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A short history

The entropy functional (or Shannon’s entropy) of the random
vector X in Rn

H(X ) = H(f ) = −
∫
Rn

f (x) log f (x) dx .

The entropy power inequality Shannon (1948); Stam (1959).
If X ,Y are independent random vectors

e
2
n
H(X+Y )) ≥ e

2
n
H(X ) + e

2
n
H(Y ).
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A short history

For a Gaussian random vector Nσ with covariance σI .

e
2
n
H(Nσ)) = 2πσe.

If X ,Y are independent Gaussian random vectors (with
proportional covariances) there is equality in the entropy
power inequality.

The proof is based on Fisher information bounds and on the
relationship between entropy and Fisher information

I (X ) = I (f ) =

∫
{f>0}

|∇f (x)|2

f (x)
dx .
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A short history

Strong connections of entropy power inequality with the central
limit theorem
Consider the law of (Xi i.i.d.)

Sn =
X1 + X2 + · · ·+ Xn√

n
, n ≥ 1.

Application of the entropy power inequality shows that

H(S2) = H

(
X1 + X2√

2

)
≥ H(S1).

The entropy is increasing at least along the subsequence S2k .
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A short history

The sequence Sn is such that, if the Xi are centered, mass,
mean and variance are preserved.

Like in kinetic theory, where relaxation to equilibrium in the
Boltzmann equation can be viewed as a consequence of the
increasing of entropy , one could conjecture that H(Sn) is
monotonically increasing in n.

Difficult to prove that

H(S3) ≥ H(S2).

The problem remained open up to 2002.

Monotonicity verified by Artstein, Ball, Barthe, Naor (2002).
Simpler proof in Madiman, Barron (2007).
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A short history

In kinetic theory, entropy decays towards the equilibrium
density with a certain rate.

There is a decay rate of H(Sn) towards H(Nσ)?

Important to quantify the entropy jump

H

(
X1 + X2√

2

)
− H(X1) ≥ 0

Recent results Ball, Barthe, Naor (2003), Carlen, Soffer
(2011), Ball, Nguyen (2012) for log-concave densities.
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A short history

The heat equation in the whole space Rn

∂u

∂t
= κ∆u, u(x , t = 0) = f (x)

relates Shannon’s entropy and Fisher information.

McKean McKean(1965) , computed the evolution in time of
the subsequent derivatives of the entropy functional H(u(t)).
At the first two orders, with κ = 1

I (f ) =
d

dt

∣∣∣∣
t=0

H(u(t)); J(f ) = −1

2

d

dt

∣∣∣∣
t=0

I (u(t)).
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A short history

The functional J(X ) is given by

J(X ) = J(f ) =
n∑

i ,j=1

∫
{f>0}

[∂ij(log f )]2 f dx =

n∑
i ,j=1

∫
{f>0}

[
∂ij f

f
−
∂i f ∂j f

f 2

]2
f dx .

The functionals J(X ) and I (X ) are related. It is known that

J(X ) ≥ I 2(X )

n
.
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A short history

Fisher information satisfies the inequality (a, b > 0)

I (X + Y ) ≤ a2

(a + b)2
I (X ) +

b2

(a + b)2
I (Y )

Optimizing over a and b one obtains Stam’s Fisher information
inequality

1

I (X + Y )
≥ 1

I (X )
+

1

I (Y )
.

Note that for the Gaussian random vector I (Nσ) = n/σ. Hence,
equality holds if and only X and Y are Gaussian random vectors
with proportional covariance matrices.
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A short history

Entropy power inequality implies isoperimetric inequality for
entropies. If N is a Gaussian random vector with covariance I , for
t > 0

e
2
n
H(X+2tN)) ≥ e

2
n
H(X ) + e

2
n
H(2tN) = e

2
n
H(X ) + 4tπe.

This implies

e
2
n
H(X+2tN)) − e

2
n
H(X )

t
≥ 4πe.

