

Scattering Amplitudes LECTURE 2

Jaroslav Trnka

Center for Quantum Mathematics and Physics (QMAP), UC Davis

Review of Lecture 1

Spinor helicity variables

Standard SO(3,1) notation for momentum

$$p^{\mu} = (p_0, p_1, p_2, p_3) \qquad p_j \in \mathbb{R}$$

Matrix representation

$$p^2 = p_0^2 + p_1^2 + p_2^2 - p_3^2$$

$$p_{ab} = \sigma_{ab}^{\mu} p_{\mu} = \begin{pmatrix} p_0 + ip_1 & p_2 + p_3 \\ p_2 - p_3 & p_0 - ip_1 \end{pmatrix}$$

On-shell:
$$p^2 = \det(p_{ab}) = 0$$

$$\operatorname{Rank}\left(p_{ab}\right) = 1$$

Spinor helicity variables

* Rewrite the four component momentum

$$p_1^{\mu} = \sigma_{a\dot{a}}^{\mu} \, \lambda_{1a} \widetilde{\lambda}_{1\dot{a}}$$

Little group scaling

$$\begin{array}{c} \lambda \to t\lambda \\ \widetilde{\lambda} \to \frac{1}{t}\widetilde{\lambda} \end{array} \qquad p \to p$$

* Invariants $\langle 12 \rangle \equiv \epsilon_{ab} \lambda_{1a} \lambda_{2b} \quad [12] \equiv \epsilon_{\dot{a}\dot{b}} \widetilde{\lambda}_{1\dot{a}} \widetilde{\lambda}_{2\dot{b}}$ $s_{12} = \langle 12 \rangle [12]$

Three point amplitudes

Three point kinematics

$$p_1^2 = p_2^2 = p_3^2 = 0$$
 $p_1 + p_2 + p_3 = 0$

Two solutions:

$$\langle 12 \rangle = \langle 23 \rangle = \langle 13 \rangle = 0 \qquad [12] = [23] = [13] = 0$$

$$\lambda_1 \sim \lambda_2 \sim \lambda_3 \qquad \qquad \widetilde{\lambda}_1 \sim \widetilde{\lambda}_2 \sim \widetilde{\lambda}_3$$

$$(++-) \qquad \text{No solution for real momenta} \qquad (--+)$$

$$\text{E.g. } \left(\frac{[12]^3}{[23][31]} \right)^S \quad \text{spin-S amplitudes} \quad \left(\frac{\langle 12 \rangle^3}{\langle 23 \rangle \langle 31 \rangle} \right)^S$$

Tree-level amplitudes

Single function: locality and unitarity constraints

$$\longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow M_L \frac{1}{P^2} \mathcal{M}_R$$

$$\mathcal{M} \xrightarrow{P^2=0} \mathcal{M}_L \frac{1}{P^2} \mathcal{M}_R$$

- On-shell constructibility: amplitude fixed by poles
- * Consistency of four point amplitude: only spins ≤ 2

Recursion relations

Tree level amplitudes

Tree-level amplitude is a rational function of kinematics

$$A = \sum (\text{Feyn. diag}) = \frac{N}{\prod_{j} P_{j}^{2}}$$
 momenta polarization vectors

Feynman propagators

Only poles, no branch cuts

$$P_j = \sum_k p_k$$

Gauge invariant object: use spinor helicity variables

Reconstruction of the amplitude

Amplitude on-shell constructible: fixed only from factorizations: try to reconstruct it

"Integrate the relation"
$$\mathcal{M} \xrightarrow{P^2=0} \mathcal{M}_L \frac{1}{P^2} \mathcal{M}_R$$

* First guess: $\mathcal{M} = \sum_{P} \mathcal{M}_L \frac{1}{P^2} \mathcal{M}_R$

Reconstruction of the amplitude

Amplitude on-shell constructible: fixed only from factorizations: try to reconstruct it

"Integrate the relation"
$$\mathcal{M} \xrightarrow{P^2=0} \mathcal{M}_L \frac{1}{P^2} \mathcal{M}_R$$

* First guess: $\mathcal{M} = \sum_{P} \mathcal{M}_L \frac{1}{P^2} \mathcal{M}_R$ WRONG

Overlapping factorization channels

* Solution: shift external momenta

Momentum shift

Let us shift two external momenta

$$\lambda_1 \to \lambda_1 - z\lambda_2$$
 $\widetilde{\lambda}_1 \to \widetilde{\lambda}_1$ $\lambda_2 \to \lambda_2$ $\widetilde{\lambda}_2 \to \widetilde{\lambda}_2 + z\widetilde{\lambda}_1$

Momentum is conserved, stays on-shell

$$(\lambda_1 - z\lambda_2)\widetilde{\lambda}_1 + \lambda_2(\widetilde{\lambda}_2 + z\widetilde{\lambda}_1) = \lambda_1\widetilde{\lambda}_1 + \lambda_2\widetilde{\lambda}_2$$

This corresponds to shifting

$$p_1, p_2, \epsilon_1, \epsilon_2$$

Shifted amplitude

On-shell tree-level amplitude with shifted kinematics

$$A_n(z) = A(\hat{p}_1(z), \hat{p}_2(z), p_3, \dots, p_n)$$

Analytic structure

$$A_n(z) = \frac{N(z)}{\prod_j P_j(z)^2}$$

* Location of poles: $P_j(z) = P_j - z\lambda_2\lambda_1$ if $p_1 \in P_j$

$$P_j(z) = P_j + z\lambda_2\widetilde{\lambda}_1 \quad \text{if} \quad p_2 \in P_j$$

$$P_j(z) = P_j$$
 otherwise

Shifted amplitude

• On the pole if $p_1 \in P_j$

$$P_{j}(z)^{2} = P_{j}^{2} - 2z\langle 1|P_{j}|2] = 0$$

$$z = \frac{P_{j}^{2}}{2\langle 1|P_{j}|2|} \equiv z_{j}$$

Shifted amplitude:

tude:
$$A_n(z) = \frac{N(z)}{\prod_j P_j(z)^2} \text{location of poles}$$

- * Shifted amplitude $A_n(z) = \frac{N(z)}{\prod_k (z z_k)}$
- Let us consider the contour integral

$$\int \frac{dz}{z} A_n(z) = 0 \qquad \text{No pole at } z \to \infty$$

- * Original amplitude $A_n = A_n(z=0)$ Residue at z=0
- * Residue theorem: $A_n + \sum_k \text{Res}\left(\frac{A_n(z)}{z}\right) \bigg|_{z=z_k} = 0$

$$A_n = -\sum_k \operatorname{Res}\left(\frac{A_n(z)}{z}\right)\Big|_{z=z_k}$$

Residue on the pole $P_j(z)^2 = 0$

Unitarity of shifted tree-level amplitude

$$A_n(z) \xrightarrow[P_j(z)^2=0]{} A_L(z) \frac{1}{P_j(z)^2} A_R(z)$$

$$A_n = -\sum_k \operatorname{Res}\left(\frac{A_n(z)}{z}\right)\Big|_{z=z_k}$$

Residue on the pole $P_{j}(z)^{2} = 2\langle 1|P_{j}|2](z_{j}-z) = 0$

* Unitarity of shifted tree-level amplitude $z_j = \frac{P_j^2}{2\langle 1|P_j|2|}$

$$A_n(z) \xrightarrow[z=z_j]{} A_L(z_j) \frac{1}{2\langle 1|P_j|2]} A_R(z_j)$$

$$A_n = -\sum_k \operatorname{Res}\left(\frac{A_n(z)}{z}\right)\Big|_{z=z_k}$$

$$A_L(z_j) \frac{1}{2\langle 1|P_j|2]} A_R(z_j) \times \frac{2\langle 1|P_j|2]}{P_j^2} = A_L(z_j) \frac{1}{P_j^2} A_R(z_j)$$

