

Scattering Amplitudes LECTURE 3

Jaroslav Trnka

Center for Quantum Mathematics and Physics (QMAP), UC Davis

Review of Lectures 1-2

What does the blob represent?

Standard picture: Feynman diagrams

Feynman diagrams

* Yang-Mills Lagrangian $\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \sim (\partial A)^2 + A^2 \partial A + A^4$ $\sim f^{abc} g_{\mu\nu} p_{\alpha} \qquad \sim f^{abe} f^{cde} g_{\mu\nu} g_{\alpha\beta}$

Draw diagramsFeynman rulesSum everything

Parke-Taylor formula

- \bullet Process $gg \rightarrow gggg$
- * 220 Feynman diagrams, \sim 100 pages of calculations

Parke-Taylor formula

Our result has successfully passed both these numerical checks.

Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic form for the answer, making our result not only an experimentalist's, but also a theorist's delight.

Surprisingly simple expression for the final answer:

$$\mathcal{M}_6 = \frac{\langle 12 \rangle^3}{\langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61 \rangle}$$

Amplitude: unique object

What is the scattering amplitude?

Modern methods use both:

- Calculate the amplitude directly
- Use perturbation theory

Locality and tree-level unitarity

Only poles: Feynman propagators

$$\frac{1}{P^2} \quad \text{where} \quad P = \sum_{k \in \mathcal{P}} p_k$$

On the pole

Unitarity

$$\mathcal{M} \xrightarrow{P^2=0} \mathcal{M}_L \frac{1}{P^2} \mathcal{M}_R$$

Feynman diagrams recombine on both sides into amplitudes

Loop unitarity

Analogue of tree-level unitarity at one-loop

$$\mathcal{M}^{1-loop} \xrightarrow[\ell^2=(\ell+Q)^2=0]{} \mathcal{M}_L^{tree} \frac{1}{\ell^2(\ell+Q)^2} \mathcal{M}_R^{tree}$$

Unitarity cut

• In general $Cut \leftrightarrow \ell^2 = 0$

New viewpoint

- Rigidity of the final answer after we provide an input
- Feynman diagrams: input = Lagrangian
- New methods: locality, unitarity and gauge invariance
- * Amplitude is a unique gauge invariant function which factorizes properly on all factorization channels

Unitarity methods

(Bern, Dixon, Kosower)

Expansion of the amplitude

$$\mathcal{M}^{\ell-loop} = \sum_{j} a_{j} \int d\mathcal{I}_{j}$$

of trees

Cuts give product Linear combinations of coefficients a_i

- Very successful method for loop amplitudes in different theories
- Practical problems:
- Find basis of integrals
- Solve (long) system of equations

One-loop unitarity

Triple cut

$$\ell^2 = (\ell + Q_1)^2 = (\ell + Q_2)^2 = 0$$

$$\ell^2 = (\ell + Q_1)^2 = (\ell + Q_2)^2 = 0$$
 $\ell^2 = (\ell + Q_1)^2 = (\ell + Q_2)^2 = (\ell + Q_3)^2 = 0$

BCFW recursion relations

(Britto, Cachazo, Feng, Witten, 2005)

$$A_n = -\sum_j A_L(z_j) \frac{1}{P_j^2} A_R(z_j)$$

$$z_j = \frac{P_j^2}{2\langle 1|P_j|2]}$$

Chosen such that internal line is on-shell

Sum over all distributions of legs keeping 1,2 on different sides

New starting point

- Both methods are very efficient
- Based on conservative ideas of applying general principles to uniquely fix the answer
- Main goal of this effort (at least for me): completely new picture for Quantum Field Theory
- No locality, unitarity we need new starting point

What is next?

