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Syllabus 

• Introduction 
• New (scalar) forces  
• Gravitational Waves and Ultralight Dark 

Matter  
• New (spin-dependent) forces  
  (relation to axions, EDMS, Cosmic DM 
experiments) 



Outline for Lectures 

• Lecture 2 –  
-Gravitational waves 
 New Techniques:  
  Levitated sensors 
  Atom interferometry 
-Ultralight scalar field dark matter 
  



Gravitational 
Waves 

B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) 
Phys. Rev. Lett. 116, 061102 (2016). 

 

Sep 14, 2015 



Gravitational waves 

• Several BH events now 
discovered by Advanced 
LIGO! 

• Sources: 
• Inspirals of astrophysical 

objects 
• Inflation, Phase 

transitions, etc. 



Indirect evidence: Hulse Taylor Binary 

• Binary system of neutron stars emits 
gravitational waves 

J. H. Taylor, L. A. Fowler &  P. M. McCulloch 
 Nature277, 437-440 doi:10.1038/277437a0 

Nobel Prize 1993 (Hulse, Taylor) 

Period speeds up ~14s over 1975-1993 

Rapidly spinning pulsar (17Hz)  
orbits around another star with 8h period 



Gravitational Waves 

• Stretch and squeeze the space between test 
masses 

 
• Strain h = ∆L/L 
• 2 polarizations (+ and x) 
 

A. Weinstein, notes  
caltech.edu/laac/undergraduate_resources.shtml 

L 



Sources of Gravitational Radiation 

• Example: Neutron star binary 
 Accelerating charge – EM radiation (dipole) 

Accelerating mass – Gravitational radiation (quadrupole) 
 

e.g. rotating dumbells 

e.g. h ~ 10-21 

f ~ 400 Hz 



Resonant bar detectors 

kHz)6.1(20 πω =

Aluminum bar 

J. Weber (1969) 

Bar driven into resonant oscillation by passing GW 

http://link.aps.org/doi/10.1103/PhysRevLett.22.1320


Resonant bar detectors 

AURIGA experiment (Padova,Italy) 

•2.3 tons of Aluminum, 3 m long 
•0.1 K dilution fridge 
•Q=4 x 106 

•Resonant frequency 900 Hz 
•Capacitive measurement 
•h ~ 10-21 /(Hz)1/2  



Interferometer detectors 



Global network of GW detectors 

LIGO 
LIGO 

VIRGO GEO600 



Interferometer detectors 

A. Weinstein, notes caltech.edu/laac/undergraduate_resources.shtml 



Sensitivity of LIGO 

Alan Weinstein, notes  
caltech.edu/laac/undergraduate_resources.shtml 



Sensitivity of LIGO 

shot 
thermal 

seismic 

LIGO-T0900499 
Alan Weinstein, notes  
caltech.edu/laac/undergraduate_resources.shtml 



Gravitational Wave Detection 
with levitated optomechanics 

A. Arvanitaki and AG, arxiv: 1207.5320 (2012) 

• Fused silica sphere (r = 150nm) or disc (t = 500nm, r = 75 µm) 
      In an optical cavity of size 10-100 m 
• One laser to trap, one to cool and measure sensor position 



Gravitational Wave Detection 



Gravitational Wave Detection 

Gravitational wave changes the physical distance between the end mirrors: 
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Gravitational Wave Detection 

Gravitational wave changes the physical distance between the end mirrors: 
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and the distance from the input mirror to the sensor 
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Gravitational Wave Detection 

• Moving end mirror displaces physical position of anti-node relative to sensor 

Anti-node shift (LL gauge) :  hX mnodeanti 
2
1

=−δ



Gravitational Wave Detection 

• Moving end mirror displaces physical position of anti-node relative to sensor 

Anti-node shift (LL gauge) :  

• Sensor position changes with respect to trap minimum: 

hX mnodeanti 
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Gravitational Wave Detection  
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• Laser intensity changed to match trap frequency to GW frequency 
 

• For a 100m cavity, h ~ 10-22 Hz -1/2 at high frequency  
 

• Limited by thermal noise in sensor (not laser shot noise)  
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Tunable resonant detector 

• Like Weber bar detectors with wide tunability 

kHz)6.1(20 πω =

Aluminum bar 

J. Weber (1969) 

http://link.aps.org/doi/10.1103/PhysRevLett.22.1320


Thermal-noise limited strain sensitivity 
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Thermal-noise limited strain sensitivity 
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Limit from laser cooling 
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Thermal-noise limited strain sensitivity 
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Photon-recoil heating 

Limit from laser cooling 
Gas damping 

Cavity suppresses response above pole 



GW Strain Sensitivity 

150 nm sphere 

a = 75 um,  d = 500 nm disc 
500 nm × (75 μm)2   
disk 

150 nm sphere 

Differing sensitivity between the two geometries 
due to difference in mass and in light scattering properties 



GW Strain Sensitivity 

Size scale: LIGO 
100 m 



GW sources at high-frequency 
• Astrophysical Sources 
 Natural upper bound on GW frequency 
              inverse BH size ~ 30 kHz 
 
• Beyond standard model physics 
     - QCD Axion  Annihilation to gravitons in   
    cloud around Black holes 
  
 
  

R. Brustein et. al. Phys. Lett. B, 361, 45 (1995) 

A. Arvanitaki et. al, PRD, 81, 123530 (2010) 

-  String cosmology 
-  The unknown? 