Final formula

$$A_n = -\sum_j A_L(z_j) \frac{1}{P_j^2} A_R(z_j)$$
 $z_j = \frac{P_j^2}{2\langle 1|P_j|2]}$

BCFW recursion relations

(Britto, Cachazo, Feng, Witten, 2005)

$$A_n = -\sum_j A_L(z_j) \frac{1}{P_j^2} A_R(z_j)$$

$$z_j = \frac{P_j^2}{2\langle 1|P_j|2]}$$

Chosen such that internal line is on-shell

Sum over all distributions of legs keeping 1,2 on different sides

Comment on applicability

- * The crucial property is $A_n(z) \to 0$ for $z \to \infty$
- In Yang-Mills theory this is satisfied if

$$\widetilde{\lambda}_2 \to \widetilde{\lambda}_2 + z\widetilde{\lambda}_1$$
 Helicity -

- Same is true for Einstein gravity, and many others
- This means that amplitudes in these theories are fully specified by residues on their poles

Generalizations

- In Standard Model and other theories more general recursion relations needed: shift more momenta
- Include masses: go back to momenta

$$p_1 o p_1 + zq$$
 $q^2 = (p_1 \cdot q) = (p_2 \cdot q) = 0$ $p_2 o p_2 - zq$ Shifted momenta on-shell, q completely fixed

Extension to effective field theories

Example: amplitudes of gluons

Color decomposition

Sum of Feynman diagrams in Yang-Mills

$$\mathcal{M} = \sum_{FD} (\text{Color}) \times (\text{Kinematics})$$

Polarization vectors Gauge dependent

Color factors

$$\operatorname{Tr}(T^{a_1}T^{a_2}T^{a_3}\dots T^{a_n})$$

Decomposition

$$\mathcal{M} = \sum_{\sigma} \operatorname{Tr}(T^{\sigma_1} T^{\sigma_2} T^{\sigma_3} \dots T^{\sigma_n}) A(123 \dots n)$$

Color decomposition

Sum of Feynman diagrams in Yang-Mills

$$\mathcal{M} = \sum_{FD} (\text{Color}) \times (\text{Kinematics})$$

Polarization vectors Gauge dependent

Color factors

$$\operatorname{Tr}(T^{a_1}T^{a_2}T^{a_3}\dots T^{a_n})$$

Decomposition

$$\mathcal{M} = \sum_{\sigma} \operatorname{Tr}(T^{\sigma_1} T^{\sigma_2} T^{\sigma_3} \dots T^{\sigma_n}) A(123 \dots n)$$

Color ordered amplitude

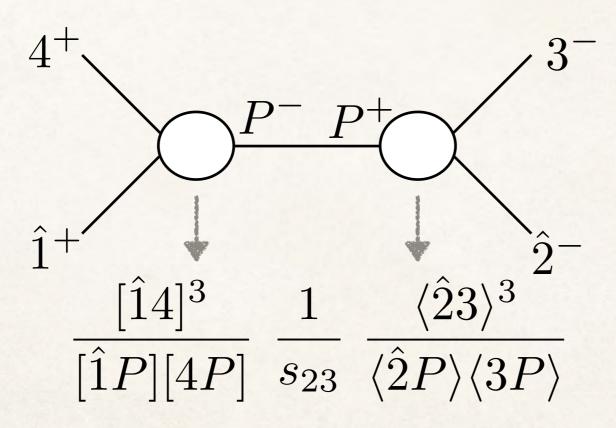
 $A(123\ldots n)$

Particles are ordered, other orderings: permutations

Gauge invariant

- This is a key object of our interest
- Consider:
- All particles massless and on-shell
- All momenta incoming
- Helicities fixed

* Let us consider amplitude of gluons $A_4(1^+2^-3^-4^+)$



Only one term contributes

$$\hat{\lambda}_1 = \lambda_1 - z\lambda_2$$

$$\hat{\lambda}_2 = \tilde{\lambda}_2 + z\tilde{\lambda}_1$$

z takes the value when P is on-shell momentum

* Let us consider amplitude of gluons $A_4(1^+2^-3^-4^+)$

$$P^{2} = \langle \hat{1}4 \rangle [14] = 0$$

$$\langle \hat{1}4 \rangle = \langle 14 \rangle - z \langle 24 \rangle = 0 \quad \Rightarrow \quad z = \frac{\langle 14 \rangle}{\langle 24 \rangle}$$

We can now rewrite

Shouten identity

$$\hat{\lambda}_1 = \lambda_1 - z\lambda_2 = \lambda_1 - \frac{\langle 14 \rangle}{\langle 24 \rangle} \lambda_2 = \frac{\langle 12 \rangle}{\langle 24 \rangle} \lambda_4$$

$$\tilde{\lambda}_2 = \tilde{\lambda}_2 + z\tilde{\lambda}_1 = \frac{[12]}{[13]} \tilde{\lambda}_3 \qquad \text{Use of momentum conservation}$$

* Let us consider amplitude of gluons $A_4(1^+2^-3^-4^+)$

$$\hat{\lambda}_1 = \frac{\langle 12 \rangle}{\langle 24 \rangle} \lambda_4$$

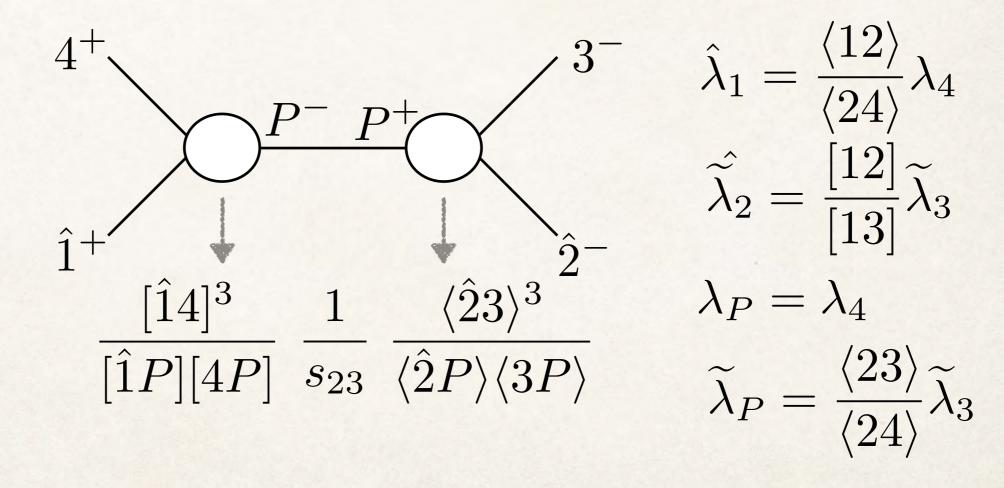
Calculate on-shell momentum P

$$P = \hat{\lambda}_1 \widetilde{\lambda}_1 + \lambda_4 \widetilde{\lambda}_4 = \lambda_4 \left(\frac{\langle 12 \rangle}{\langle 24 \rangle} \widetilde{\lambda}_1 + \widetilde{\lambda}_4 \right)$$

