Small Scale experiments for fundamental physics

ICTP Summer School on Particle Physics, June 12-15

Part 2

A. Geraci, University of Nevada, Reno

Syllabus

- Introduction
- New (scalar) forces
- Gravitational Waves and Ultralight Dark Matter
- New (spin-dependent) forces (relation to axions, EDMS, Cosmic DM experiments)

Outline for Lectures

- Lecture 2 –
- -Gravitational waves

New Techniques:

- \rightarrow Levitated sensors
- \rightarrow Atom interferometry
- -Ultralight scalar field dark matter

Gravitational Waves

B. P. Abbott *et al.* (LIGO Scientific Collaboration and Virgo Collaboration) Phys. Rev. Lett. **116**, 061102 (2016).

Gravitational waves

- Several BH events now discovered by Advanced LIGO!
- Sources:
 - Inspirals of astrophysical objects
 - Inflation, Phase transitions, etc.

Indirect evidence: Hulse Taylor Binary

 Binary system of neutron stars emits gravitational waves

J. H. Taylor, L. A. Fowler & P. M. McCulloch Nature277, 437-440 doi:10.1038/277437a0

Gravitational Waves

Stretch and squeeze the space between test masses

- Strain $h = \Delta L/L$
- 2 polarizations (+ and x)

A. Weinstein, notes caltech.edu/laac/undergraduate_resources.shtml

Sources of Gravitational Radiation

• Example: Neutron star binary

Accelerating charge – EM radiation (dipole) Accelerating mass – Gravitational radiation (quadrupole)

e.g. rotating dumbells

e.g. h ~ 10⁻²¹ f ~ 400 Hz

Resonant bar detectors

Bar driven into resonant oscillation by passing GW

J. Weber (1969)

 $\omega_0 = 2\pi (1.6 \,\mathrm{kHz})$

Aluminum bar

Resonant bar detectors

AURIGA experiment (Padova, Italy)

- •2.3 tons of Aluminum, 3 m long
- •0.1 K dilution fridge
- •Q=4 x 10⁶
- •Resonant frequency 900 Hz
- Capacitive measurement
 h ~ 10⁻²¹ /(Hz)^{1/2}

Interferometer detectors

Global network of GW detectors

Interferometer detectors

A. Weinstein, notes caltech.edu/laac/undergraduate_resources.shtml

Sensitivity of LIGO

Alan Weinstein, notes caltech.edu/laac/undergraduate_resources.shtml

Sensitivity of LIGO

Alan Weinstein, notes caltech.edu/laac/undergraduate_resources.shtml

LIGO-T0900499

Gravitational Wave Detection with levitated optomechanics

- Fused silica sphere (r = 150nm) or disc (t = 500nm, r = 75 μm) In an optical cavity of size 10-100 m
- One laser to trap, one to cool and measure sensor position

A. Arvanitaki and AG, arxiv: 1207.5320 (2012)

Gravitational wave changes the physical distance between the end mirrors:

$$L = \ell_m [1 + \frac{1}{2}h\cos(\omega t)]$$

Gravitational wave changes the physical distance between the end mirrors:

$$L = \ell_m [1 + \frac{1}{2}h\cos(\omega t)]$$

and the distance from the input mirror to the sensor

$$X_s = x_s [1 + \frac{1}{2}h\cos(\omega t)]$$

• Moving end mirror displaces physical position of anti-node relative to sensor

Anti-node shift (LL gauge) :
$$\delta X_{anti-node} = \frac{1}{2} \ell_m h$$

• Moving end mirror displaces physical position of anti-node relative to sensor

Anti-node shift (LL gauge) :
$$\delta X_{anti-node} = \frac{1}{2} \ell_m h$$

Sphere shift (LL gauge) : $\delta X_s = \frac{1}{2} x_s h$

• Sensor position changes with respect to trap minimum:

$$\Delta X = \frac{1}{2} (x_s - \ell_m) h + O(h^2)$$

- Laser intensity changed to match trap frequency to GW frequency
- For a 100m cavity, $h \simeq 10^{-22}$ Hz $^{-1/2}$ at high frequency
- Limited by thermal noise in sensor (not laser shot noise)

Tunable resonant detector

• Like Weber bar detectors with wide tunability

J. Weber (1969)

 $\omega_0 = 2\pi (1.6 \,\mathrm{kHz})$

Aluminum bar

Thermal-noise limited strain sensitivity

Thermal-noise limited strain sensitivity

Thermal-noise limited strain sensitivity

Cavity suppresses response above pole

GW sources at high-frequency

- Astrophysical Sources
 Natural upper bound on GW frequency inverse BH size ~ 30 kHz
- Beyond standard model physics
 - QCD Axion → Annihilation to gravitons in cloud around Black holes

A. Arvanitaki et. al, PRD, 81, 123530 (2010)

Black hole superradiance

- String cosmology R. Brustein et. al. Phys. Lett. B, 361, 45 (1995)
- The unknown?