Letting t → 0

I (X )e
2
n
H(X ) ≥ 2πen.
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A short history

The isoperimetric inequality for entropies implies logarithmic
Sobolev inequality with a remainder
[G.T. (2013) Rend. Lincei. Mat. Appl.] .
Same strategy in Dembo(1989), (cf. Villani(2000)). If N is a
Gaussian random vector with covariance I , for t > 0

1/I (X + 2tN) ≥ 1/I (X ) + 1/I (2tN) = 1/I (X ) +
2t

n
.

This implies

1/I (X + 2tN)− 1/I (X )

t
≥ 2

n
.

Letting t → 0 gives the inequality

1

I 2(X )
J(X ) ≥ 1

n
.
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A short history

The inequality part of the proof of the concavity of entropy power
Costa(1985). If N is a Gaussian random vector with covariance I ,
the entropy power

e
2
n
H(X+tN)

is concave in t.

d2

dt2
e

2
n
H(X+tN) ≤ 0.

Concavity of entropy power generalized to Renyi entropies G.T.
and Savaré (2014).
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The fractional Fisher information

The central limit theorem for stable laws studies convergence of
the law of (Xi i.i.d.)

Tn =
X1 + X2 + · · ·+ Xn

n1/λ
, n ≥ 1.

If the random variable Xi lies in the domain of attraction of the
Lévy symmetric stable variable Zλ, the law of Tn converges
weakly to the law of Zλ.
A Lévy symmetric stable law Lλ defined in Fourier by

L̂λ(ξ) = e−|ξ|
λ
.

While the Gaussian density is related to the linear diffusion
equation, Lévy distributions are related to linear fractional
diffusion equations.
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The fractional Fisher information

In the classical central limit theorem the monotonicity of Shannon’s
entropy of Sn,

Sn =
X1 + X2 + · · ·+ Xn

n1/2
, n ≥ 1.

is a consequence of the monotonicity of Fisher information of Sn

Madiman, Barron (2007).
Main idea is to introduce the definition of score (used in theoretical
statistics). Given an observation X , with law f (x), the linear score
ρ(X ) is given by

ρ(X ) =
f ′(X )

f (X )

The linear score has zero mean, and its variance is just the Fisher
information.
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The fractional Fisher information

Given X and Y with differentiable density functions f (respectively
g), the score function of the pair relative to X is represented by

ρ̃(X ) =
f ′(X )

f (X )
− g ′(X )

g(X )
.

In this case, the relative to X Fisher information between X and Y
is just the variance of ρ̃(X ).
A centered Gaussian random variable Zσ of variance σ is uniquely
defined by the score function

ρ(Zσ) = −Zσ/σ.

The relative (to X ) score function of X and Zσ

ρ̃(X ) =
f ′(X )

f (X )
+

X

σ
.
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The fractional Fisher information

The (relative to the Gaussian) Fisher information

Ĩ (X ) = Ĩ (f ) =

∫
{f>0}

(
f ′(x)

f (x)
+

x

σ

)2

f (x) dx .

Ĩ (X ) ≥ 0, while Ĩ (X ) = 0 if (and only if) X is a centered Gaussian
variable of variance σ
The concept of linear score can be naturally extended to cover
fractional derivatives. Given a random variable X in R distributed
with a probability density function f (x) that has a well-defined
fractional derivative of order α, with 0 < α < 1, the linear fractional
score

ρα+1(X ) =
Dαf (X )

f (X )
.
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The fractional Fisher information

The (relative to the Gaussian) Fisher information

Ĩ (X ) = Ĩ (f ) =

∫
{f>0}

(
f ′(x)

f (x)
+

x

σ

)2

f (x) dx .

Ĩ (X ) ≥ 0, while Ĩ (X ) = 0 if (and only if) X is a centered Gaussian
variable of variance σ
The concept of linear score can be naturally extended to cover
fractional derivatives. Given a random variable X in R distributed
with a probability density function f (x) that has a well-defined
fractional derivative of order α, with 0 < α < 1, the linear fractional
score

ρα+1(X ) =
Dαf (X )

f (X )
.
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The fractional Fisher information

The interest in fractional calculus after the reading of
[Caffarelli, Vazquez (2011) Arch. Ration. Mech. Anal. ], who
studied a nonlinear porous medium flow with fractional potential
pressure.
To fix notations, for 0 < α < 1, we let Rα be the
one-dimensional normalized Riesz potential operator

Rα(f )(x) = S(α)

∫
R

f (y) dy

|x − y |1−α
.

