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Surveillance vs. Early Warning 

q Surveillance systems are intended to detect 
disease outbreaks and measure and 
summarize data on such outbreaks as they 
occur 

q Early warning systems are designed to alert 
the population and relevant authorities in 
advance about possible adverse conditions 
that could lead to a disease outbreak and 
to implement effective measures to reduce 
adverse health outcomes 

World Africa Day 2008 



S2S applications in health 

q  S2S why? 
§  Lead times and decisions 
§ Complexity of hydrology, subseasonal 

variability 
q  Two case studies 

§  heatwaves 
§  VBD: malaria 

q  Where next?  
§  S2S, NMME 
§ Genetic algorithm calibration 
§  Incorporating  
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Hindcast Strategies 
q  “On the fly” – Each 

forecast is accompanied 
by a set of hindcasts 
starting on the same date 
for the previous N years 
§  GOOD: same model 

version and set up 
§  GOOD: Always same 

start date 
§  BAD: Expensive to run, 

smaller ensemble sizes  

•  “Fixed”	–	Hindcast	data	
set	run	once	for	a	
par'cular	model	cycle	
–  GOOD:	Cheaper	(if	
system	not	updated	too	
frequently),	larger	
ensemble	sizes	possible	

–  BAD:	Not	always	
matching	dates		
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15/03/2013	

15/03/2012	
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Figure 2. Schematic showing the difference between weekly and daily initialization and the additional members used for the sub-seasonal forecast. The diagram
shows how the four forecast members initialized each day are combined in a lagged ensemble. Sub-seasonal products are generated from 7 days of forecast members.
Seasonal products use 3 weeks of forecast members in the ensemble. Each week a hindcast set for a given initialization date is completed. The same hindcast is used to
bias correct both seasonal and sub-seasonal products.

it is initialised, and the construction of the ensemble used to
generate products issued by the Met Office. The previous system
was described in Arribas et al. (2011) and many of the details are
still relevant.

2.1. Model configuration

The coupled HadGEM3 model used in the seasonal forecast
system consists of the following components:

• Atmosphere: MetUM (Walters et al., 2011; Brown et al.,
2012), Global Atmosphere 3.0

• Land surface: Joint UK Land Environment Simulator
(JULES; Best et al., 2011), Global Land 3.0

• Ocean: NEMO (Madec, 2008), Global Ocean 3.0
• Sea-ice: The Los Alamos Sea Ice Model (CICE; Hunke and

Lipscomb, 2010), Global Sea-Ice 3.0

The dynamical core of the UM (called NewDynamics) uses
a semi-implicit semi-Lagrangian discretization to solve the
fully compressible, non-hydrostatic atmospheric equations of
motion. The stochastic physics scheme Stochastic Kinetic Energy
Backscatter v2 (SKEB2; Bowler et al., 2009) is included to represent
unresolved processes and provide small grid-level perturbations
during the model integration. Climate forcings (e.g. methane,
CO2, etc.) are set to observed values up to the year 2005;
after this point the emissions follow the Intergovernmental
Panel on Climate Change (IPCC) RCP4.5 scenario. Climatologies
with a seasonal variation are used for other aerosols (biogenic
aerosols, biomass burning, black-carbon, sea salt, sulphates, dust,
and organic carbon fossil fuels). These climatologies have been
generated from a climate simulation using HadGEM2 (except dust
which is from a HadGEM1a run). The Stratosphere–troposphere
Processes And their Role in Climate (SPARC; Cionni et al., 2011)
observational climatology is used for ozone, which includes a

seasonal cycle. The solar forcing is the same in the forecast and
hindcast, with an interannual variation.

2.1.1. Global Atmosphere 3.0

A detailed description of the Global Atmosphere 3.0 configuration
is given in Walters et al. (2011) where the developments between
version 2.0 and 3.0 are also discussed. The basis of this science
configuration has been adopted by all the operational global
models used in the Met Office (although the configurations
are not exactly the same due to unavoidable temporal and spatial
resolution differences). There have been numerous changes to the
physical parametrizations used in the coupled model since Global
Atmosphere 2.0: introduction of cloud inhomogeneity, reduction
of spurious drizzle, reduction of spurious deep convection,
introduction of the JULES land surface model (Blyth et al.,
2006), and the facility to read iceberg calving ancillary data.

2.1.2. High-resolution model

The higher-resolution version of HadGEM3 used in the GloSea5
system uses the Global Atmosphere 3.0 configuration. Most of
the physical parametrizations remain the same between the two
resolutions. The high-resolution model requires a reduced time
step and altered diffusion settings to increase stability. In the
ocean model with the ORCA 0.25 grid, some of the major closed
seas (Great Lakes, Lake Victoria, Caspian Sea and the Aral Sea)
are included.