$$\downarrow \qquad \qquad \downarrow$$

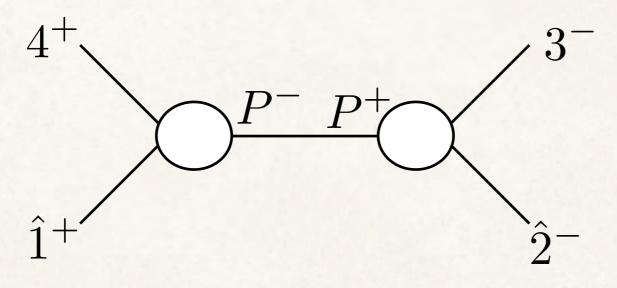
$$\lambda_P = \lambda_4 \qquad \widetilde{\lambda}_P = \frac{\langle 23 \rangle}{\langle 24 \rangle} \widetilde{\lambda}_3$$

* Let us consider amplitude of gluons $A_4(1^+2^-3^-4^+)$

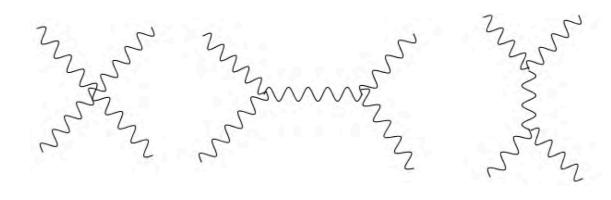


* Let us consider amplitude of gluons $A_4(1^+2^-3^-4^+)$

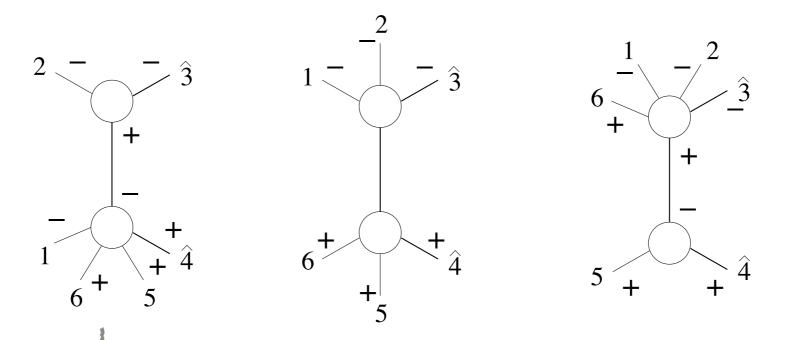
* Let us consider amplitude of gluons $A_4(1^+2^-3^-4^+)$



One gauge invariant object equivalent to three Feynman diagrams



* Let us consider $A_6(1^-2^-3^-4^+5^+6^+)$ and shift legs 3,4

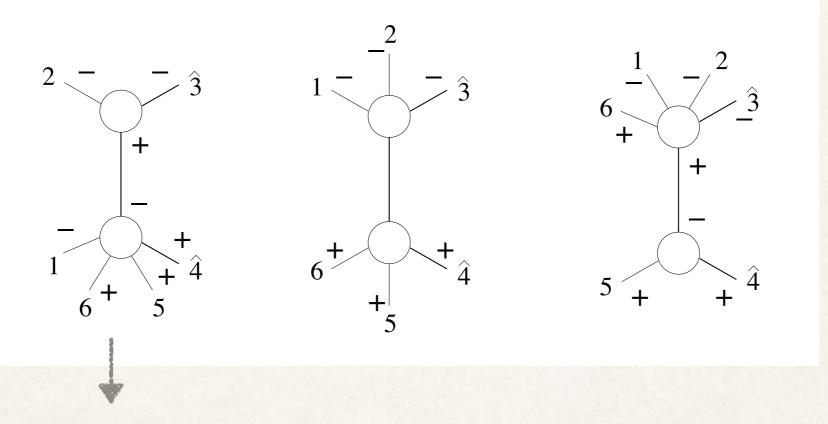


vs 220 Feynman diagrams

$$\frac{\langle 1|2+3|4]^3}{[23][34]\langle 56\rangle\langle 61\rangle s_{234}\langle 5|3+4|2]}$$

$$\langle 1|2+3|4] = \langle 12\rangle[24] + \langle 13\rangle[34]$$

* Let us consider $A_6(1^-2^-3^-4^+5^+6^+)$ and shift legs 3,4



$$\frac{\langle 1|2+3|4]^3}{[23][34]\langle 56\rangle\langle 61\rangle s_{234}\langle 5|3+4|2]}$$

Spurious pole

Remark on BCFW

- Extremely efficient (3 vs 220 for 6pt, 20 vs 34300 for 8pt)
- Terms in BCFW recursion relations
 - Gauge invariant
 - Spurious poles
- Amplitude = sum of these terms dictated by unitarity
- Note: not all factorization channels are present when 1,2 are on the same side

Unitarity methods

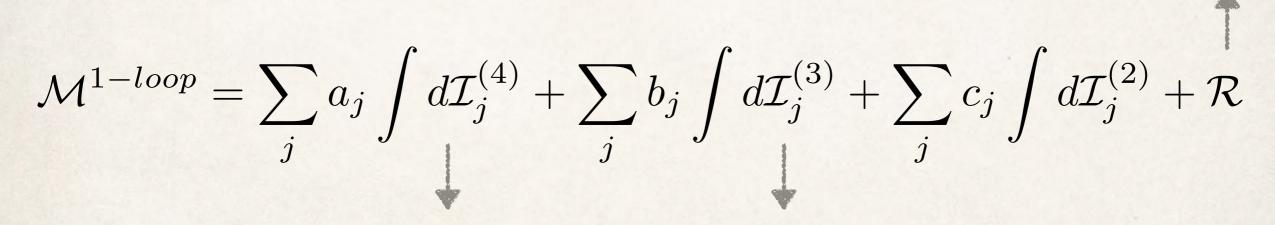
One-loop amplitudes

Sum of Feynman diagrams

$$\mathcal{M}^{1-loop} = \sum_{j} \int d\mathcal{I}_{j}$$
 where $d\mathcal{I}_{j} = d^{4}\ell \,\mathcal{I}_{j}$