The constant S(α) is chosen to have

R̂α(f )(ξ) = |ξ|αf̂ (ξ).



Outlines Entropy and the central limit theorem Inequalities for relative entropy

The fractional Fisher information

We define the fractional derivative of order α of a real function
f as (0 < α < 1)

dαf (x)

dxα
= Dαf (x) =

d

dx
R1−α(f )(x).

In Fourier variables

D̂αf (ξ) = i
ξ

|ξ|
|ξ|αf̂ (ξ).

Differently from the classical case, the fractional score of X is
linear in X if and only if X is a Lévy distribution of order α + 1.
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The fractional Fisher information

For a given positive constant C , the identity

ρα+1(X ) = −CX ,

verified if and only if, on the set {f > 0}

Dαf (x) = −Cxf (x)

Passing to Fourier transform, this identity yields

iξ|ξ|α−1f̂ (ξ) = −iC
∂ f̂ (ξ)

∂ξ
.

Consequently

f̂ (ξ) = f̂ (0)e

{
− |ξ|α+1

C (α + 1)

}
.
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The fractional Fisher information

Arranging constants, we show that, if Zλ is a Lévy distribution of
density Lλ (1 < λ < 2)

ρλ(Zλ) = −Zλ
λ
.

The relative (to X ) fractional score function of X and Zλ assumes
the simple expression

ρ̃λ(X ) =
Dλ−1f (X )

f (X )
+

X

λ
.

The (relative to the Lévy) fractional Fisher information (in short
λ-Fisher relative information) is then defined

Iλ(X ) = Iλ(f ) =

∫
{f>0}

(
Dλ−1f (x)

f (x)
+

x

λ

)2

f (x) dx .
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The fractional Fisher information

The fractional Fisher information is always greater or equal than
zero, and it is equal to zero if and only if X is a Lévy symmetric
stable distribution of order λ.
At difference with the relative standard relative Fisher information,
Iλ is well-defined any time that the the random variable X has a
probability density function which is suitably closed to the Lévy
stable law (typically lies in a subset of the domain of attraction).
We will define by Pλ the set of probability density functions such
that Iλ(f ) < +∞
The concept of fractional score can be generalized. For υ > 0

ρ̃λ,υ(X ) =
Dλ−1f (X )

f (X )
+

X

λυ
.

This leads to the relative fractional Fisher information Iλ,υ(X )
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Monotonicity of the fractional Fisher information

The following Lemma will be useful

Lemma

Let X1 and X2 be independent random variables with smooth
densities, and let ρ(1) (respectively ρ(2)) denote their fractional
scores. Then, for each constant λ, with 1 < λ < 2, and each
positive constant δ, with 0 < δ < 1, the relative fractional score
function of the sum X1 + X2 can be expressed as

ρ̃λ(x) = E
[
δ ρ̃

(1)
λ,δ(X1) + (1− δ) ρ̃

(2)
λ,1−δ(X2)

∣∣X1 + X2 = x
]
.

This Lemma has several interesting consequences.
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Monotonicity of the fractional Fisher information

Since the norm of the relative fractional score is not less than
that of its projection (i.e. by the Cauchy–Schwarz inequality)

Iλ(X1 + X2) =E
[
ρ̃2λ(X1 + X2)

]
≤

δ2Iλ,δ(X1) + (1− δ)2Iλ,1−δ(X2).

For X such that one of the two sides is bounded, and positive
constant υ, the following identity holds

Iλ,υ(υ1/λX ) = υ−2(1−1/λ)Iλ (X ) .
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Monotonicity of the fractional Fisher information

This relation implies the following

Theorem

Let Xj , j = 1, 2 be independent random variables such that their relative
fractional Fisher information functions Iλ(Xj), j = 1, 2 are bounded for
some λ, with 1 < λ < 2. Then, for each constant δ with 0 < δ < 1,
Iλ(δ1/λX1 + (1− δ)1/λX2) is bounded, and

Iλ(δ1/λX1 + (1− δ)1/λX2) ≤ δ2/λIλ (X1) + (1− δ)2/λIλ (X2) .