The resolution of the HadGEM3 model used in GloSea4 was
N96L85 ORCA 1 L75; in GloSea5 it has been increased to N216L85
ORCA 0.25 L75. This means that the horizontal resolution in the
atmosphere has increased from 1.88◦×1.25◦ to 0.83◦×0.56◦

(i.e. approximately 120 km in midlatitudes to 50 km). Figure 1
compares the orography used in the GloSea4 and GloSea5

c⃝ 2014 The Authors and Crown copyright. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. 141: 1072–1084 (2015)

The Met 
Office 
system 

q  Four forecast members 
initialized each day are 
combined in a lagged 
ensemble.  

q  Sub-seasonal products are 
generated from 7 days of 
forecast members.  

q  Seasonal products use 3 
weeks of forecast members 
in the ensemble.  

q  Each week a hindcast set for 
a given initialization date is 
completed.  

q  The same hindcast is used to 
bias correct both seasonal 
and sub-seasonal products.  

from	
MacLachlan		
	et	al,	QJRMS,	
2015	



from	Tompkins	and	Digiuseppe,	JAMC,	2015	

Correla'on	of	day	1-32	T2m	anomaly	
against	ERA-Interim	for	1994-2012	of	

Extended	range	EPS	over	Africa	
12	start	dates	(First	Thursday	of	each	

month)		

Increase	in	correla'on	rela've	to	the	
exact	same	days	predicted	by	the	most	

recent	seasonal	forecast	system		

1.  Lead time advantage (more frequent updates) [~3 days here] 
2.  Model physics (more frequent updates) 
3.  Framework (higher resolution, different ocean initialization...) 

Improvement of 2 metre temperature correlation of S2S 5 
member mean over 5 members of seasonal system 





Applications in health 

q  Many health outcomes are sensitive to climate as a 
factor 
§  Nutrition (crop production, temperature and rainfall) 
§  Heat waves (temperature, humidity, radiation) 
§  Weather extremes (immediate danger) 
§  Meningitis (dust, winds, rainfall)  
§  Cholera (water temperatures, rainfall) 
§  Vector-borne disease (vector/intermediate host and 

pathogen climate sensitivity) 
q Lead time of information may or may not be useful 

for decision entry 
§  Heat waves: immediate, useful 
§  VBD, delay in outbreak relative to climate => longer 

leads, but still may not be adequate (e.g. Rift Valley 
Fever example) 



Heat health decision-making across timescales 
Red Cross Example - IRI �

Develop action plans�
Refresh medical training �
Train media on appropriate 
messaging �
Contingency planning for events�
Supply routes for backup water & 
generators �
Coordinate with utilities to ensure 
continued provision of energy�

Monitor weather forecasts closely�
Re-cap emergency action plans�
Inform schools�
Inform cooling centers�
Reinforce coordination with disaster 
management personnel�
Distribute appropriate advice through 
media�
Procure emergency drinking water �

Prepare utilities for increased power 
demand �
Prepare to open cooling centers�
Mass media public awareness 
campaign begins�
Distribute emergency drinking water �
Alert hospitals of increased demand �
Reschedule hospital staff shifts�
Check in on elderly people�



Approaches to incorporating climate 
into health 

q  Mapping of mean 
risk or seasonality  

q  Forecasts of 
climate used: 
§  directly 
§  drive simple 

statistical models 
of health 
outcomes 

§  drive complex 
dynamical models 

q  Mapping model 
outcome to health 
entry point a 
challenge 

Green and Red: 
climate used  for 

risk mapping 

Omumbo  et al. 
2013 (PLOS) 



Case study 1: Heat waves 
1957	Europe	

2003	Europe	

2015	and	2016	India	



Heat stress is more than just temperature�

•  TEMPERATURE�

•  HUMIDITY�

•  WIND�

•  SOLAR RADIATION�

energy in - energy out = energy gained �The human heat budget: �



Heat budget models (e.g. German Weather Service)  

Universal Climate Thermal Index (UTCI) model 
�

Accounts for 
behavioural changes 
under hot/cold 
conditions,  based on 
Western style clothing �

Pappenberger et al (2015), In. J. Biometeorol. �

+  Most accurate description of 
heat stress on human body 
available�

-   Demanding data inputs�
-   Unfeasible on long lead times�
-   Computationally demanding �

Other examples of output from heat budget 
models: �
•  Standard Effective Temperature�
•  Predicted Mean Vote�
•  Perceived Temperature: German Weather 

Service�
•  Physiological Equivalent Temperature�
•  Universal Thermal Climate Index (UTCI) �



A bewildering array of heat indices 
Tong et al. 2010 PLOS 1 

Resort to simple heat indices 



The “feels-like” temperature�

Apparent 
temperature tells us 
what the 
temperature feels 
like, summarising 
several effects into 
one HOT & HUMID: 
30C could feel more 
like 35C �
•  HOT & WINDY: 

30C could feel 
more like 27C �

�



Urban areas in Bangladesh �

London	&	Taipei:	Gasparrini	et	al,	Lancet	2015	|	Bangladesh:	Burkart	et	al	(2011)	

Critical temperatures for 
increased mortality vary 
significantly among different 
regions�

Setting the warning thresholds�
Regional differences and seasonal, short-term acclimatization �



GERMANY’S HeRATE SYSTEM�

HeRATE is used to modify warning thresholds 
for any heat index according to its deviation 
from the value over the last 30 days  �
ü  No need to impose a seasonal cycle in 

thresholds�
ü  Can be used in all climates because it 

relies on local data�

After several days to weeks of hot conditions, we temporarily adapt and feel the heat less�

Heat health threshold warning levels 
(colours) and observed perceived 
temperatures (black) in 1984 �

Germany: WHO/WMO (2015) �

Setting the warning thresholds�
Short-term acclimitisation �



After several days to weeks of hot conditions, we temporarily adapt and feel the heat less�

Setting the warning thresholds�
Short-term acclimitisation �

Heat health threshold warning levels 
(colours) and observed perceived 
temperatures (black) in 1984 �

Germany: WHO/WMO (2015) �

WAYS TO ACCOUNT FOR ACCLIMITISATION�

Express thermal index or temperature as deviation 
from �
a)  Climatology�
b)  Previous 30 days �
	



Longer heat waves can cause particularly high death rates�

Setting the warning thresholds�
Heat wave duration �

MORTALITY CAN INCREASE NON-LINEARLY WITH HEAT WAVE DURATION…�

Tan et al (2006), Int. J. Biometeorol. �

SHANGHAI 1998 �



Most places use simple 
temperatures to measure 
heat stress�

Some use thermal indices 
to accounting for other 
variables (humidity, wind 
speed etc.) �

Most places consider 
the duration of a heat 
event�

Most places relate 
the warning system 
to historical mortality 
data�



An example heat early warning system�
FRANCE�

�
•  Meteo-France forecast 3 day running average min and max temperatures for each region �
•  Thresholds applied for min and max temperature are values associated with 50% increase in 

mortality in urban and 100% in rural areas�
•  Other information, some qualitative, is also taken account of before issuing a warning: air 

pollution, public or sporting events�

min T� max T�



7 day Early warning system  from Georgia Tech 

An example heat early warning system�
AHMEDABAD�



Lowe et al. 2016  
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CASE STUDY 2: History of malaria early 
warning systems 

q 1908 Epidemic in India (1 million deaths) Gill 
1921, 1923 statistical model based on climate, 
used operationally throughout 1920-40s  

q  Interest in MEWS waned during 50/60s 
elimination efforts 

q  Malaria global rebound in 70s/80s  
q  Research Interest accelerated after the ENSO 

related outbreaks in 98/99 



Bomblies et al. 

TEMPERATURE 
Warmer temperatures speed up parasite, larvae and egg development 
High temperature impact mortality of vector (adult and larvae) 

 

RAINFALL 
Provides but also flushes 
breeding sites 





Craig et al 1999 



Rainfall monitoring can give 1 to 2 month early warning – 
S2S would aim to EXTEND this by 1 to 2 months 



DaSilva et al. 2004, Malaria Journal 

Seasonal forecasting used to extend early warning 



FLUSHING 
•  Stage 1  larvae can be flushed by intense rainfall (Paaijmans et al. 2007) 
•  Implies that transmission related to sub-seasonal rainfall variability 

(implications for seasonal forecasting potential) 

Seidahmed and Eltahir (2016)  



Lowe	et	al.	2013	
Temperature	and	
precipita'on	
impact	on	malaria	
risk	in	Malawi	



Fighting malaria  

q Long-lasting Insecticide 
treated bednet (LLIN) 
distribution 

q Indoor residual spraying 
(IRS) 

q Improved diagnosis (RDT) 
q Intermittent preventive 

treatment during pregnancy  
q Environmental intervention 

(larvacide) 
q Drug access (ACT) 
q (Mass screen and treat) 

q Housing 
improvements 

q Healthcare 
infrastructure,training  
and access 

q Land management 
q Education 
q Socio-economic 

development (the 
paddy paradox) 



Increasing	distribu'on	and	use	of	LLINs	in	Africa		

Popula'on	with	access	to	net	

Household	>	1net	



Issue	of	insec'cide	resistence	



Forecasting 
malaria 

q Gains have been made 
through scale-up of 
interventions since 2010 - 
RBM estimates 50% 
reduction in mortality and > 
4million lives saved 

q Global spending has 
flattened – will future 
spending projections be 
maintained? 

q Climate information may 
allow cost-effective 
prioritization of  intervention 
and investment strategies 
over a range of timescales 
(months to decades)  



Towards MEWS 
q  Early example of a 

research platform: 
DEMETR forecasts 
used to drive a simple 
statistical model in 
Botswana  (Thomson 
et al. 2006) 

q  LMM model has been 
used in potential skill 
investigations (tier 2) in 
Africa and India (e.g. 
Jones et al. 
2010,2012). 

q  Rainfall observations 
used to drive 
calibrated SEIR model 
for 4 month lead time 
in India (Laneri et al. 
2010), but no 
seasonality allowed. 
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and d shows that during the high and low malaria years, the one-to-
four-month NDJF ensemble-mean precipitation from the
DEMETER forecasts (available at the beginning of November)
are above and below average over much of southern Africa,
respectively.
The association between malaria incidence and precipitation

depicted in Fig. 2a and b can be made more precise if we use a
quadratic relationship similar to that described in an earlier study4