Re-express as basis of canonical integrals

Rational



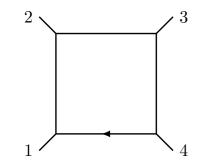
Box

Triangle

Bubble

One loop amplitudes

Box integral

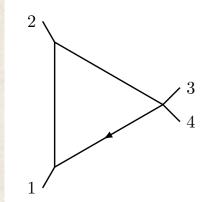


$$I = \frac{d^4\ell \ st}{\ell^2(\ell + k_1)^2(\ell + k_1 + k_2)^2(\ell - k_4)^2}$$

Tadpoles and other integrals

Vanish in dim reg

Triangle and box integrals

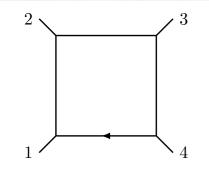


$$I = \frac{d^4 \ell \ s}{\ell^2 (\ell + k_1)^2 (\ell + k_1 + k_2)^2}$$

$$I = \frac{d^4 \ell \, s}{\ell^2 (\ell + k_1)^2 (\ell + k_1 + k_2)^2} \qquad \qquad ^2 \qquad ^3 \qquad I = \frac{d^4 \ell \, s}{\ell^2 (\ell + k_1 + k_2)^2}$$

One loop amplitudes

Box integral

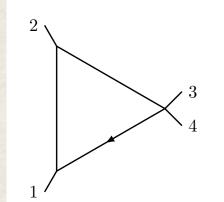


$$I = \frac{d^4\ell \ st}{\ell^2(\ell + k_1)^2(\ell + k_1 + k_2)^2(\ell - k_4)^2}$$

Tadpoles and other integrals

Vanish in dim reg

Triangle and box integrals



$$I = \frac{d^4 \ell \ s}{\ell^2 (\ell + k_1)^2 (\ell + k_1 + k_2)^2}$$

$$I = \frac{d^4 \ell \ s}{\ell^2 (\ell + k_1)^2 (\ell + k_1 + k_2)^2}$$

$$= \frac{d^4 \ell \ s}{\ell^2 (\ell + k_1)^2 (\ell + k_1 + k_2)^2}$$

$$= \frac{d^4 \ell \ s}{\ell^2 (\ell + k_1 + k_2)^2}$$
UV divergent

(Super) Yang Mills amplitudes

One-loop expansion in SYM theory

$$\mathcal{M} = \sum \text{Boxes} + \sum \text{Triangle} + \sum \text{Bubble} + \text{Rational}$$

Pure Yang-Mills (massless QCD)

(Super) Yang Mills amplitudes

One-loop expansion in SYM theory

$$\mathcal{M} = \sum \text{Boxes} + \sum \text{Triangle} + \sum \text{Bubble} + \text{Rational}$$

N=1 and N=2 Super Yang-Mills

(Super) Yang Mills amplitudes

One-loop expansion in SYM theory

$$\mathcal{M} = \sum \text{Boxes} + \sum \text{Triangle} + \sum \text{Bubble} + \text{Rational}$$

N=4 Super Yang-Mills

Note that it is UV finite at 1-loop, but also all loops

One loop expansion

One-loop expansion

$$\mathcal{M} = \sum_{j} a_{j} \operatorname{Boxes}_{j} + \sum_{j} b_{j} \operatorname{Triangle}_{j} + \sum_{j} c_{j} \operatorname{Bubble}_{j} + \operatorname{Rational}_{j}$$

One loop expansion

One-loop expansion

$$\mathcal{M} = \sum_{j} a_{j} \operatorname{Boxes}_{j} + \sum_{j} b_{j} \operatorname{Triangle}_{j} + \sum_{j} c_{j} \operatorname{Bubble}_{j} + \operatorname{Rational}_{j}$$

How to calculate these coefficients?

How to calculate this function?

One loop expansion

One-loop expansion

$$\mathcal{M} = \sum_{j} a_{j} \operatorname{Boxes}_{j} + \sum_{j} b_{j} \operatorname{Triangle}_{j} + \sum_{j} c_{j} \operatorname{Bubble}_{j} + \operatorname{Rational}$$

How to calculate these coefficients?

How to calculate this function?

Unitarity methods

One loop unitarity

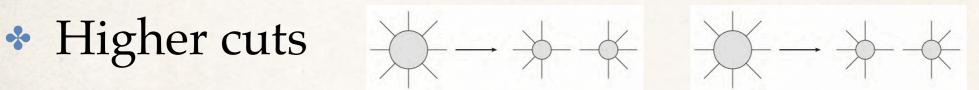
Analogue of tree-level unitarity at one-loop

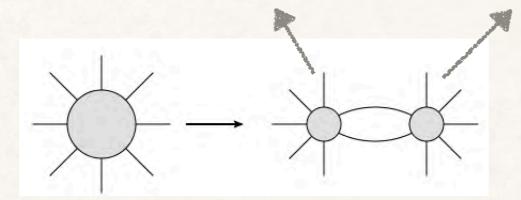
$$\mathcal{M}^{1-loop} \xrightarrow[\ell^2=(\ell+Q)^2=0]{} \mathcal{M}_L^{tree} \frac{1}{\ell^2(\ell+Q)^2} \mathcal{M}_R^{tree}$$

Unitarity cut

• In general $Cut \leftrightarrow \ell^2 = 0$

One-loop unitarity



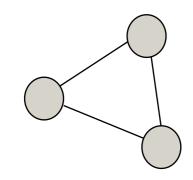


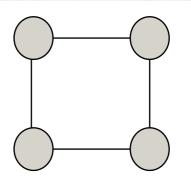
Triple cut

$$\ell^2 = (\ell + Q_1)^2 = (\ell + Q_2)^2 = 0$$

Quadruple cut

$$\ell^2 = (\ell + Q_1)^2 = (\ell + Q_2)^2 = 0$$
 $\ell^2 = (\ell + Q_1)^2 = (\ell + Q_2)^2 = (\ell + Q_3)^2 = 0$





Fixing coefficients

Perform cut on both side of equation

$$\mathcal{M} = \sum_{j} a_{j} \operatorname{Boxes}_{j} + \sum_{j} b_{j} \operatorname{Triangle}_{j} + \sum_{j} c_{j} \operatorname{Bubble}_{j} + \operatorname{Rational}$$

Product of trees Linear combination of coefficients

Example: Quadruple cut - only one box contributes

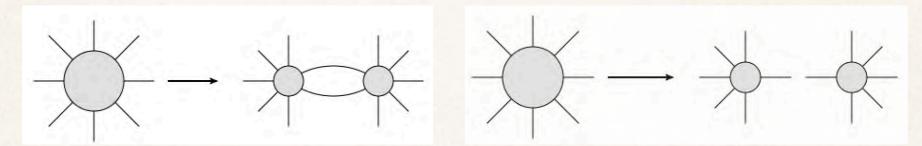
$$\mathcal{M}_1^{tree} \mathcal{M}_2^{tree} \mathcal{M}_3^{tree} \mathcal{M}_4^{tree} = a_j$$

