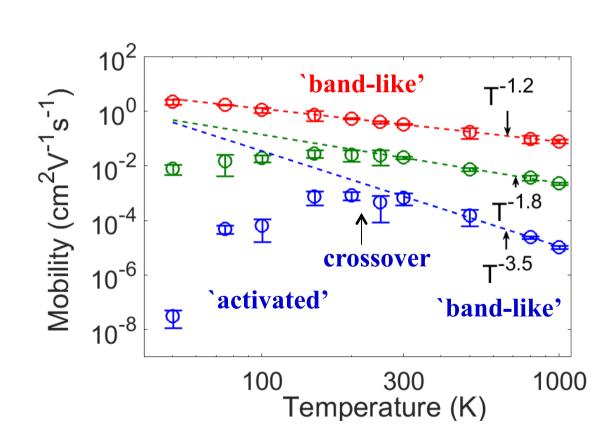
J. Spencer, F. Gajdos, JB, JCP 145, 064102, 2016.

- ~1000 trajectories
- hole mobility

$$\mu = \frac{eD}{k_{\rm B}T}$$
$$D = \frac{1}{2} \frac{d}{dt} \left\langle \left\langle \psi_n(t) \middle| x \middle| \psi_n(t) \right\rangle_x^2 \right\rangle_n$$

for T = 100-1000 K

• 3 electronic couplings small (2 meV) medium (20 meV) large (140 meV)



X X X X X

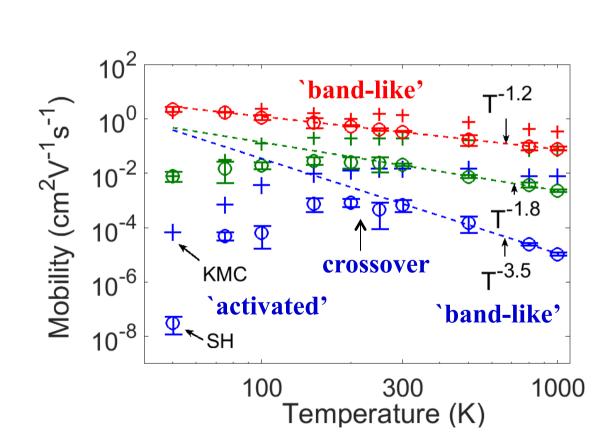
J. Spencer, F. Gajdos, JB, JCP 145, 064102, 2016.

- ~1000 trajectories
- hole mobility

$$\mu = \frac{eD}{k_{\rm B}T}$$
$$D = \frac{1}{2} \frac{d}{dt} \left\langle \left\langle \psi_n(t) \middle| x \middle| \psi_n(t) \right\rangle_x^2 \right\rangle_n$$

for T = 100-1000 K

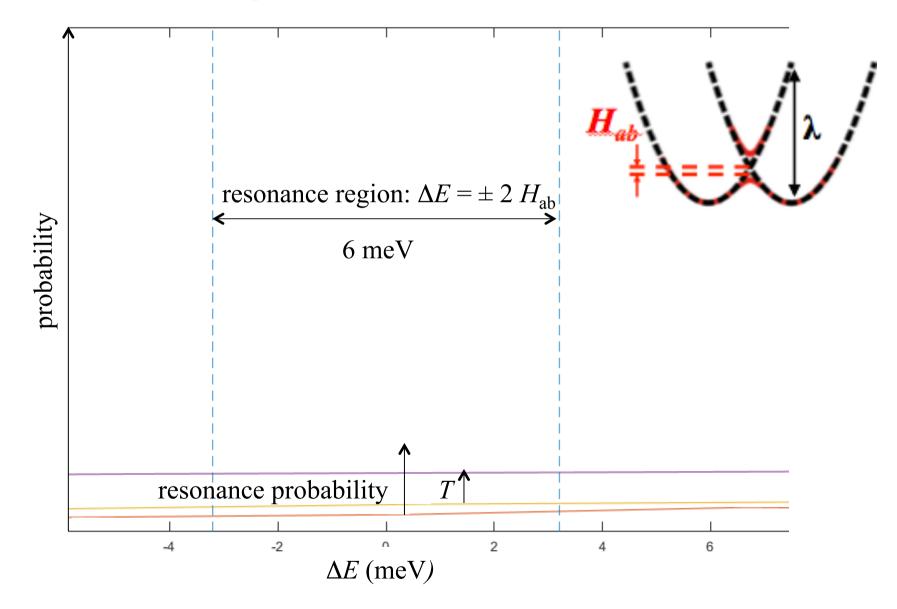
• 3 electronic couplings small (2 meV) medium (20 meV) large (140 meV)