Matter-wave interferometers

- Excellent for accelerometers, gyroscopes
- Example: atom interferometer

Atom interferometry with Raman transitions

Dimopoulos et.al., Arxiv:0806.2125

Beamspitters and Mirrors

e.g. a
$$\overline{z}$$
 puble will create equal superposition
of 11) + 12> from initial state (1)
 $|A_0> = |1,p>$
 $|A_0> = \{|1,p> + e^{i\phi_1}|2,p+2t_1c>\}$
Consider the following arrangement:
 $\overline{T_2}$
 $\overline{T_2}$
 $|D_1|$
 $|D_1|$
beamsplitter mirror beamsplitter

Phase shifts in Atom Inteferometry

Probability to be in state 1 after 2nd beamsplitter pulse: $[1 + \cos(\Delta \phi)]/2$

$$\Delta \phi = \Delta \phi_{\text{prop}} + \Delta \phi_{\text{laser}} + \Delta \phi_{\text{sep}}.$$

$$\Delta\phi_{prop} = \frac{1}{\hbar} \int (S_u - S_l) = \frac{1}{\hbar} \int (\frac{1}{2}mv_u^2 - mgz_u)dt - \frac{1}{\hbar} \int (\frac{1}{2}mv_l^2 - mgz_l)dt$$

$$\Delta \phi_{laser} = k_{eff}(z_i - z_{1l} - z_{1u} + z_{2l})$$

$$\Delta \phi_{sep} = \frac{m}{2\hbar} (v_{2u} - v_R + v_{2l}) (z_{2l} - z_{2u})$$

Quantum superpositions at half-meter

T. Kovachy et.al, Nature 528, 530–533 (24 December 2015)

Atom interferometers for gravitational wave detection

- Atoms are test masses
- Atom is **inertially decoupled** (freely falling); insensitive to vibration
- · However: Lasers vibrate, are noisy
- **Differential measurement** with common laser helps suppress noise

https://www.nasa.gov/pdf/740776main_SaifSpringSymposium2013-1.pdf

Atom interferometers for gravitational wave detection

Space-based atom GW detector could have science potential comparable to LISA

https://www.nasa.gov/pdf/740776main_SaifSpringSymposium2013-1.pdf

The length scales of the Universe

80% of the energy scale left to explore

Usually we think of

 $=\overline{m_{DM}v}$

Decreasing DM Mass

Equivalent to a Scalar Wave

Going from DM particles to a DM "wave"

When $n_{DM} > \frac{1}{\lambda_{DM}^3}$

In our galaxy this happens when $m_{DM} < 1 \text{ eV/c}^2$

we can talk about DM $\varphi(x,t)$ and locally

 $\phi(t) \approx \phi_0 \cos \omega_{DM} t$

with frequency

$$\omega_{DM} \approx \frac{m_{DM}c^2}{\hbar}$$

and finite coherence

$$\delta\omega_{DM} \approx \frac{m_{DM}v^2}{\hbar} = 10^{-6}\omega_{DM}$$

with amplitude

 $\phi_0 \propto \frac{\sqrt{\text{DM density}}}{\text{DM mass}}$

Scalar DM field production

• The "misalignment mechanism" during inflation

Light scalar Dark Matter

• Just like a harmonic oscillator

Initial conditions set by inflation

Light scalar Dark Matter

• Dark Matter can exist at a variety of mass scales:

>10⁻²² eV (size of dwarf galaxies)

Ultralight DM looks like coherent field rather than particle

$$\phi(\mathbf{r},t) = \phi_0 \cos{(\omega_{\phi}t - \mathbf{k}_{\phi} \cdot \mathbf{r} + \dots)}.$$

 $\phi_0 = \hbar \sqrt{2\rho_{\rm DM}} / (m_\phi c)$

Spatial and time variations of masses and fundamental constants

$$-\mathcal{L}_n^{\text{int}} = (\sqrt{\hbar c}\phi)^n \times \left(\frac{m_e \bar{\psi}_e \psi_e}{\Lambda_{n,e}^n} + \frac{m_p \bar{\psi}_p \psi_p}{\Lambda_{n,p}^n} - \frac{1}{4\Lambda_{n,\gamma}^n} F_{\mu\nu}^2 + \ldots\right).$$

$$\frac{m_f^{\text{eff}}}{m_f} = 1 + \frac{\left(\sqrt{\hbar c}\phi(\mathbf{r},t)\right)^n}{\Lambda_{n,f}^n},$$
$$\frac{\alpha^{\text{eff}}}{\alpha} \approx 1 + \frac{\left(\sqrt{\hbar c}\phi(\mathbf{r},t)\right)^n}{\Lambda_{n,\gamma}^n}.$$

$$\phi(\mathbf{r}, t) = \phi_0 \cos\left(\omega_{\phi} t - \mathbf{k}_{\phi} \cdot \mathbf{r} + \dots\right).$$
$$\phi_0 = \hbar \sqrt{2\rho_{\rm DM}} / (m_{\phi} c)$$