Three point kinematics

Two options

$$\lambda_1 \sim \lambda_2 \sim \lambda_3$$

$$\widetilde{\lambda}_1 \sim \widetilde{\lambda}_2 \sim \widetilde{\lambda}_3$$

Spinor helicity variables

$$p^{\mu} = \sigma^{\mu}_{a\dot{a}} \lambda_{a} \tilde{\lambda}_{\dot{a}}$$
$$\langle 12 \rangle = \epsilon_{ab} \lambda_{1a} \lambda_{2b}$$
$$[12] = \epsilon_{\dot{a}\dot{b}} \lambda_{1\dot{a}} \lambda_{2\dot{b}}$$

Two solutions for 3pt kinematics

$$p_1^2 = p_2^2 = p_3^2 = (p_1 + p_2 + p_3) = 0$$

Three point amplitudes

Two solutions for amplitudes

$$A_{3} = \langle 12 \rangle^{-h_{1}-h_{2}+h_{3}} \langle 23 \rangle^{+h_{1}-h_{2}-h_{3}} \langle 31 \rangle^{-h_{1}+h_{2}-h_{3}}$$

$$1 \xrightarrow{h_{1}} h_{2}$$

$$h_{1} + h_{2} + h_{3} \leq 0$$

Supersymmetry: amplitudes of super-fields (all component fields included)

Three point amplitudes

In N=4 SYM: no need to specify helicities

$$1 - \bigcirc_3^2$$

$$1 - \mathcal{A}_{3}^{(1)} = \frac{\delta^{4}(p_{1} + p_{2} + p_{3})\delta^{4}([23]\tilde{\eta}_{1} + [31]\tilde{\eta}_{2} + [12]\tilde{\eta}_{3})}{[12][23][31]}$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{4}(p_{1} + p_{2} + p_{3})\delta^{8}(\lambda_{1}\widetilde{\eta}_{1} + \lambda_{2}\widetilde{\eta}_{2} + \lambda_{3}\widetilde{\eta}_{3})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}$$
Easy book-keeping

Easy book-keeping

Fully fixed in any QFT up to coupling

On-shell diagrams

Draw arbitrary graph with three point vertices

- Products of 3pt amplitudes: gauge invariant functions
- Well defined in any Quantum Field Theory

On-shell diagrams

Draw arbitrary graph with three point vertices

Question: Can we build amplitude from on-shell diagrams?

Recursion relations

Six point example

Implementation of known method in this language

On-shell diagrams

- On-shell diagrams: natural gauge invariant objects
- Based on the complete rigidity of 3pt amplitudes
- Recursion relations in this language, hopefully in the future also at loops in more generality

On-shell diagrams

- Input: 3pt amplitude = fixed by Lorentz group and helicities of particles
- Still the same physics origin as Feynman diagrams,
 but implemented in much better language
- However, very surprisingly they are also starting point to a completely new story which brings us to the world of geometry

Hydrogen atom of gauge theories

Toy models

- Hard to make progress on difficult questions in full generality: time-proven method - choose toy model
- Long history of "integrable models": exactly solvable
- * Kepler problem:
 - orbits do not precess
 - Runge-Lenz vector

$$\vec{A} = \frac{1}{2} \left(\vec{p} \times \vec{L} - \vec{L} \times \vec{p} \right) - \mu \frac{\lambda}{4\pi} \frac{\vec{x}}{|x|}$$

Toy models

* Hydrogen atom: $H = \frac{1}{2m}p^2 - \frac{k}{r}$

$$H = \frac{1}{2m}p^2 - \frac{k}{r}$$

- Hidden symmetry: Runge-Lenz-Pauli vector
- Allows to find spectrum

* Toy model for QFT: planar N=4 SYM theory

(Brink, Schwarz, Scherk) (1984)

- Theory of quarks and gluons, similar to QCD but no confinement
- Hidden symmetry: Yangian connection to 2d integrable models (Drummond, Henn, Plefka, Korchemsky, Sokatchev) (2007)
- Great theory to test new ideas in QFT