* All coefficients a_j, b_j, c_j can be obtained

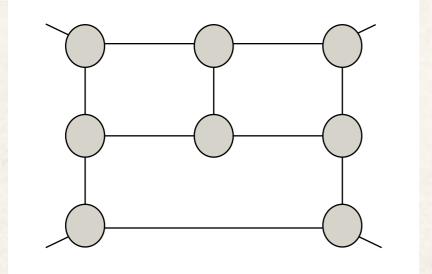
Unitarity methods

(Bern, Dixon, Kosower)

We can iterate both types of cuts



Stop when all propagators are cut: maximal cut



Product of 3pt on-shell amplitudes

Unitarity methods

(Bern, Dixon, Kosower)

Expansion of the amplitude

$$\mathcal{M}^{\ell-loop} = \sum_{j} a_{j} \int d\mathcal{I}_{j}$$

of trees

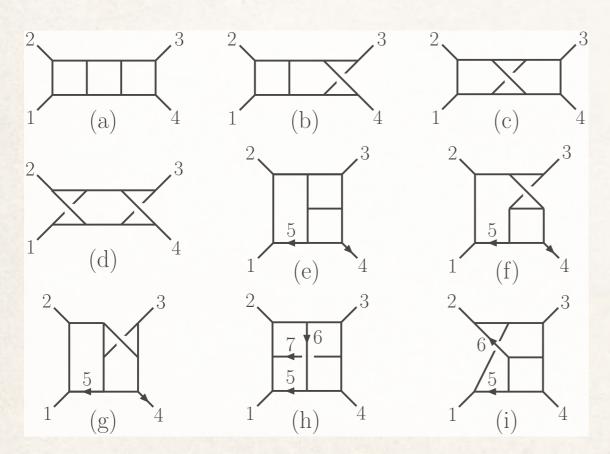
Cuts give product Linear combinations of coefficients a_i

- Very successful method for loop amplitudes in different theories
- Practical problems:
- Find basis of integrals
- Solve (long) system of equations

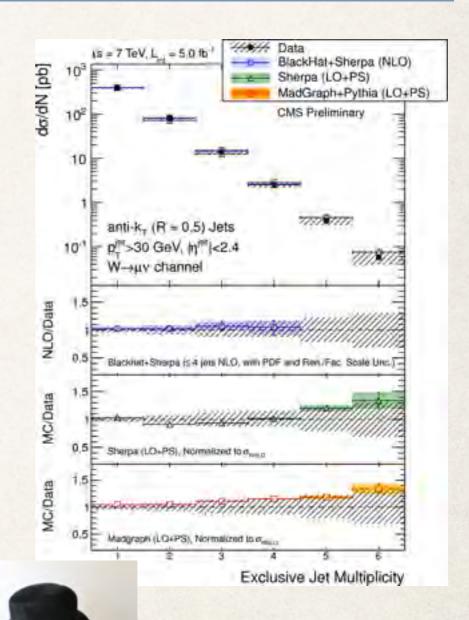
Unitarity methods

(Bern, Dixon, Kosower)

Results in susy theories and QCD



Basis of integrals for 3-loop amplitudes in N=4 SYM and N=8 SUGRA



Black Hat

On-shell good, off-shell bad

Feynman diagrams: off-shell objects

- Off-shell objects
- * Unitarity methods: $Cut[\mathcal{M}] = Cut[Basis of integrals]$
- Recursion relations

On-shell objects

Locality Unitarity

$$\mathcal{M} \sim \mathcal{M}_L \, \mathcal{M}_R$$
On-shell objects

Locality lost Unitarity

Next direction: loosing manifest locality and unitarity

(Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT 2012)

Atoms of amplitudes

What are natural gauge invariant objects?

Atoms of amplitudes

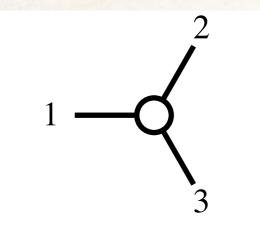
What are natural gauge invariant objects?

Scattering amplitudes

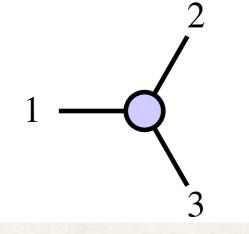
- * Recursion relations, unitarity methods: products of amplitudes
- Iterative procedure: reduces to elementary amplitudes
- In most interesting theories these are three point

Three point kinematics

Two options



$$\lambda_1 \sim \lambda_2 \sim \lambda_3$$



$$\widetilde{\lambda}_1 \sim \widetilde{\lambda}_2 \sim \widetilde{\lambda}_3$$

Spinor helicity variables

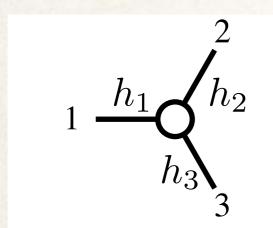
$$p^{\mu} = \sigma^{\mu}_{a\dot{a}} \lambda_{a} \tilde{\lambda}_{\dot{a}}$$
$$\langle 12 \rangle = \epsilon_{ab} \lambda_{1a} \lambda_{2b}$$
$$[12] = \epsilon_{\dot{a}\dot{b}} \lambda_{1\dot{a}} \lambda_{2\dot{b}}$$

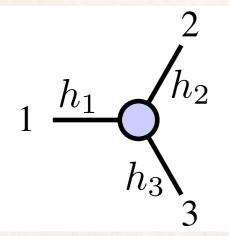
Two solutions for 3pt kinematics

$$p_1^2 = p_2^2 = p_3^2 = (p_1 + p_2 + p_3) = 0$$

Three point amplitudes

Two solutions for amplitudes





$$A_{3} = \langle 12 \rangle^{-h_{1}-h_{2}+h_{3}} \langle 23 \rangle^{+h_{1}-h_{2}-h_{3}} \langle 31 \rangle^{-h_{1}+h_{2}-h_{3}}$$

$$1 \xrightarrow{h_{1}} h_{2}$$

$$h_{1} + h_{2} + h_{3} \leq 0$$

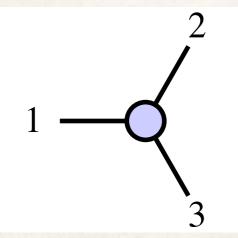
Supersymmetry: amplitudes of super-fields (all component fields included)

Three point amplitudes

In N=4 SYM: no need to specify helicities

$$1 - \bigcirc_3^2$$

$$1 - \mathcal{A}_{3}^{(1)} = \frac{\delta^{4}(p_{1} + p_{2} + p_{3})\delta^{4}([23]\tilde{\eta}_{1} + [31]\tilde{\eta}_{2} + [12]\tilde{\eta}_{3})}{[12][23][31]}$$

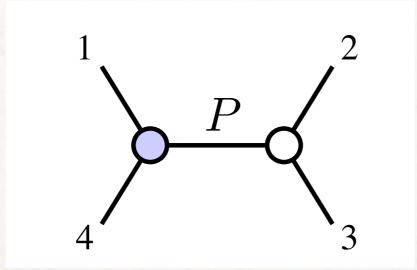


$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{4}(p_{1} + p_{2} + p_{3})\delta^{8}(\lambda_{1}\widetilde{\eta}_{1} + \lambda_{2}\widetilde{\eta}_{2} + \lambda_{3}\widetilde{\eta}_{3})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}$$
Easy book-keeping