 

Black hole superradiance 



GW Strain Sensitivity 

Distance to source 10 kpc 

GUT scale axion 



Matter-wave interferometers 
• Excellent for accelerometers, gyroscopes 
• Example: atom interferometer 

𝑛𝑛𝑛𝑛/ 𝐻𝐻𝐻𝐻 Sensitivity: 

Signal: φ=kaT2 

or better 



Atom interferometry with Raman 
transitions 

Dimopoulos et.al., Arxiv:0806.2125 



Beamspitters and Mirrors 

mirror beamsplitter beamsplitter 



Phase shifts in Atom Inteferometry 

Probability to be in state 1 after 2nd beamsplitter pulse: 



Quantum superpositions at half-meter 
scale! 

T. Kovachy et.al, Nature 528, 530–533 (24 December 2015)  

Signal: φ=kaT2 

10
 m

  



• Atom interferometers for gravitational wave 
detection 

https://www.nasa.gov/pdf/740776main_SaifSpringSymposium2013-1.pdf 



• Atom interferometers for gravitational wave 
detection 

https://www.nasa.gov/pdf/740776main_SaifSpringSymposium2013-1.pdf 



The length scales of the Universe 

WIMPS 

Dark Matter Possible masses 

10-22 eV 
~10-1000 GeV 



What If DM Is a  Boson and Very Light? 
Dark Matter Particles in the 
Galaxy 

Usually we think of 
… 

like a WIMP 



Dark Matter Particles in the 
Galaxy 

Usually we think of 
… 

instead of… 

like a WIMP 

What If DM Is a  Boson and Very Light? 



Dark Matter Particles in the 
Galaxy 

Decreasing DM Mass 

What If DM Is a  Boson and Very Light? 



Dark Matter Particles in the 
Galaxy 

Decreasing DM Mass 

Equivalent to a  Scalar Wave 

Po
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field 

What If DM Is a  Boson and Very Light? 



Going from DM particles to a  DM “wave” 

1 



Scalar DM field production 



Light scalar Dark Matter 



Light scalar Dark Matter 

• Dark Matter can exist at a variety of mass 
scales: 

 >10-22 eV (size of dwarf galaxies) 
Ultralight DM looks like coherent field rather 

than particle 



Spatial and time variations of masses 
and fundamental constants 



Other properties of ultralight scalars 



Techniques for sensing oscillating 
scalar DM 

• Atomic clocks 
• Bar detectors 
• Torsion Balances 
• Atom Interferometers 



Oscillating Atomic and Nuclear 
Energy Splittings 

• Optical 
Splittings 

• Hyperfine 
Splittings 

• Nuclear Splittings 
 

DM appears as a  signature in atomic (or nuclear) 
clocks 



Oscillating Atomic and Nuclear 
Energy Splittings 

• Optical 
Splittings 

• Hyperfine 
Splittings 

• Nuclear Splittings 
 

DM appears as a  signature in atomic (or nuclear) 
clocks 



Atomic 
Clocks 

• Kept tuned to an atomic energy level splitting 

Current definition of a second: 
the duration of 9192631770 periods of the radiation  

corresponding to the transition between the two hyperfine levels  
of the ground state of the caesium 133 atom 

 

• Have shown stability of 1 part in 1018 

Compared to 1 part in 1013 expected by DM 
 
 
• Have won several Nobel prizes in the past 20  years 



How does and Atomic 
Clock Work? 



How do you take the 
measurements? 

• Observe two clocks every τcycling to remove 
systematics 

• Calculate ratio of frequencies which depends on Dark 
Matter 

• Take Fourier transform to look for oscillations with period 
longer  than τcycling 

 
Atomic Clock DM searches are broadband searches 



What type of comparisons 
can we do? 

• Hyperfine to Optical transitions 

• Sensitive to me, mq, and αs  (less to 
αΕΜ) 

 
• Optical to Optical transitions 

• Sensitive to αΕΜ 

 
• Nuclear to Optical transitions 

• Sensitive to me, αΕΜ, mq, and αs 



The Dy isotope and Rb/Cs Clock Comparison 

Analysis performed with existing 
data 



Projected  - Future Clock Comparisons 



Detecting oscillating 
interatomic distances 

A. Arvanitaki, K. Van Tilburg, S. Dimopoulos (2015) 



Resonant-Mass 
Detectors 

• In the 1960’s: The Weber Bar 

 
Strain sensitivity h~10-17 

• Today: AURIGA, NAUTILUS, MiniGrail 

 
Strain sensitivity h~10-23 



Experimental Sensitivity 

A. Arvanitaki, K. Van Tilburg, S. Dimopoulos (2015) 



Ultralight DM with accelerometers 

Arxiv: 1512.06165(2015) 



Dark Matter induced acceleration 

φ∇

Consider Higgs portal DM: 

Force on matter due to: 

-Different materials with different composition, different binding energies etc.  
 experience relative accelerations due to DM field 
-Violates EP 
-In direction of grad phi (changes over times longer than coherence time) 

Arxiv: 1512.06165(2015) 



Torsion balance tests 

• Tests of Equivalence principle 

Arxiv: 1512.06165(2015) 



Atomic Interferometers 

• Also can measure force due to  
 e.g. for different atomic isotopes 

φ∇



Higgs portal 

Arxiv: 1512.06165(2015) 



Vector (B-L) portal 

Arxiv: 1512.06165(2015) 



Time-varying acceleration of earth and 
masses of atoms 



Mach-Zehnder Atom interferometer 



Higgs portal search 

AG and Andrei Derevianko, Phys. Rev. Lett. 117, 261301 (2016). 
 



Summary 
 

• New AMO techniques (levitated particles, atom 
interferometers) could enable search for GWs at 
higher (and lower) frequency 

• Variety of methods to search for oscillating 
ultralight dark matter 

-time variation of constants (clocks) 
-length changes in materials (resonant bars) 
-accelerometers (torsion balances, atomic 
   interferometers) 
  (next lectures) Axions, spin-dependent new forces  
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