Hydrogen atom of gauge theories

Useful playground for many theoretical ideas

Amplitudes in N=4 SYM

❖ N=4 superfield

$$\Phi = G_{+} + \tilde{\eta}_{A}\Gamma_{A} + \frac{1}{2}\tilde{\eta}^{A}\tilde{\eta}^{B}S_{AB} + \frac{1}{6}\epsilon_{ABCD}\tilde{\eta}^{A}\tilde{\eta}^{B}\tilde{\eta}^{C}\overline{\Gamma}^{D} + \frac{1}{24}\epsilon_{ABCD}\tilde{\eta}^{A}\tilde{\eta}^{B}\tilde{\eta}^{C}\tilde{\eta}^{D}G_{-}$$

* Superamplitudes: $A_n = \sum_{k=2}^{\infty} A_{n,k}$

Component amplitudes with power $\tilde{\eta}^{4k}$

* Planarity: limit $N \to \infty$ - simplification

Dual variables

- Generally, each diagram has its own variables
 - No global loop momenta
 - Each diagram: its own labels

Planar limit: dual variables

$$k_1 = (x_1 - x_2)$$
 $k_2 = (x_2 - x_3)$ etc
 $\ell_1 = (x_3 - y_1)$ $\ell_2 = (y_2 - x_3)$

Global variables

Integrand

Using these variables: define a single function

$$\mathcal{M} = \int d^4y_1 \dots d^4y_L \mathcal{I}(x_i, y_j)$$

Integrand

- Ideal object to study: rational function, no divergencies
- Hidden dual conformal symmetry in these variables
- * (There is a hidden symmetry in QCD at tree-level)

Momentum twistors

(Hodges 2009)

* New variables: points in \mathbb{P}^3

$$Z = \left(\begin{array}{c} \lambda_a \\ x_{a\dot{a}}\tilde{\lambda}_{\dot{a}} \end{array}\right)$$

Dual Space-Time

Momentum Twistor Space

Cyclic ordering crucial

$$X_1$$
 • Z_1

$$p_j = x_{j+1} - x_j$$

Momentum twistors

- Dual conformal: SL(4) on momentum twistors
- * Dual conformal invariants: $\langle 1234 \rangle = \epsilon_{abcd} Z_1^a Z_2^b Z_3^c Z_4^d$ $\langle 1234 \rangle = \langle 12 \rangle \langle 23 \rangle \langle 34 \rangle [23]$
- * Loop momenta: $\ell \leftrightarrow Z_A Z_B$

$$\begin{array}{c|c}
1 & 2 \\
AB & 3
\end{array}$$

$$\frac{d^4\ell \, st}{\ell^2 (\ell + k_1)^2 (\ell + k_1 + k_2)^2 (\ell - k_4)^2}$$
$$\frac{\langle ABd^2A \rangle \langle ABd^2B \rangle \langle 1234 \rangle^2}{\langle AB12 \rangle \langle AB23 \rangle \langle AB34 \rangle \langle AB41 \rangle}$$

Back to on-shell diagrams

Historic coincidence

- Same diagrams appeared in mathematics around 2005
- Very different motivation:

$$k \begin{pmatrix} * & * & * & * & \cdots & * \\ * & * & * & * & \cdots & * \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ * & * & * & \cdots & * \end{pmatrix} \qquad \begin{vmatrix} * & * & \cdots & * \\ * & * & \cdots & * \\ \vdots & \vdots & \vdots & \vdots \\ * & * & \cdots & * \end{vmatrix} \ge 0$$

* Goal: find algorithm for writing real matrices with positive minors (mod GL(k)): positive Grassmannian

Plabic graphs

- Draw a graph with two types of three point vertices
- Associate variables with the faces of diagram

with the property

$$\prod_{j} f_j = -1$$

Perfect orientation

Arrows on all edges

Perfect orientation

White vertex: one in, two out

Black vertex: two in, one out

- Not unique, always exists at least one
- Two (k) incoming, two (n-k) outgoing

Entries of matrix

* Define elements of $(k \times n)$ matrix

product of all facevariables to theright of the path

if b incoming

$$c_{aa} = 1$$

$$c_{ab} = 0$$

sum over all allowed paths

Entries of matrix

Apply on our example

$$c_{ab} = -\sum_{\Gamma} \prod_{j} (-f_j)$$

Entries of matrix

The matrix is

$$C = \begin{pmatrix} 1 & 0 & f_0 f_3 f_4 & f_4 (1 - f_0) \\ 0 & 1 & -f_0 f_1 f_3 f_4 & -f_0 f_1 f_4 \end{pmatrix} \qquad \begin{array}{c} f_2 \\ \text{eliminated} \end{array}$$