Easy book-keeping

Fully fixed in any QFT up to coupling

Let us build a diagram



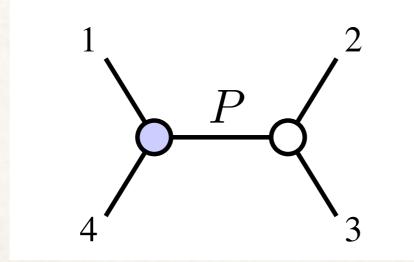
Multiply two three point amplitudes $= A_2^{(2)}(14P) \times A_3^{(1)}$

$$= \mathcal{A}_3^{(2)}(14P) \times \mathcal{A}_3^{(1)}(P23)$$

$$= \frac{\delta^4(p_1 + p_4 + P)\delta^8(\lambda_1\widetilde{\eta}_1 + \lambda_4\widetilde{\eta}_4 + \lambda_P\widetilde{\eta}_P)}{\langle 14\rangle\langle 4P\rangle\langle P1\rangle} \times \frac{\delta^4(p_2 + p_3 - P)\delta^4(\widetilde{\eta}_P[23] + \widetilde{\eta}_2[3P] + \widetilde{\eta}_3[P2]}{[23][3P][P2]}$$

also $\lambda_P \sim \lambda_2 \sim \lambda_3$ and $\widetilde{\lambda}_1 \sim \widetilde{\lambda}_4 \sim \widetilde{\lambda}_P$

Let us build a diagram



Multiply two three point amplitudes

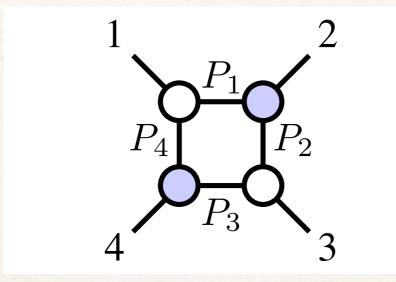
$$= \mathcal{A}_3^{(2)}(14P) \times \mathcal{A}_3^{(1)}(P23)$$

$$= \frac{\delta^4(p_1 + p_2 + p_3 + p_4)\delta^8(\lambda_1\widetilde{\eta}_1 + \lambda_2\widetilde{\eta}_2 + \lambda_3\widetilde{\eta}_3 + \lambda_4\widetilde{\eta}_4)}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle} \times \delta((p_2 + p_3)^2)$$

$$= \mathcal{A}_4^{(2)}(1234) \times \delta((p_2 + p_3)^2)$$

Four point tree level amplitude on factorization channel

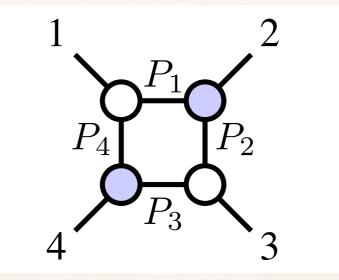
Let us build a diagram



Multiply four three point amplitudes

$$= \mathcal{A}_3^{(1)}(1P_1P_4) \times \mathcal{A}_3^{(2)}(2P_2P_1) \times \mathcal{A}_3^{(1)}(3P_3P_2) \times \mathcal{A}_3^{(2)}(4P_4P_3)$$

Let us build a diagram

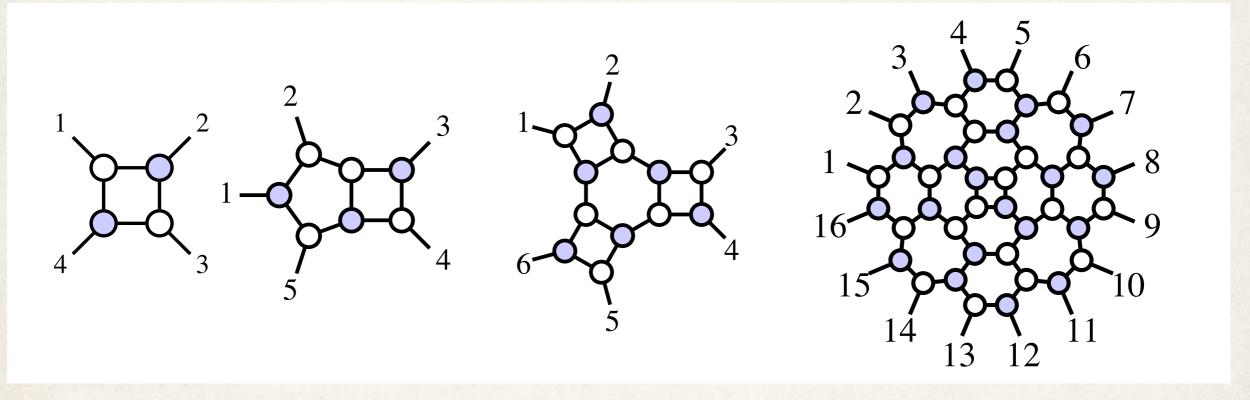


Multiply four three point amplitudes

$$= \mathcal{A}_3^{(1)}(1P_1P_4) \times \mathcal{A}_3^{(2)}(2P_2P_1) \times \mathcal{A}_3^{(1)}(3P_3P_2) \times \mathcal{A}_3^{(2)}(4P_4P_3)$$

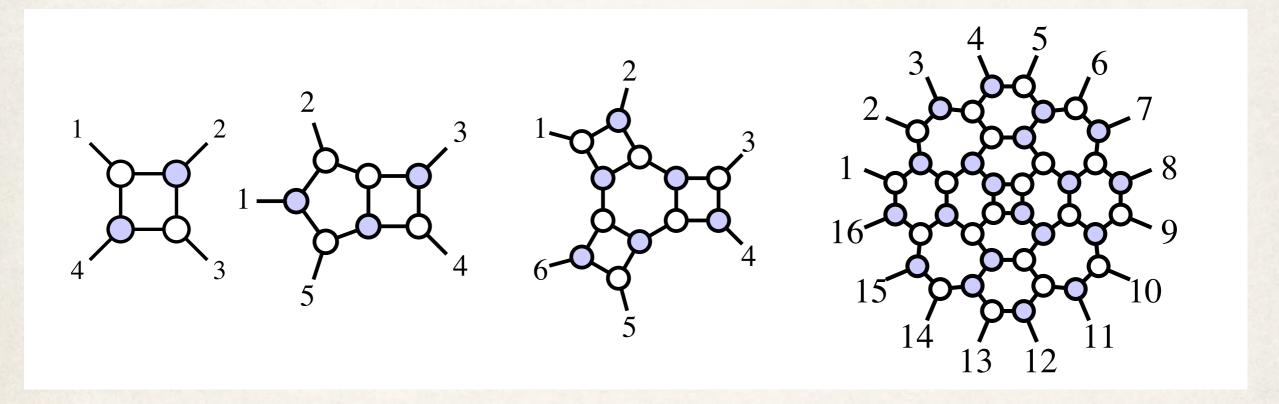
$$= \mathcal{A}_4(1234)$$

Draw arbitrary graph with three point vertices



Products of three point amplitudes $\begin{cases} P>4L & \text{Extra delta functions} \\ P=4L & \text{Function of external data only} \\ P<4L & \text{Unfixed parameters (forms)} \end{cases}$