between seasonal precipitation averaged over Botswana and the
logarithm of standardized (detrended) confirmed malaria incidence
(per 1,000 of population), as illustrated in Fig. 3. This nonlinear
relationship provides the quantitative link that allows the DEMETER
probability forecasts of precipitation to be transformed into prob-
ability forecasts of malaria incidence. The quadratic relationship can
also be used to issue malaria warnings based on monitored precipi-
tation4, such as NDJF CMAP precipitation, although this would be
available only at the beginning of March, four months later than the
multi-model forecast issue date. As an illustration, Fig. 4 shows
DEMETER forecast probability distributions of malaria incidence
associated with a year of very high malaria incidence, and another
year of very low malaria incidence. For decision-makers, that these
probability distributions are not sharp quantifies the inevitable
uncertainties that exist in forecasting a variable that is strongly
influenced by partially chaotic climatic processes. On the other
hand, forecast probability distributions for the high malaria years
are distinctly different from the probability distributions for the low
malaria years: the null-hypothesis that the distributions for
DEMETER-based predictions in the two categories are not distinct
can be rejected using a Kolmogorov–Smirnov test with a P value
smaller than 0.0001.
The quality of these forecast probability distributions of malaria

incidence has been assessed using the area under the Receiver
Operating Characteristic (ROC) curve14 for the events ‘values higher
than the top quartile’ (very high), ‘between the top quartile and the
median’ (high), ‘between the median and the lowest quartile’ (low)
and ‘lower than the lowest quartile’ (very low). The ROC score is an
appropriate measure for assessing the value of probability climate
forecasts for decision-making14,15. Suppose it is decided to take
precautionary action (targeting drug or insecticide supplies to a
particular region) if the probability of malaria in the highest-quartile
category exceeds some chosen threshold probability. Over the full
forecast data sample, the number of correct and incorrect decisions

can be assessed for this particular threshold probability: these are
referred to in terms of ‘hit rate’ and ‘false-alarm rate’, respectively.
The ROC score is a measure of the mean hit rate to false-alarm rate,
averaging over all threshold probabilities. A ROC score larger than
0.5 indicates a forecast system more skilful than a forecast based on
climatological probabilities; a ROC score of 1.0 indicates a perfect
forecast system.
Table 1 shows the ROC scores for predictions of standardized

malaria incidence, first using the CMAP precipitation and second
with the DEMETER multi-model ensemble forecasts initialized on 1
November. For forecasts of both very low and very high malaria
incidence, the multi-model DEMETER forecasts have significantly
positive ROC scores. The DEMETER scores are slightly lower than
the CMAP scores, but we point out that the DEMETER forecasts are
available at least four months before the CMAP data becomes
available in early March.
Our evidence supports the use of multi-model ensemble climate

predictions initialized at least five months before the peak malaria
season in Botswana and four months earlier than a prediction based
on monitored precipitation for early warning of epidemic malaria
risks. The significant gain in lead time with small reduction in
prediction skill suggests that probabilistic seasonal climate forecasts
can be used to predict malaria incidence, not only in Botswana, but
also in neighbouring epidemic-prone areas, as shown in Fig. 2. These
results are not only of importance to the malaria control managers in
the region who are actively involved in using climate information to
achieve malaria-reduction targets16, but are also relevant to other
resource managers (health, hydrology, agriculture, and so on) faced
with climate-sensitive decisions. Unlike the products that would be
derived from single forecast models, the malaria incidence forecasts
described here allow the user to obtain a probability distribution of
disease risk, thus indicating to the user the uncertainty of the
information available in the forecast and the extent to which it differs
from climatology.
Although the greatest burden of malaria in Africa is suffered by

those living in endemic regions, epidemics pose a serious threat to
many millions of people6 and their prevention remains a priority1.
The ability of a malaria early-warning system to improve resource
allocation and assist in the reduction of malaria morbidity and
mortality depend on decision-makers’ capacity to make effective
use of new information within their own control paradigm. To this
end we have focused our efforts on the integration of the multi-
model DEMETER forecast system into the routine epidemic malaria
control activities currently promoted by the WHO-AFRO Southern
Africa Inter-Country Malaria Team (SAMC) in Zimbabwe and
undertaken by the National Malaria Control Unit in Botswana. It

Figure 3 | Relationship between standardized log malaria annual incidence
and summer precipitation for Botswana. Standardized log malaria annual
incidence (per 1,000 population) versus November–February CMAP
precipitation for the period 1982–2002 as obtained from fitting a
quadratic function to observations4. The quadratic function is
y ¼ 28.9 þ 5.9x 2 0.8x2, where x denotes precipitation (measured in
mmday21) and y the standardized log malaria incidence index. The
horizontal and vertical dotted lines denote the quartiles of the standardized
log malaria incidence index, and precipitation, respectively.

Figure 4 | Forecast probability distribution function of standardized log
malaria annual incidence for Botswana. The probability distribution
functions of predicted standardized log malaria annual incidence for the
years 1992 (anomalously low incidence, left) and 1993 (anomalously high
incidence, right) computed with the DEMETER multi-model ensemble
forecast system are depicted in red. The vertical dashed lines denote the
quartiles of the distribution of the standardized log malaria incidence index
and the vertical blue arrows indicate the values recorded by the Botswana
Ministry of Health.
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VECTRI malaria model 

q  Seasonal forecasting in 
Africa: case study of 
Rwanda and Uganda  

q  Historical simulations: 
Could past climate 
variability explain 
transmission variations 
in 1920s-1960?  

q  Multimodel climate 
change impact: ISIMIP 

q  Land use change 
indirect impact on 
malaria transmission 

q  Uncertainty of malaria 
transmission models: 
Stochastic integrations 
for Kericho 



The	system	runs	for	all	Africa	
once	per	week,	with	forecasts	up	

to	FOUR	months	ahead.		
The	resolu'on	is	high	enough	to	

resolve	health	districts	

day	1-30	ECMWF	
monthly	EPS	(S2S)	
day	30-120	SYS4	



mask areas where climate is not key for 
driving variability. 