Moreover, there is equality if and only if, up to translation, both Xj ,
j = 1, 2 are Lévy variables of exponent λ.

The result is the analogous of the Blachman–Stam inequality for the
standard relative Fisher information.
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Monotonicity of the fractional Fisher information

The next ingredient in the proof of monotonicity deals with the
so-called variance drop inequality Hoeffding (1948).
Let [n] denote the index set {1, 2, . . . , n}, and, for any s ⊂ [n], let Xs

stand for the collection of random variables (Xi : i ∈ s), with the
indices taken in their natural increasing order. Then

Theorem

Let the function Φ : Rm → R, with 1 ≤ m ∈ N, be symmetric in its
arguments, and suppose that E [Φ(X1,X2, . . . ,Xm)] = 0. Define

U(X1,X2, . . . ,Xn) =
m!(n −m)!

n!

∑
{s⊂[n]:|s|=m}

Φ (Xs) .

Then

E
[
U2
]
≤ m

n
E
[
Φ2
]
.

This quantifies the reduction.
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Monotonicity of the fractional Fisher information

We apply the variance drop inequality of Hoeffding to the relative
score ρ̃(Tn).
The following theorem holds true

Theorem

Let Tn denote the sum

Tn =
X1 + X2 + · · ·+ Xn

n1/λ
,

where the random variables Xj are independent copies of a centered
random variable X with bounded relative λ-Fisher information, 1 < λ < 2.
Then, for each n > 1, the relative λ-Fisher information of Tn is decreasing
in n, and the following bound holds

Iλ (Tn) ≤
(

n − 1

n

)(2−λ)/λ
Iλ (Tn−1) .



Outlines Entropy and the central limit theorem Inequalities for relative entropy

Monotonicity of the fractional Fisher information

At difference with the classical entropic central limit theorem, this
quantifies the decay.

Iλ(Tn) ≤
(

1

n

)(2−λ)/λ
Iλ(X ).

There is convergence in relative λ-Fisher information sense at rate
1/n(2−λ)/λ.
A strong difference between the classical central limit theorem and
the central limit theorem for stable laws. In the classical central
limit theorem , a very large domain of attraction with a very low
convergence in relative Fisher(only monotonicity is guaranteed).
In this case the domain of attraction is very restricted (only
distribution which has the same tails at infinity of the Lévy stable
law), but the attraction in terms of the relative fractional Fisher
information is very strong.
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Monotonicity of the fractional Fisher information

The leading example of a function which belongs to the domain of
attraction of the λ-stable law is the so-called Linnik distribution

p̂λ(ξ) =
1

1 + |ξ|λ
.

For all 0 < λ ≤ 2, this function is the characteristic function of a
symmetric probability distribution. In addition, when λ > 1,
p̂λ ∈ L1(R), which, by applying the inversion formula, shows that pλ
is a probability density function.
Linnik distribution belongs to the domain of attraction of the
fractional Fisher information. How large is this domain (compared to
the domain of attraction of the λ-stable law)?
As in the classical case convergence in relative fractional Fisher
information implies convergence in L1(R) ?
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A logarithmic type Sobolev inequality

Let us consider the Fokker–Planck equation with fractional
diffusion

∂f

∂t
=

∂

∂x

(
Dλ−1f +

x

λ
f
)
,

where 1 < λ < 2,

The initial datum ϕ(x) belongs to the domain of normal
attraction of the Lévy stable law ω of parameter λ, defined by

ω̂(ξ) = ε−|ξ|
λ
.

ω(x) results to be a stationary solution of the Fokker–Planck
equation.
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A logarithmic type Sobolev inequality

Given a random variable X of density h(x), and a constant
a > 0, let us denote by ha(x) the probability density of aX .

Let Y a random variable with density ϕ, and let Zλ be a Lévy
variable independent of Y , such that 1 < λ < 2, of density
ω(x). For a given t > 0 we define

Xt = α(t)Y + β(t)Zλ,

where

α(t) = e−t/λ, β(t) = (1− e−t)1/λ.