* There always exists choice of signs for f_i such that

$$C \in G_+(k,n) f_0 < 0$$

For our case:

$$m_{12} = 1$$
 $m_{23} = -f_0 f_3 f_4$ $m_{13} = -f_0 f_1 f_3 f_4$ $m_{24} = -f_4 (1 - f_0)$ $f_3 > 0$ $m_{14} = -f_0 f_1 f_4$ $m_{34} = f_0 f_1 f_3 f_4^2$ $f_4 < 0$

All minors positive

Positive Grassmannian from on-shell diagram

* On-shell diagram: method how to generate $C \in G_+(k, n)$

All such matrices generated using on-shell diagrams

It is very interesting that the same objects appear in physics and mathematics.

But is it useful for something?

Physics from Grassmannian

Connection

$$R = \mathcal{M}_1^{tree} \mathcal{M}_2^{tree} \mathcal{M}_3^{tree} \mathcal{M}_4^{tree}$$

$$R = \mathcal{M}_1^{tree} \mathcal{M}_2^{tree} \mathcal{M}_3^{tree} \mathcal{M}_4^{tree} \qquad C = \begin{pmatrix} 1 & 0 & f_0 f_3 f_4 & f_4 (1 - f_0) \\ 0 & 1 & -f_0 f_1 f_3 f_4 & -f_0 f_1 f_4 \end{pmatrix}$$

Connection

$$R = \mathcal{M}_1^{tree} \mathcal{M}_2^{tree} \mathcal{M}_3^{tree} \mathcal{M}_4^{tree}$$

$$R = \mathcal{M}_1^{tree} \mathcal{M}_2^{tree} \mathcal{M}_3^{tree} \mathcal{M}_4^{tree} \qquad C = \begin{pmatrix} 1 & 0 & f_0 f_3 f_4 & f_4 (1 - f_0) \\ 0 & 1 & -f_0 f_1 f_3 f_4 & -f_0 f_1 f_4 \end{pmatrix}$$

$$R = \frac{df_0}{f_0} \frac{df_1}{f_1} \frac{df_2}{f_2} \frac{df_3}{f_3} \delta(C \cdot Z)$$

Momentum conservation

$$\delta(C \cdot Z) = \delta(C \cdot \widetilde{\lambda}) \delta(C^{\perp} \cdot \lambda)$$

Simple motivation: linearize momentum conservation

$$\delta(P) = \delta\left(\sum_{a} \lambda_a \widetilde{\lambda}_a\right)$$

• We want to write it as two linear factors

$$\delta\left(C_{ab}\widetilde{\lambda}_b\right)\,\delta\left(D_{ab}\lambda_b\right)$$

and get the condition: $D_{ab} = C_{ab}^{\perp}$

Dual picture for on-shell diagrams

For arbitrary on-shell diagram

- Label face variables
- Find perfect orientation
- Construct the Grassmannian matrix
- Write a logarithmic form

$$R = \frac{df_0}{f_0} \frac{df_1}{f_1} \frac{df_2}{f_2} \dots \frac{df_d}{f_d} \delta(C \cdot Z) \quad \leftrightarrow \quad \mathcal{M}_1^{tree} \mathcal{M}_2^{tree} \dots \mathcal{M}_m^{tree}$$

Definition of the theory

- ❖ Why is this for N=4 SYM? What about other theories?
- Diagrams and connection to Grassmannian is general
- Specific for theory: differential form

planar N=4 SYM:
$$\Omega = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \dots \frac{d\alpha_n}{\alpha_n} \delta(C \cdot Z)$$

Definition of the theory

- ❖ Why is this for N=4 SYM? What about other theories?
- Diagrams and connection to Grassmannian is general
- Specific for theory: differential form

General QFT:
$$\Omega = F(\alpha) \, \delta(C \cdot Z)$$

* In a sense $F(\alpha)$ defines a theory (as Lagrangian does)

At least for planar N=4 SYM we established

Hopefully for other theories in following years....