Interannual	
standard	

devia'on	of	
prevalence	

simulated	by	
VECTRI	driven	by	

ERA	Interim	
temperature	
and	rainfall	



Lead	1		
sta's'cal		skill	

comparing	
forecast	to	

analysis	(TIER	
2)	
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on	high	

variability	areas	
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ECMWF/ICTP Forecast System

Results

pan-African system

Skill in predicting
temperature,
rainfall and
malaria PR at lead
1-3 months

Malaria skill in m2
and 3 derives from
climate forecast in
m1 and the
analysis.





Results for Jinja Sentinel Site 

Red	line:	normalized	
confirmed	cases	
	
Black	Line:	
normalized	malaria	
forecast	(ln(EIR)	–		
no	immunity	in	
model	yet)	
	
Grey	shading:		range	
of	the	5	forecasts	
	
Dash	lined:	the	
malaria	ini'al	
condi'ons	
	
Four	panels:	the	
four	levels	of	
advance	warning		



Results for Kanungu Sentinel Site 

Red	line:	normalized	
confirmed	cases	
	
Black	Line:	
normalized	malaria	
forecast	
	
Grey	shading:		range	
of	the	5	forecasts	
	
Dash	lined:	the	
malaria	ini'al	
condi'ons	
	
Four	panels:	the	
four	levels	of	
advance	warning		



Results for Mubende Sentinel Site 

Red	line:	normalized	
confirmed	cases	
	
Black	Line:	
normalized	malaria	
forecast	
	
Grey	shading:		range	
of	the	5	forecasts	
	
Dash	lined:	the	
malaria	ini'al	
condi'ons	
	
Four	panels:	the	
four	levels	of	
advance	warning		



Results for Tororo Sentinel Site 

Red	line:	normalized	
confirmed	cases	
	
Black	Line:	
normalized	malaria	
forecast	
	
Grey	shading:		range	
of	the	5	forecasts	
	
Dash	lined:	the	
malaria	ini'al	
condi'ons	
	
Four	panels:	the	
four	levels	of	
advance	warning		



Sample results again 
MoH district data  
Red	line:	normalized	
suspected	cases	
	
Black	Line:	
normalized	malaria	
forecast	
	
Grey	shading:		range	
of	the	5	forecasts	
	
Dash	lined:	the	
malaria	ini'al	
condi'ons	
	
Four	panels:	the	
four	levels	of	
advance	warning		



In a number of districts 
there is no correlation 
Red	line:	normalized	
suspected	cases	
	
Black	Line:	
normalized	malaria	
forecast	
	
Grey	shading:		range	
of	the	5	forecasts	
	
Dash	lined:	the	
malaria	ini'al	
condi'ons	
	
Four	panels:	the	
four	levels	of	
advance	warning		



Only	
sta's'cally	
significant	
correla'ons	
are	shaded	

q Over half the districts have significant skill 
(95% level), despite uncertainties in the 
weather forecasting system, the malaria 
model and the health data 

 



What about Rwanda? 

Only	
sta's'cally	
significant	
correla'ons	
are	shaded	

The	majority	of	the	districts	are	also	significantly	
skilful,	although	model	performs	less	well	in	

regions	where	transmission	is	higher	(e.g.	East)	
	



What is the decision entry point? 

Turn	this…		
…into	this?		

Does	this	really	mean	
anything	to	anyone?	

	
Do	terciles	relate	to	real	
health	policy	decisions?	

Doubkul…	
	

We	are	currently	
amemp'ng	to	turn	this	
into	a	realis'c	cost-loss	

analysis	for	Uganda	



Tercile-based online pilot 

hmp://nwmstest.ecmwf.int/products/
forecasts/d/inspect/catalog/research/qweci/
malaria_fc/malaria_tercile!vectri!calibrated!
Africa!unmasked!month4!20141030!/	

No	masking	for	
areas	where	

climate	is	not	a	
major	driver	



Tercile-based online pilot 

hmp://nwmstest.ecmwf.int/products/
forecasts/d/inspect/catalog/research/qweci/
malaria_fc/malaria_tercile!vectri!calibrated!
Africa!unmasked!month4!20141030!/	

Masking	for	areas	
where	climate	is	

not	a	major	driver	



A simple economic assessment 

Hit	
C	

C=Cost	of	interven'on	
L=Loss	if	event	is	not	prevented			

Ac'on	
taken	

Ac'on		
not	taken	

Event	
occurs	

No	
Event	

False	
Alarm	
C	

Miss	
L	

For	a	given	event	
threshold	
examine	past	
forecasts	and	see	
whether	the	
forecast	has	a	
net	benefit	



Cost-Loss analysis 

1	in	10	year	event	

WMO:		
1	in	5	year	event	

Cost	of	
interven'on	
low,	just	
intervene	all	the	
'me!	

Cost	of	interven'on	
high,	FC	needs	to	be	
very	accurate	to	have	
economic	benefit	



What	are	the	costs	and	losses?	
Bed	net	$5-7	
House	screening	$20-30	
Treatment	$20		
Loss	of	produc'vity?			
	