It holds

αλ(t) + βλ(t) = 1.
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A logarithmic type Sobolev inequality

The random variable Xt , t > 0, has a density given by the
convolution product

f (x , t) = ϕα(t) ∗ ωβ(t)(x),

Immediate to show that f (x , t) solves the fractional
Fokker-Planck equation with initial value f (x , t = 0) = ϕ(x).

Similarly to the classical Fokker–Planck equation, where the
solution interpolates continuously between the initial datum
and the Gaussian density, here the solution to the
Fokker–Planck equation with fractional diffusion interpolates
continuously between the initial datum ϕ and the Lévy density
L of order λ.
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A logarithmic type Sobolev inequality

Passing to Fourier transform, we obtain that f̂ (ξ, t) solves the
equation

∂ f̂

∂t
= −|ξ|λf̂ (ξ, t)− ξ

λ

∂ f̂ (ξ, t)

∂ξ
.

Integrating this equation along characteristics gives

f̂ (ξ, t) = ϕ̂
(
ξe−t/λ

)
e−|ξ|

λ(1−e−t).

The Lévy density ω is invariant under scaled convolutions

ω(x) = ωα(t) ∗ ωβ(t)(x).
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A logarithmic type Sobolev inequality

Let us consider the relative (to the Lévy density) entropy of Xt

H(Xt |Zλ) = H(f (t)|ω) =

∫
R

f (x , t) log
f (x , t)

ω(x)
dx .

Then

Theorem

Let the initial density ϕ be such that H(ϕ|ω) is finite. Then, if
f (x , t) is the solution to the fractional Fokker–Planck equation,
the relative entropy H(f (t)|ω) is monotonically decreasing in time.
In addition, if the density ϕ belongs to the domain of normal
attraction of Zλ, as time goes to infinity

lim
t→∞

H(f (t)|ω) = 0.
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A logarithmic type Sobolev inequality

Assume that the density ϕ belongs to the domain of normal
attraction of Zλ, with bounded relative fractional Fisher
information Iλ(ϕ)

We write the fractional Fokker–Planck equation in the form

∂f

∂t
=

∂

∂x

[
f

(
Dλ−1f

f
− Dλ−1 ω

ω

)]
.

It holds H(f (t)|ω) is non increasing

d

dt
H(f (t)|ω) =

d

dt

∫
R

f (x , t) log
f (x , t)

ω(x)
dx =

−
∫
R

f

(
f ′

f
− ω′

ω

)(
Dλ−1f

f
− Dλ−1ω

ω

)
dx = −Īλ(f (t)) ≤ 0.
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A logarithmic type Sobolev inequality

By Cauchy-Schwarz inequality, for any given density f in the
domain of attraction of the fractional Fisher information

Īλ(f ) ≤ I (f )1/2Iλ(f )1/2.

Since

Iλ(δ1/λX1 + (1− δ)1/λX2) ≤ δ2/λIλ (X1) + (1− δ)2/λIλ (X2) ,

Iλ(f (t)) = Iλ(Xt) ≤ α(t)2Iλ(Y ) = α(t)2Iλ(ϕ)

with α(t) = e−t/λ.
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A logarithmic type Sobolev inequality

Consider that

max{α(t)λ, β(t)λ} ≥ 1

2
.

Then

I (Xt) = I (α(t)Y + β(t)Z ) ≤ min{I (α(t)Y ), I (β(t)Zλ) =

min{α(t)−2I (Zλ), β(t)−2I (Zλ)} ≤ 22/λ min{I (Y ), I (Zλ)}.

This implies

Īλ(f ) ≤ e−t/λ 21/λ min{I (ϕ), I (ω)}1/2 Iλ(ϕ)1/2.
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A logarithmic type Sobolev inequality

integrating from zero to infinity, and recalling that the relative
entropy converges to zero, we obtain

Theorem

Let X be a random variable with density ϕ in the domain of
normal attraction of the Lévy symmetric random variable Zλ,
1 < λ < 2. If in addition X has bounded Fisher information, and
lies in the domain of attraction of the fractional Fisher information,
the Shannon relative entropy H(X |Zλ) is bounded, and the
following inequality holds

H(X |Zλ) ≤ λ 21/λ min{I (X ), I (Zλ)}1/2 Iλ(X )1/2.
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A logarithmic type Sobolev inequality

We proved the analogous of the logarithmic Sobolev
inequality, which is obtained when λ = 2 (Gaussian case).