K K K K K

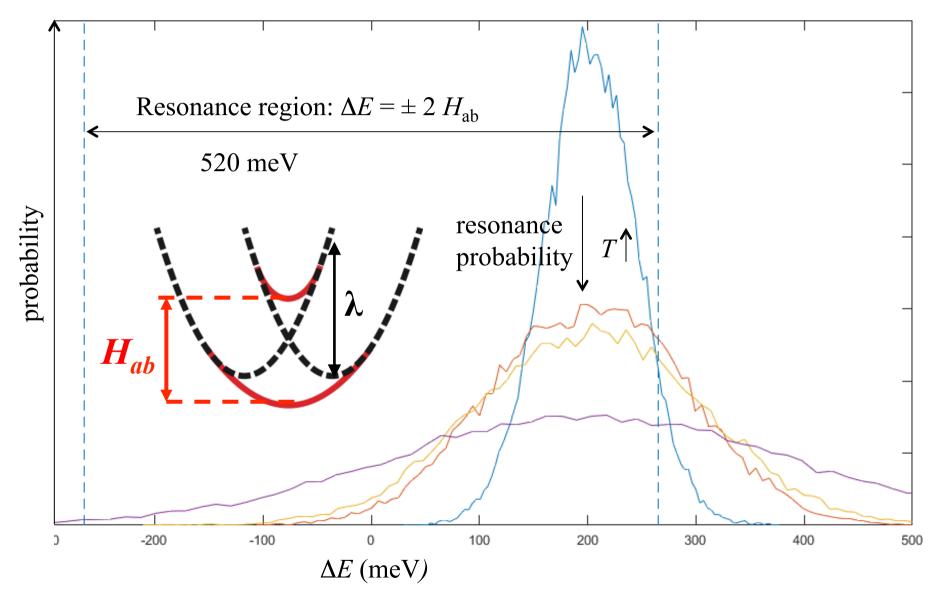
Activated transport (low H_{ab}): resonance probability

J. Spencer, F. Gajdos, JB, *JCP* **145**, 064102, 2016.



Band-like transport (high H_{ab}): resonance probability

J. Spencer, F. Gajdos, JB, JCP 145, 064102, 2016.



Summary

- Organic semiconductors: No small parameters: $H_{ab} \sim \lambda/2 \sim k_B T$ \rightarrow band theory and small polaron model inadequate.
- Fragment-orbital based surface hopping (FOB-SH)
 → a fast quantum-classical MD method for propagation of excess charge carrier at approx the cost of classical MD simulation.
- Reproduces Marcus ET rates in regime where rate theory is valid. Crossover to Rabi oscillations when barrier disappears (high couplings).
- Hole transfer in ethylene chain:
 - \rightarrow crossover from ``activated" to "band-like" at low electronic coupling
 - \rightarrow ~ temperature independent mobility at medium electronic couplings
 - \rightarrow ``band-like'' power-law decay of mobility at high electronic coupling
- First application to real material (rubrene):
 → experimental *T*-dependence well reproduced

Acknowledgment

Antoine Carof (UCL)

Samuele Giannini (UCL)

Peter Cooke (UCL)

Hui Yang (UCL)

Jacob Spencer (UCL)

Fruzsina Gajdos (UCL)