Even for planar N=4 SYM not completely satisfactory: sum of objects given by unitarity

Prelude

(Hodges 2009)

- * Study tree-level scattering amplitude $A_6(1^-2^-3^-4^+5^+6^+)$
- BCFW recursion relations in momentum twistor space

(Hodges 2009)

- * Study tree-level scattering amplitude $A_6(1^-2^-3^-4^+5^+6^+)$
- BCFW recursion relations in momentum twistor space

(Hodges 2009)

- * Study tree-level scattering amplitude $A_6(1^-2^-3^-4^+5^+6^+)$
- BCFW recursion relations in momentum twistor space

Volume of tetrahedron in momentum twistor space!

Each face labeled by $\langle abcd \rangle$

 $\langle 1235 \rangle \langle 1256 \rangle \langle 2356 \rangle \langle 1236 \rangle$

(Hodges 2009)

- * Study tree-level scattering amplitude $A_6(1^-2^-3^-4^+5^+6^+)$
- BCFW recursion relations in momentum twistor space

Volume of tetrahedron in momentum twistor space!

Each face labeled by $\langle abcd \rangle$

 $\frac{\langle 1345 \rangle^3}{\langle 1234 \rangle \langle 1245 \rangle \langle 2345 \rangle \langle 1235 \rangle}$

 $\frac{\langle 1356 \rangle^3}{\langle 1235 \rangle \langle 1256 \rangle \langle 2356 \rangle \langle 1236 \rangle}$

(Hodges 2009)

- * Study tree-level scattering amplitude $A_6(1^-2^-3^-4^+5^+6^+)$
- BCFW recursion relations in momentum twistor space

Amplitude is a volume of polyhedron

Each face labeled by $\langle abcd \rangle$

$$\frac{\langle 1345 \rangle^3}{\langle 1234 \rangle \langle 1245 \rangle \langle 2345 \rangle \langle 1235 \rangle}$$

$$\frac{\langle 1356 \rangle^3}{\langle 1235 \rangle \langle 1256 \rangle \langle 2356 \rangle \langle 1236 \rangle}$$

"Conjecture"

Amplitudes are volumes of some regions in some space

"Conjecture"

Amplitudes are volumes of some regions in some space

Must be related to positive Grassmannian

Strategy

- Simple intuitive geometric ideas
- Use suitable mathematical language to describe them
- Generalize to more complicated (non-intuitive) cases

Let us consider three points in a projective plane

Point inside the triangle

$$Z_{j} = \begin{pmatrix} * \\ * \\ * \end{pmatrix} Z_{j} \sim tZ_{j}$$
 Z_{3}
We can $Z_{j} = \begin{pmatrix} 1 \\ a_{j} \\ b_{j} \end{pmatrix}$