And	cost/losses	to	whom?	



Sometimes pragmatism enters into 
early warning systems  

Warning	
Given	

No	
warning	

Event	
occurs	

No	
Event	

Loss	cost	warning	
(cost	borne	by	

others?)	
but	legal	ac'on	

possible		
(e.g.	lost		tourism)	

Sued	for	
damages	

Prepared	

Everyone	
Happy	



(Soft) Constraint Genetic Algorithm for Ensemble 
Prediction Model Parameter Setting  

q Gene'c	algorithms	used	for	a	large	variety	of	
problems	

q Can	be	used	for	model	parameter	calibra'on	-	
“tuning”	

q Advantages:	
§  Simple,	no	adjoint	required	
§  Framework	suited	to	exis'ng	ensemble	approaches	
§  Can	handle	highly	nonlinear,	discon'nuous	problems	

	



q Method based on evolution: 
•  Ensemble of models with different parameter settings 
•  Metric for their fitness determines their ability to pass 

parameters to child generation  
•  mutation of parameters to search parameter space 



Despite a century of progress in understanding how 
climate impacts health and numerous demonstration 

projects, operational uptake is limited 
q  Resource allocation - justification of missed events – need for 

effective local-scale district health structures to identify local 
vulnerabilities. 

q Demonstrate the need according to the setting 
§  e.g. malaria: endemic, highland epidemic, disease elimination phase, 

assessing the efficacy of programmes and guiding surveillance 
q Difficulty in evaluating the EWS in real time if not a direct impact 

(heatwaves, floods), accounting for confounding factors 
q Access and use of climate information 

§  S2S/Copernicus/NMME improvements 
§  Training and workshop events 

q Complexity and heterogeneity of impacts models (relative to climate) 
q Difficulty to understand decision entry points for health – and the 

rigid, “top-down” nature of resource allocation determined by 
international agencies and funding bodies 

New book 2018: THE GAP BETWEEN WEATHER AND CLIMATE FORECASTING: SUB- 

SEASONAL TO SEASONAL PREDICTION Eds: Andrew Robertson and Frederic Vitart. 



Likelihood functional form 
(defines the probability of a model becoming a parent) 

q Could be based on r2 or RMSE  
q  To minimize RMSE (equivalent to 

minimizing log-likelihood for a 
Gaussian variable) a sharp 
function such as  L~1/RMSE 
produces a precise solution. 

q  But... preferable to account for 
observational uncertainty 

q Assume observational errors are 
Gaussian in nature (usually 
possible to perform a variable 
transformation)  

q Allows multiple metrics to be 
easily combined 

q  Produces “flat” penalty function 
once RMSE is within 
observational error. 

RMSE=0,	L=1	

RMSE=2σ	
L=0.05	

RMSE=σ	
L=0.32	



A soft constraint 
q GA has been applied to a wide 

range of problems 
q However, the dimensionality of 

the problem is often very high 
q  Introduce concept of soft 

constraint, penalty for departures 
of parameters around their default 
values 

q Advantages: 
§  Reduction of dimensionality 

(search essential in a N-sphere) 
§  Allow the prior uncertainty of 

each parameter to be accounted 
for, preventing unreasonable 
parameter settings 

q Not the optimum system in terms 
of skill but best compromise 
solution within the realm of 
assessed uncertainty (flat cost 
minimum). 
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Assume	parameter	uncertainty	is	Gaussian	

Skill	

departure	

fitness	

“Default”	
model	

Most	
skillful	
model	

Most	“likely”	
models	

Cost		

Tompkins QJRMS in preparation 



Figure 2. (a) Number of monthly reported malaria cases at plantation, with dashed
line showing adjusted series. (b) Anomaly of cases calculated by removing linear trend
from adjusted case series and then applying a high pass filter to retain variability on
timescales less than one year. Dashed and dotted lines show 1 and 2 standard
deviation events, respectively, with positive 2σ events labeled.

5% prevalence of the parasite in the host population. The first year is repeated four
times as a “spin up” period, with the first three repetitions discarded in the analysis.
An additional ensemble of experiments are conducted with varying initial conditions in
order to investigate initial conditions uncertainty.

Soft constraint genetic algorithm calibration

There are a wide variety of calibration methods available to perform both local and
global parameter space calibration, including Bayesian methods, adjoint methods,
ensemble Kalman filtering and sequential Monte Carlo genetic algorithms [62].
Genetic algorithms are an effective, if non-optimal, global search methodology that
have the attraction of non requiring a tangent linear or adjoint model of the full code,
and can find global function minima of highly nonlinear systems. As the concept is
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Test for the Kenyan Highlands  
(Tompkins and Thomson 2017) 

q Tea Estate cases 1979-2005 
q Minor Adjustment applied to “correct” 

offset 

Tompkins and Thomson 2016 (NIH report) 



What are we calibrating? 

q Climate inputs 
q Model structure and parameter settings 

forecasting system of [3, 4] estimated entomological conditions using climate
information to drive a malaria model for example. The third source of uncertainties
pertains to the dynamical model itself, which can suffer from structural uncertainty
(central graphic). Given a specific model structure, there is also uncertainty with
regard to the setting of model parameters such as the degree day length of the
sporogonic cycle or the temperature sensitivity of vector mortality, for example.
Lastly, the health data itself, whether research experiments and surveys of vector
biting rates or prevalence, or health ministry records of clinical cases are also subject
to errors and uncertainties.