In this case, the fractional Fisher information coincides with
the classical Fisher information.

As for the classical logarithmic Sobolev inequality, the
inequality is saturated when the laws of X and Zλ coincide.

Let us take λ = 2. The steady state of the Fokker–Planck
equation is the Gaussian density and

d

dt
H(f (t)|ω) = −I2(f (t)) = −I (f (t)|ω2).
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Convergence results in relative entropy

Let us consider the normalized sum

Tn =
1

n1/λ

n∑
j=1

Xj .

If the density f of Xi has bounded Fisher information, and
belongs to the domain of attraction of the relative fractional
Fisher information, so that Iλ(f ) < +∞,

H(Tn|Zλ) ≤ λ 21/λ min{I (Tn), I (Zλ)}1/2 Iλ(Tn)1/2,

and

Iλ(Tn)1/2 ≤
(

1

n

)(2−λ)/(2λ)
Iλ(X )1/2.
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Convergence results in relative entropy

Convergence in relative entropy at the rate n−(2−λ)/(2λ)

follows I (Tn) is uniformly bounded.

We have

Theorem

Let f belong to the domain of normal attraction of the Lévy
symmetric random variable Zλ, 1 < λ < 2 and assume that there
exists M > 0 such that

∫
R
|f̂ (ξ)|M(1 + |ξ|2)k dξ = CM < +∞.

Then, for n ≥ M/2, fn ∈ Hk(R). In addition, this condition holds
with M = 2 if f ∈ Hk(R), with M > (2k + 1)/ε if |f̂ (ξ)||ξ|ε is
bounded for |ξ| ≥ 1, where ε > 0 is arbitrary, and with M > 2k + 1
if I (f ) is bounded.
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Convergence results in relative entropy

This allows to conclude that, provided I (f ) < +∞ , for all
n ≥ 1, I (Tn) ≤ C .

We have

Theorem

Let the random variable X belong to the domain of normal
attraction of the random variable Zλ with Lévy symmetric stable
density ω. If in addition the density f of X has bounded Fisher
information, and belongs to the domain of attraction of the
relative fractional Fisher information, so that Iλ(f ) < +∞, the
sequence of density functions fn of the normalized sums Tn,
converges to zero in relative entropy and

H(Tn|Zλ) ≤ Cλ(X )

(
1

n

)(2−λ)/(2λ)
Iλ(X )1/2.
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Convergence results in relative entropy

Thanks to Csiszar–Kullback inequality, convergence in relative
entropy implies convergence in L1(R) at the sub-optimal rate
n−(2−λ)/(4λ) .

Using the convergence in L1(R) of fn to ω we obtain

Corollary

Let f satisfy the conditions of the previous Theorem. Then fn
converges to ω in Hk(R) for all k ≥ 0. Moreover, there is
convergence of fn to ω in the homogeneous Sobolev space Ḣk(R)
at the rate [n−(2−λ)/(4λ)]2/(2k+3).
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Convergence results in relative entropy

Conclusions

We introduced the definition of relative fractional Fisher information.
This nonlocal functional is based on a suitable modification of the
linear score function used in theoretical statistics.
As the linear score function f ′(X )/f (X ) of a random variable X with
a (smooth) probability density f identifies Gaussian variables as the
unique random variables for which the score is linear (i.e.
f ′(X )/f (X ) = CX ), Lévy symmetric stable laws are identified as the
unique random variables for which the new defined fractional score is
linear.
We showed that the fractional Fisher information can be fruitfully
used to bound the relative (to the Lévy stable law) Shannon entropy,
through an inequality similar to the classical logarithmic Sobolev
inequality.
Analogously to the central limit theorem, where monotonicity of
entropy along the sequence provides an explicit rate of convergence to
the Gaussian law for some smooth densities, in the case of the central
limit theorem for stable laws convergence in L1(R) at explicit rate is
proven, and, for smooth densities, convergence in various Sobolev
spaces (still with rate).
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