Point inside the triangle

$$Y = c_1 Z_1 + c_2 Z_2 + c_3 Z_3$$

$$c_1, c_2, c_3 > 0$$

Projective: one of c_j can be fixed to 1

$$Y = c_1 Z_1 + c_2 Z_2 + c_3 Z_3$$

On the boundary $c_3 = 0$

$$Y = c_1 Z_1 + c_2 Z_2 + c_3 Z_3$$

On the boundary $c_1 = 0$

$$Y = c_1 Z_1 + c_2 Z_2 + c_3 Z_3$$

On the boundary $c_2 = 0$

$$Y = c_1 Z_1 + c_2 Z_2 + c_3 Z_3$$

On the boundary
 $c_2 = c_3 = 0$

Point inside the triangle

Form with logarithmic singularities on boundaries

$$\Omega = \frac{dc_2}{c_2} \frac{dc_3}{c_3}$$

Point inside the triangle

Form with logarithmic singularities on boundaries

$$\Omega = \frac{dc_2}{c_2} \frac{dc_3}{c_3} \to \frac{dc_2}{c_2}$$

Point inside the triangle

Form with logarithmic singularities on boundaries

$$\Omega = \frac{dc_2}{c_2} \frac{dc_3}{c_3} \to \frac{dc_3}{c_3}$$

Point inside the triangle

Form with logarithmic singularities on boundaries

$$\Omega = \frac{dc_2}{c_2} \frac{dc_3}{c_3} \to \frac{dc_3}{c_3} \to 1$$

* Other boundaries can correspond to $c_2, c_3 \to \infty$

Form with logarithmic singularities on boundaries

$$\Omega = \frac{dc_2}{c_2} \frac{dc_3}{c_3} \qquad \frac{\langle X_1 X_2 X_3 \rangle = \epsilon_{abc} X_1^a X_2^b X_3^c}{d^2 Y = dc_2 dc_3 Z_2 Z_3}$$

* Solve for c_2, c_3 from $Y = Z_1 + c_2 Z_2 + c_3 Z_3$

$$\Omega = \frac{\langle Y d^2 Y \rangle \langle 123 \rangle^2}{\langle Y12 \rangle \langle Y23 \rangle \langle Y31 \rangle} \qquad P$$

Projective in all variables

Polygon

Point inside the polygon

Consider a point inside a polygon in projective plane

$$Z_3$$
 Z_4
 Z_4
 Z_4
 Z_5
 Z_5
 Z_5
 Z_6
 Z_6
 Z_6
 $Y = c_1 Z_1 + c_2 Z_2 + \dots c_n Z_n$
 $Z_1 = c_1 Z_1 + c_2 Z_2 + \dots c_n Z_n$
 $Z_1 = c_1 Z_1 + c_2 Z_2 + \dots c_n Z_n$

* Convex polygon: condition on points Z_i

$$Z = \begin{pmatrix} \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ Z_1 & Z_2 & Z_3 & \dots & Z_n \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \end{pmatrix} All main minors poly
$$\begin{vmatrix} * & * & * \\ * & * & * \\ * & * & * \end{vmatrix} > 0$$$$

All main minors positive

$$\begin{vmatrix} * & * & * \\ * & * & * \\ * & * & * \end{vmatrix} > 0$$

Easiest way how to write the form is to triangulate

$$Y = Z_1 + c_5 Z_5 + c_6 Z_6$$
 $\Omega_4 = \frac{dc_5}{c_5} \frac{dc_6}{c_6} \, {}^{c_5, c_6 \ge 0}$ How to sum them?

Easiest way how to write the form is to triangulate

$$Y = Z_1 + c_5 Z_5 + c_6 Z_6$$

$$\Omega_4 = \frac{\langle Y d^2 Y \rangle \langle 156 \rangle^2}{\langle Y15 \rangle \langle Y56 \rangle \langle Y61 \rangle}$$
 Wri

Write in projective form

Now it makes sense to sum them

$$\Omega = \frac{\langle Y \, d^2 Y \rangle \langle 123 \rangle^2}{\langle Y 12 \rangle \langle Y 23 \rangle \langle Y 31 \rangle} + \frac{\langle Y \, d^2 Y \rangle \langle 134 \rangle^2}{\langle Y 13 \rangle \langle Y 34 \rangle \langle Y 41 \rangle} + \frac{\langle Y \, d^2 Y \rangle \langle 145 \rangle^2}{\langle Y 14 \rangle \langle Y 45 \rangle \langle Y 51 \rangle} + \frac{\langle Y \, d^2 Y \rangle \langle 156 \rangle^2}{\langle Y 15 \rangle \langle Y 56 \rangle \langle Y 61 \rangle}$$