Figure 1. When using a weather-sensitive disease model to simulate observed health
outcomes, uncertainty may derive from a variety of sources including the driving
climate data, the entomological and epidemiological initial state, the model structure
and parameter settings, and lastly errors in the health data itself.

In the weather prediction and climate projection problem, there is a similar cascade
of uncertainty, with errors in the initial and boundary conditions in addition to the
model system itself [5]. Modelling systems commonly employ ensembles of integrations
to sample and gauge this uncertainty, with multiple model integrations and often
multiple modelling systems subject to multiple initial and boundary conditions [6–9].
This is a forward modelling approach, incorporating the cascade of uncertainty at each
phase of the modelling pyramid [10–12]. The review of [13] summarizes the limitations
of this and alternative formal statistical approaches to assessing uncertainty.

In contrast, when considering health applications, the uncertainty of the health
model has often been neglected, both in terms of the parameter and model structure
uncertainty, with only the uncertainty associated with the weather and climate driving
information taken into account [14–16]. The recent investigation into the climate
change impact on malaria in West Africa by [17], which used just a single integration of

and are difficult to access outside health ministries due to obvious data privacy concerns, stymieing
research in this area
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 Adjustment 
q  About 60 

generations 
required to 
reach 
equilibrium 

q 18 model 
parameters 
calibrate 

q 3 climate 
factors 
calibrated 
§  Temperature 

offset 
§  Temperature 

trend 
§  Rainfall 

scaling 
Figure 6. Adjustment of the ensemble mean likelihood fitness function (arbitrary
units), r2 correlation and a measure of the mean scaled parameter departure for the
case where β = m (written n in legend) and β = 2.

result of the calibration process. It is also emphasized that the calibration process only
allows perturbations that are independent of time (with the exception of the linear
temperature trend) and thus the fit also indicates that the structure of the underlying
model is reasonable, in other words, there is not the possibility of “over fitting” that
could be the case if time-varying calibration were permitted.

Lastly, the simulation of cases produced using 2 parents (β = 2) is very similar to
the (β = m) case, and thus for all subsequent experiments the setting (β = m) is
adopted due to the slightly faster adjustment and superior final calibrated anomaly
correlation skill score.

Importance of the prior

In the full calibration experiment above, there are three notable outbreaks in the
observation series that the model is unable to capture, specifically in 1999, 2002 and
2003. Shanks et al. [54] discuss the 2002 outbreak at some length, in particular due to
the fact that no outbreak was observed at a nearby plantation (see plantation 1 in
their Fig. 4). They noted that both plantations switched to malaria treatment for
outpatients from chloroquine to sulfadoxine-pyrimethamine during the period between
1999 and 2000 and were consequentially unable to explain the differences between the
plantations. The year 2002 was associated with elevated cases at the district hospital,
reflection the plantation data presented here [91]. Hay et al. [91] used FEWS-RFE
rainfall data to show that, while Kisii and Gucha districts were normal in 2002, Nandi
and Kericho appeared to have very anomalous wet conditions in May 2002.
Examination of the station rainfall timeseries used to drive the model here (Fig. 5)
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final calibration 

very location-specific. Many studies based in diverse locations of Botswana, Malawi
and Rwanda have indicated a decrease in case numbers once monthly rainfall exceeds
a daily average of 3 to 5 mm day−1 [15, 34, 35], while others such as [91] and [36]
indicate a more monotonic relationship.

Figure 8. Timeseries of malaria cases for the Kericho plantation (red line, right axis)
and the simulations of malaria cases per 1000 population from the calibrated 80
member ensemble of VECTRI integrations with the larvae flushing effect effectively
removed by setting the τ parameter default to 200 mm day−1 and a large uncertainty
of 500 mm day−1.

Climate versus model uncertainty

Two further experiments were conducted that calibrated the model parameters and
the climate parameters separately. The simulations differ drastically between the two
cases, seen the the adjustment of the parameter departures and the R2 skill (Fig. 10).
The contrasting initial departure cost is by chance, as it is recalled that only 4 climate
parameters are calibrated. If the experiments were repeated a large number of times
with different random number seeds the mean ensemble departures would be similar.
As the generations progress it is seen that the climate calibration experiment reaches
equilibrium at a high correlation measure. In fact, when the model parameters are
calibrated, despite the fact that over 17 parameters are able to adjust, the calibrated
model is unable to sustain continuous transmission through the earlier part of the
series (Fig. 10). Outbreaks begin to occur in the late 1980s due to the presence of a
weak warming trend in the station data and it is only after the warming of 1998 that
sustained transmission can begin.

In Fig. 11b the result of the temperature and rainfall calibration is revealed to be
very similar to the results with all parameters calibrated. Thus, simply allowing the
calibration process to apply a constant offset to the air and pond water temperature,
and to scale the temperature trend and precipitation amount, leads to a vastly
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calibrated model 

default model! 