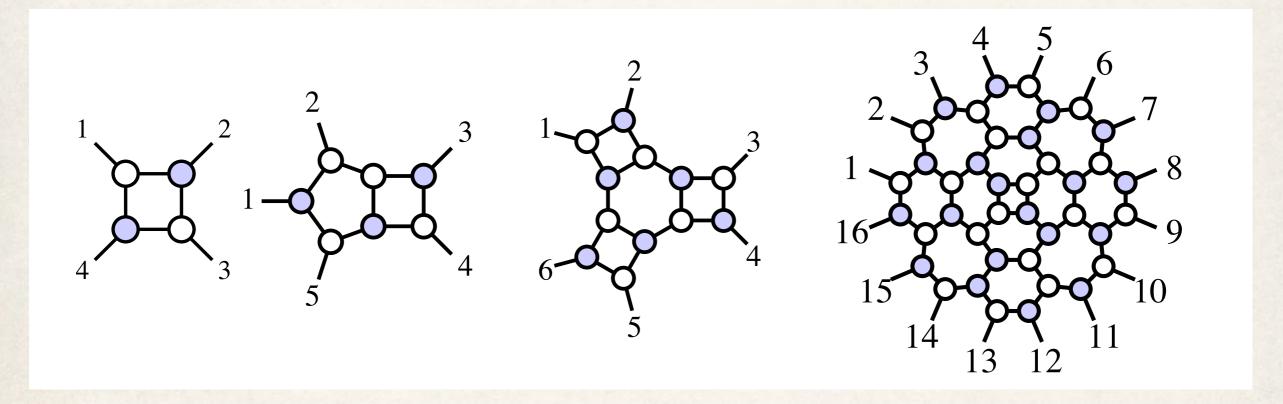
Draw arbitrary graph with three point vertices



On-shell diagrams with $P \leq 4L$ are cuts of the amplitude

* Parametrized by n, k k = 2B + W - P

Draw arbitrary graph with three point vertices

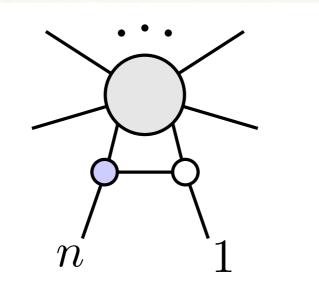


Question: Can we build amplitude from on-shell diagrams?

Recursion relations

BCFW shift

Consider following diagram

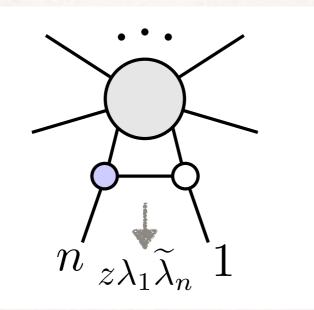


One more loop
Three more on-shell conditions

Adding one parameter

BCFW shift

Consider following diagram



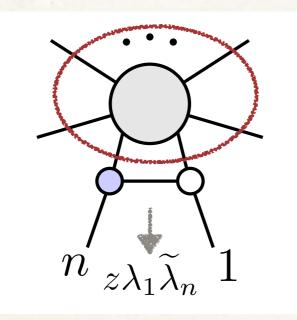
One more loop
Three more on-shell conditions

Adding one parameter

New formula:
$$K_1(z) = \frac{dz}{z} K_0(z)$$

BCFW shift

Consider following diagram



One more loop
Three more on-shell conditions

Adding one parameter

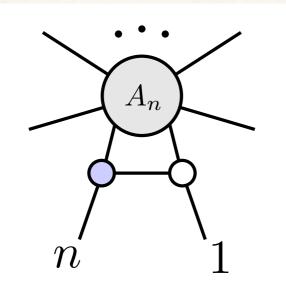
New formula:
$$K_1(z) = \frac{dz}{z} (K_0(z))$$

Old on-shell diagram with shift

$$\frac{\lambda_n \to \lambda_n + z\lambda_1}{\widetilde{\lambda}_1 \to \widetilde{\lambda}_n - z\widetilde{\lambda}_1}$$

BCFW recursion relations

Suppose the blob is the amplitude



Shifted amplitude
$$\lambda_n \to \lambda_n + z\lambda_1$$

= $\mathcal{A}_n(z)$ $\widetilde{\lambda}_1 \to \widetilde{\lambda}_n - z\widetilde{\lambda}_1$

* Cauchy formula $\partial A_n(z) = 0$

Take the residue on $z=z_k \leftrightarrow \text{Erase}$ an edge in the diagram

BCFW recursion relations

Recursion relations for amplitude

$$+\sum_{l} \frac{1}{n} + \sum_{l} \frac{1}{n} = 0$$

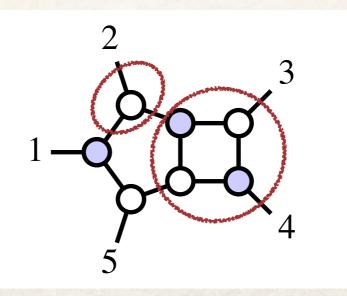
- Tree-level amplitude = sum of on-shell diagrams
- Term-by-term identical to terms in BCFW recursion