* Boundaries of the polygon are $\langle Y i i + 1 \rangle \neq 0$

Spurious poles

Cancel in the sum

Now it makes sense to sum them

$$\Omega = \frac{\langle Y \, d^2 Y \rangle \langle 123 \rangle^2}{\langle Y 12 \rangle \langle Y 23 \rangle \langle Y 31 \rangle} + \frac{\langle Y \, d^2 Y \rangle \langle 134 \rangle^2}{\langle Y 13 \rangle \langle Y 34 \rangle \langle Y 41 \rangle} + \frac{\langle Y \, d^2 Y \rangle \langle 145 \rangle^2}{\langle Y 14 \rangle \langle Y 45 \rangle \langle Y 51 \rangle} + \frac{\langle Y \, d^2 Y \rangle \langle 156 \rangle^2}{\langle Y 15 \rangle \langle Y 56 \rangle \langle Y 61 \rangle}$$

* Boundaries of the polygon are $\langle Y i i + 1 \rangle \neq 0$

$$\Omega = \frac{\langle Y d^2 Y \rangle \mathcal{N}(Y, Z_j)}{\langle Y 12 \rangle \langle Y 23 \rangle \langle Y 34 \rangle \langle Y 45 \rangle \langle Y 56 \rangle \langle Y 61 \rangle}$$

From Y to supersymmetry

Let us take the form for the triangle

$$\Omega = \frac{\langle Y d^2 Y \rangle \langle 123 \rangle^2}{\langle Y 12 \rangle \langle Y 23 \rangle \langle Y 31 \rangle}$$

* Rewrite external Z:

al
$$Z$$
:
$$Z_{j} = \begin{pmatrix} z_{j}^{(1)} \\ z_{j}^{(2)} \\ (\phi \cdot \eta_{j}) \end{pmatrix} \begin{pmatrix} z_{j} \in \mathbb{P}^{2} \text{ bosonic} \\ \eta_{j}^{A} \text{ ferimionic} \\ \phi^{A} \text{ auxiliary} \end{pmatrix}$$

$$A = 1, 2$$

* Also define
$$Y_0 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

From Y to supersymmetry

• We plug them into the form for triangle:

$$\frac{\langle Y d^2 Y \rangle \langle 123 \rangle^2}{\langle Y 12 \rangle \langle Y 23 \rangle \langle Y 31 \rangle} \rightarrow \frac{(\langle 12 \rangle (\phi \cdot \eta_3) + \langle 23 \rangle (\phi \cdot \eta_1) + \langle 31 \rangle (\phi \cdot \eta_2))^2}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle}$$

* Final step: integrate over ϕ :

$$\int d^2 \phi \int \Omega \, \delta(Y - Y_0) = \frac{(\langle 12 \rangle \eta_3 + \langle 23 \rangle \eta_1 + \langle 31 \rangle \eta_2)^2}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle}$$

Amplituhedron

Definition

space specified Ω by a set of logarithmic inequalities singularities

Triangulation

space specified Ω by a set of logarithmic inequalities singularities

Set of regions:

cover the whole space

each region specified by

$$f_j \in (0, \infty)$$

triangulate in terms of "simplices" $\Omega_0 \sim \frac{dx}{-} \ \ \text{for each}$

sum them

Triangulation

space specified Ω by a set of logarithmic inequalities singularities

triangulate in terms of "simplices" $\Omega_0 \sim \frac{dx}{2} \quad \text{for each}$

sum them

Positive quadrant

- Positive quadrant
- Vectors

$$\vec{a}_1 = \left(\begin{array}{c} x_1 \\ y_1 \end{array} \right) \quad \vec{b}_1 = \left(\begin{array}{c} z_1 \\ w_1 \end{array} \right)$$

$$Vol(1) = \frac{dx_1}{x_1} \frac{dy_1}{y_1} \frac{dz_1}{z_1} \frac{dw_1}{w_1}$$

- Positive quadrant
- Vectors

$$ec{a}_1 = \left(egin{array}{c} x_1 \ y_1 \end{array}
ight) \quad ec{b}_1 = \left(egin{array}{c} z_1 \ w_1 \end{array}
ight) \ ec{a}_2 = \left(egin{array}{c} x_2 \ y_2 \end{array}
ight) \quad ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{$$

$$[\text{Vol}(1)]^2 = \frac{dx_1}{x_1} \frac{dy_1}{y_1} \frac{dz_1}{z_1} \frac{dw_1}{w_1} \frac{dx_2}{x_2} \frac{dy_2}{y_2} \frac{dz_2}{z_2} \frac{dw_2}{w_2}$$