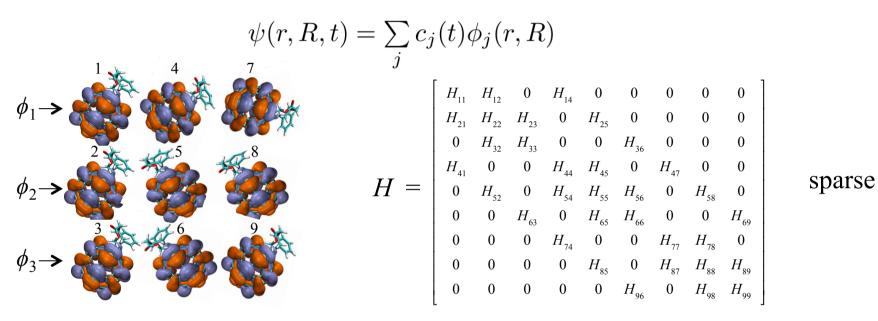
Laura Scalfi (ENS Paris)

European Research Council

Implementation of FOB-SH method

J. Spencer, F. Gajdos., JB in preparation

1.) Expand 1-particle wavefunction of charge carrier in DFT SOMO site basis



2.) Ultrafast estimation of Hamiltonian matrix elements

(i) H_{kl} from Analytic Overlap Method (AOM) (ii) H_{kk} from polarizable force field $H_{kl} = \overline{C} \, \overline{S}_{kl}$

3.) Ultrafast calculation of nuclear derivatives

(i) $\nabla_{R}H_{kl}$, NACVs from AOM (ii) $\nabla_{R}H_{kk}$ from force field

4.) Transformation of nuclear forces from site to adiabatic basis

$$F_{I,i} = \left(U^{-1} \nabla_I H U \right)_{ii}$$

Implementation of fast NAMD method (condinued)

J. Spencer, F. Gajdos., JB in preparation

5.) Solving electronic Schrodinger equation for the orbital expansion coefficients

$$i\hbar\dot{c}_k = \sum_j c_j (H_{kj} - i\hbar\left\langle \phi_k | \frac{d\phi_j}{dt} \right\rangle)$$
 Runge-Kutta
 $\delta t = 0.01$ -0.1 fs

6.) Calculation of hopping probabilities between adiabatic electronic states

$$p_{j \leftarrow i} = \frac{-2 \operatorname{Re}\left(c_{j}^{*}c_{i}d_{ji}\right) \Delta t}{\left|c_{i}\right|^{2}}$$

7.) Propagate nuclei on current adiabatic surface i

$$F_{I} = -\frac{\partial}{\partial R_{I}} E_{i}$$
 Velocity-Verlet
 $\Delta t = 0.5$ fs

8.) Apply decoherence correction if system passed through an avoided crossing

9.) Calculate electronic Hamiltonian at new nuclear positions and repeat steps 3-8.

Analytic Overlap Method (AOM) for electronic couplings H_{kl}

F. Gajdos, JB et al. J. Chem. Theor. Comput. 10, 4653 (2014).

1.) Projection of DFT SOMOs of sites k, l in minimum Slater type orbital (STO) basis

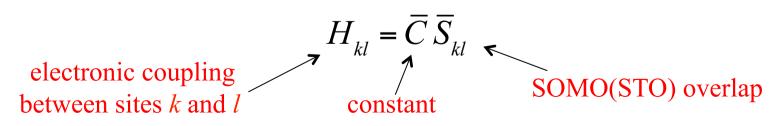
$$C_{p\pi,i} = \left\langle \sum_{n \in k}^{atoms} S_{ni}^{-1} p_{\pi,n} \middle| \phi_k^{N'} \right\rangle$$

$$p_{\pi} \text{-STO} \quad \text{SOMO site } k \text{ from DFT}$$

2.) Analytic calculation of SOMO overlap in terms of STOs (very fast!)

$$\overline{S}_{kl} = \sum_{i \in k}^{atoms} \sum_{j \in l}^{atoms} c^*_{p\pi,i} c_{p\pi,j} \left\langle p_{\pi,i} \middle| p_{\pi,j} \right\rangle$$

3.) Training of linear relation using large number of DFT/ab-initio H_{kl} values



Analytic Overlap Method (AOM) for electronic couplings H_{kl}

F. Gajdos, JB et al. J. Chem. Theor. Comput. 10, 4653 (2014).