Simple examples

Four point: only one factorization channel

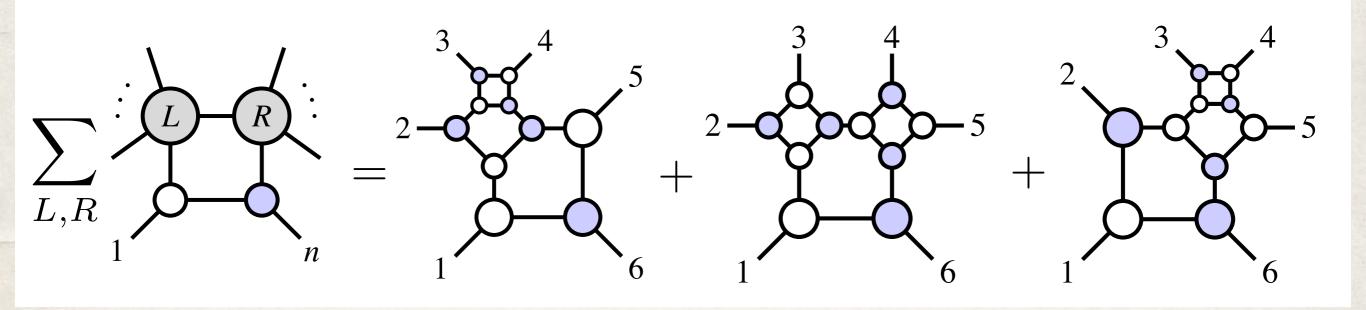
Five point amplitude

Bridge 5,1 on 3pt and 4pt amplitudes



Six point example

Three diagrams



Six point example

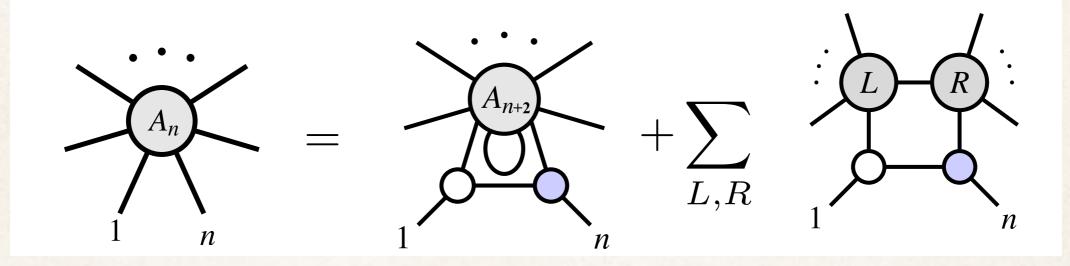
Three diagrams

$$\sum_{L,R} \frac{1}{1} \frac{1}{n} = 2 \frac{3}{1} \frac{4}{6} + 2 \frac{3}{6} \frac{4}{6} + 2 \frac{3}{6} \frac{4}{6} + 2 \frac{3}{6} \frac{4}{6} + 3 \frac{4}{6} \frac{4}{6} = 3 \frac{3}{6} \frac{4}{6} + 3 \frac{4}{6} \frac{4}{6} = 3 \frac{3}{6} \frac{4}{6} + 3 \frac{4}{6} = 3 \frac{3}{6} = 3 \frac{3}{6} \frac{4}{6} = 3 \frac{3}{6} = 3$$

Loop recursion relations

(Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, JT 2010)

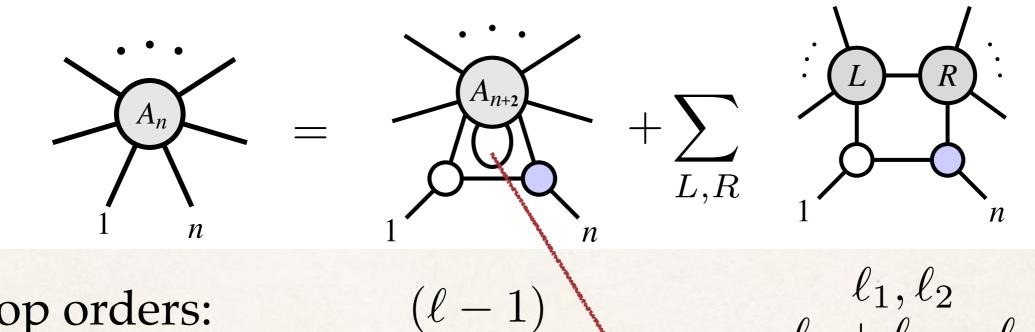
* Recursion relations for ℓ -loop integrand (limited use)



Loop recursion relations

(Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, JT 2010)

* Recursion relations for ℓ -loop integrand (limited use)



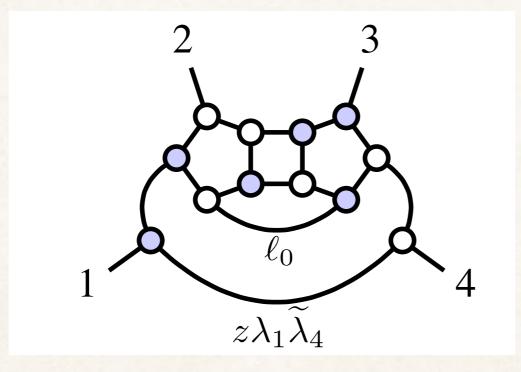
Loop orders:

$$\ell(\ell-1) \qquad \qquad \ell_1, \ell_2 \\ \ell_1 + \ell_2 = \ell$$

* New loop momentum $\ell^{(L)} = \ell_0^{(L)} + z\lambda_1 \widetilde{\lambda}_n$ $(\ell_0^{(L)})^2 = 0$

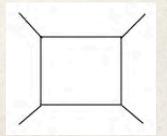
Four point one loop amplitude

It is given by one diagram



$$\ell = \ell_0 + z\lambda_1\widetilde{\lambda}_4$$

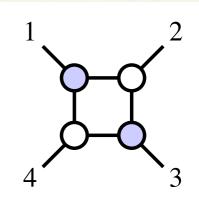
- 4 complex parameters -> impose reality condition
- ❖ 5-loop on-shell diagram = 1-loop off-shell box



Dimensionality of diagrams

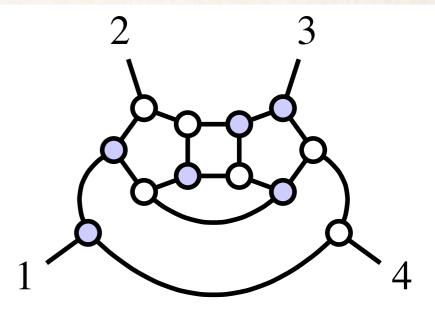
* Tree-level recursion: diagrams with P = 4L contribute

rational functions of external kinematics no delta functions, no free parameters



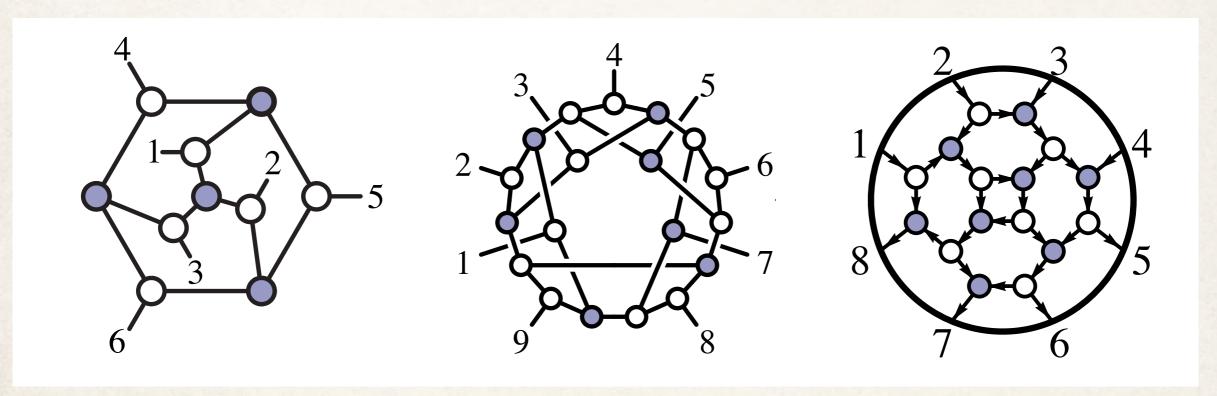
- These are also leading singularities of loop amplitudes
- Loop level: free parameters left components of loop momenta

free =
$$4L - P$$
 $P = 16$
 $L = 5$
free = 4



On-shell diagrams in other theories

On-shell diagrams are well defined in any QFT



- Gauge invariant on-shell functions, product of amplitudes
- Open question: how to reconstruct amplitudes from them?

Thank you for attention!