- Positive quadrant
- Vectors

$$ec{a}_1 = \left(egin{array}{c} x_1 \\ y_1 \end{array}
ight) \quad ec{b}_1 = \left(egin{array}{c} z_1 \\ w_1 \end{array}
ight) \ ec{a}_2 = \left(egin{array}{c} x_2 \\ y_2 \end{array}
ight) \quad ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \\ w_2 \end{array}
ight) \ ec{$$

Impose:

$$(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_2 - \vec{b}_1) \le 0$$

$$\phi > 90^{\circ}$$

Subset of configurations allowed: triangulate

- Positive quadrant
- Vectors

$$ec{a}_1 = \left(egin{array}{c} x_1 \ y_1 \end{array}
ight) \quad ec{b}_1 = \left(egin{array}{c} z_1 \ w_1 \end{array}
ight) \ ec{a}_2 = \left(egin{array}{c} x_2 \ y_2 \end{array}
ight) \quad ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{b}_2 = \left(egin{array}{c} z_2 \ w_2 \end{array}
ight) \ ec{$$

$$\operatorname{Vol}(2) = \frac{dx_1}{x_1} \frac{dy_1}{y_1} \frac{dz_1}{z_1} \frac{dw_1}{w_1} \frac{dx_2}{x_2} \frac{dy_2}{y_2} \frac{dz_2}{z_2} \frac{dw_2}{w_2} \left[\frac{\vec{a}_1 \cdot \vec{b}_2 + \vec{a}_2 \cdot \vec{b}_1}{(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_2 - \vec{b}_1)} \right]$$

- Positive quadrant
- Vectors

$$\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_\ell \quad \vec{b}_1, \vec{b}_2, \ldots, \vec{b}_\ell$$

Conditions

$$(\vec{a}_i - \vec{a}_j) \cdot (\vec{b}_i - \vec{b}_j) \le 0$$
for all pairs i, j

Let me know if you solve it!

$$Vol(\ell) = \dots$$

Why true?

- No QFT proof because it is not QFT but geometry
- It is correct: the result satisfies locality and unitarity

- Totally different approach: same answer
- Many open questions: triangulations, mathematical structure.....

Physics vs geometry

Dynamical particle interactions in 4-dimensions

 Static geometry in high dimensional space

What is scattering amplitude?

What is scattering amplitude?

Step 1.1.1.

- It is very early to say if/how this can generalize
- Some encouraging news but more work needed
- New formulation of QFT?
 - Integrals
 - Masses
 - RG flow
 - Correlation functions
 - Beyond perturbation theory

Establish as an efficient computational tool

Fantasy

 Beyond understanding QFT better there is one more motivation

Fantasy

 Beyond understanding QFT better there is one more motivation

We have a theory of quantum gravity: string theory

New geometric picture for string theory?

Amplitudes as a new field

- This is one of the directions in fast developing field
- More: scattering equations, BCJ duality, string amplitudes, supergravity finiteness, hexagon bootstrap, cluster polylogarithms, worldsheet models, integration techniques, LHC calculations,.....
- Zeroth order problems open, many chances for young people to make big discoveries!

Resources

Books and reviews

https://arxiv.org/abs/1308.1697

https://arxiv.org/abs/1310.5353

https://arxiv.org/abs/1610.05318

Conferences

Summer school in July in Edinburgh, you can still apply!

https://higgs.ph.ed.ac.uk/workshops/amplitudes-2017-summer-school

Thank you for your attention