Model 
uncertainty 

less 
important 

than climate 
sensitivity 
IN THIS 

LOCATION 
0

5
10

15
20

25
30

Date

VE
C

TR
I s

im
ul

at
ed

 C
AS

ES
 (p

er
 1

00
0)

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

percentiles (n=80)
0.05−0.95
0.2−0.8
0.33−0.66

Ke
ric

ho
 C

as
es

 

0

200

400

600

800

0
5

10
15

20
25

30

Date

VE
C

TR
I s

im
ul

at
ed

 C
AS

ES
 (p

er
 1

00
0)

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

percentiles (n=80)
0.05−0.95
0.2−0.8
0.33−0.66

Ke
ric

ho
 C

as
es

 

0

200

400

600

800

(a)

(b)

calibrate model 

calibrate climate 



Sporogonic cycle versus temperature 
uncertainty 

18 20 22 24 26 28 30

5
10

20
50

10
0

20
0

50
0

Temperature (C)

Sp
or

og
on

ic
 C

yc
le

 L
en

gt
h 

(d
ay

s)
Uncertainty

1C temperature
20% sporogonic cycle length



Initial Condition uncertainty 
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Figure 13. Evolution of PRd for an ensemble of 100 model integrations that differ
only in their initial conditions of PRd, equispaced between 0.01 and 1.0. The ensemble
mean is also plotted.

5.1 Uncertainty due to climate data source

Relative to the calibration of climate parameters, the use of ERA Interim and FEWS
ARC2 rainfall produces a poor fit to the data. Similar to the model calibration
experiment, malaria transmission is absent in the earlier part of the data period and
transmission only commences with the latter warming trend. The reason the fit is
poorer is the cooler mean temperatures in ERA Interim, thus the warming offset
parameter is unable to adjust the temperatures sufficiently with the 2.5oC
temperature uncertainty. Increases this uncertainty estimate for the reanalysis would
allow persistent transmission throughout the period. This experiment again highlights
the key role of temperature uncertainty.

6 Discussion and Conclusions

In this work, a new constrained genetic algorithm was used to assess the the various
contributions of model and climate uncertainty to overall uncertainty in
malaria-related health outcomes. The approach was to use a genetic algorithm based

PLOS 23/35

Climate strongly bounds the malaria, and 
the system is asymptopically stable 

Convergence within two years 



VECTRI 
parasite ratio 

v1.4-6 

Lauderdale et al. Malaria Journal 2014, 13:310 Page 10 of 20
http://www.malariajournal.com/content/13/1/310

Figure 6 Annual average malaria prevalence for 2010 only (%). Output is shown from the Liverpool Malaria Model (LMM) for the year 2010 driven
by a) ERAI, b) TRMM precipitation and ERAI temperature (TRMM-ERAI) and c) the System-4 forecast monthly time series with a three month lead
time (see Figure 1a). Note that the IMD time series extends only to 2002 and is therefore absent in this comparison. Two observationally-derived
Indian malaria estimates are also provided for qualitative Tier 3 comparison with the disease model: d) the prevalence of P. falciparum from the
Malaria Atlas Project (MAP 2010) [59] and e) a pre-intervention (circa 1900) malaria distribution [60,61]. The two boxes enclose the regions of interest
in Northwest and Northeast India.

act to prolong the lifespan of the simulated mosquitoes,
therefore elevating malaria transmission risk. The rainfall-
temperature-mosquito survival interplay appears to can-
cel in the NE India region, where System-4 rainfall is
initially lower than in the observational datasets, however
mosquito survival is slightly enhanced compared to the
other datasets due to the System-4 cool temperature bias.

None of the System-4 hindcast data in this study were
corrected to account for long term differences in input
temperature or precipitation from climatology. It would
have been possible to adjust the average climate of the
System-4 hindcast by bias correction, for example by con-
sidering the long-term departure from monthly anomalies
or separately correcting the frequency and intensity of
weather events [13,15] or statistical bias correction meth-
ods such as statistical downscaling, quintile mapping, his-
togram equalization/matching [69] and adjustment using

mapped empirical orthogonal functions derived from the
hindcast and applied to the forecast [70]. These adjust-
ments could account for a proportion of climate bias in
the Indian subregions, for example due to shifted precipi-
tation patterns. However, extreme care is required due to
the non-linear combination of input variables integrated
by the disease model. Indeed, it is useful to determine the
skill of the malaria hindcast from the raw input data since
meteorological comparison data for a forecast does not
exist and therefore simple bias correction methods risk
introducing greater error [13]. Recall that event horizons
for the skill analysis below were computed from the spread
of simulated malaria incidence values for each simulation
of LMM driven by different forcing datasets, therefore
the frequency of certain event classifications rather than
the specific magnitude of the events in each instance is
important.

Assuming this class 
equivalence parasite ratio 

too high 



Upcoming developments 

q  Rewrite for parallel code v1.5 
q  Improvements in surface 

hydrology for permanent water 
bodies 

q Calibration code in main release 
q  Improved immunity model v1.5 
q  Interventions? Potentially by 

coupling to OPENMALARIA in a 
two-stage modelling process. 

q  Population migration by 
coupling to agent-based 
population model WISDOM 
v2.0 

q GUI front end? WISDOM	v1.0	beta		
3	million	agents	
trip	density	per	person		

total	trips	to	elsewhere	in	
Senegal	from	Mobile	phones	

Tompkins and Macreesh ( 