Other properties of ultralight scalars

• Mediates new interactions in matter

• Generates a fifth force in matter

• Generates Equivalence Principle violation

Techniques for sensing oscillating scalar DM

- Atomic clocks
- Bar detectors
- Torsion Balances
- Atom Interferometers

Oscillating Atomic and Nuclear Energy Splittings

 Optical Splittings

$$\Delta E_{\text{optical}} \propto \alpha_{EM}^2 m_e \sim \text{eV}$$

 Hyperfine Splittings

$$\Delta E_{
m hyperfine} \propto \Delta E_{
m optical} lpha_{EM}^2 \left(\frac{m_e}{m_p}\right) \sim 10^{-6} \, {
m eV}$$

• Nuclear Splittings $\Delta E (m_p, \alpha_s, \alpha_{EM}) \sim 1 \text{ MeV}$

DM appears as a signature in atomic (or nuclear) clocks

Oscillating Atomic and Nuclear Energy Splittings

 Optical Splittings

 $\Delta E_{\rm optical} \propto \alpha_{EM}^2 m_e \sim {\rm eV}$

 Hyperfine Splittings

$$\Delta E_{
m hyperfine} \propto \Delta E_{
m optical} lpha_{EM}^2 \left(rac{m_e}{m_p}
ight) \sim 10^{-6} \, {
m eV}$$

• Nuclear Splittings $\Delta E (m_p, \alpha_e, \alpha_{EM}) \sim 1 \text{ MeV}$

DM appears as a signature in atomic (or nuclear) clocks

Atomic Clocks

• Kept tuned to an atomic energy level splitting

Current definition of a second:

the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom

• Have shown stability of 1 part in 10^{18}

Compared to 1 part in 10^{13} expected by DM

• Have won several Nobel prizes in the past 20 years

How does and Atomic Clock Work?

Keep a laser tuned to a long-lived (> minutes) atomic transition

How well can I measure the frequency of the laser when tuned to the atom?

$$\frac{\delta f}{f} \sim \frac{\Gamma_{\rm atom}}{f} \frac{1}{\sqrt{N_{\rm atoms}}} \sqrt{\frac{\tau_{\rm cycling}}{t_{\rm experiment}}}$$

How do you take the measurements?

• Observe two clocks every τ_{cycling} to remove systematics

• Calculate ratio of frequencies which depends on Dark Matter

• Take Fourier transform to look for oscillations with period longer than $\tau_{cycling}$

Atomic Clock DM searches are broadband searches

What type of comparisons can we do?

• Hyperfine to Optical transitions

- Sensitive to m_e , m_q , and α_s (less to $\alpha_{\rm EM}$)
- Optical to Optical transitions
 - Sensitive to $\alpha_{\rm EM}$

- Nuclear to Optical transitions
 - Sensitive to m_e , α_{EM} , m_q , and α_s

The Dy isotope and Rb/Cs Clock Comparison

Analysis performed with existing data

Projected - Future Clock Comparisons

Future Sensitivity of a ²²⁹Th clock with 10⁻¹⁵/Hz^{-1/2} noise

Detecting oscillating interatomic distances

• The Bohr radius changes with DM

•
$$r_{\rm B} \sim (\alpha \ m_{\rm e})^{-1}$$

 $\frac{\delta r_B}{r_B} = -\left(\frac{\delta \alpha_{EM}}{\alpha_{EM}} + \frac{\delta m_e}{m_e}\right)$

The size of solids changes with DM

•
$$L \sim N (\alpha m_e)^{-1}$$

 $\frac{\delta L}{L} = -\left(\frac{\delta \alpha_{EM}}{\alpha_{EM}} + \frac{\delta m_e}{m_e}\right)$

Need macroscopic objects to get a detectable signal

A. Arvanitaki, K. Van Tilburg, S. Dimopoulos (2015)

Resonant-Mass Detectors

• In the 1960's: The Weber Bar

Strain sensitivity h~10⁻¹⁷

• Today: AURIGA, NAUTILUS, MiniGrail

Strain sensitivity $h \sim 10^{-23}$

Experimental Sensitivity

Ultralight DM with accelerometers

Dark Matter Direct Detection with Accelerometers

Peter W. Graham,¹ David E. Kaplan,^{1,2,3,4} Jeremy Mardon,¹ Surjeet Rajendran,³ and William A. Terrano^{5,6}

¹Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305 ²Department of Physics & Astronomy, The Johns Hopkins University, Baltimore, MD 21218

³Berkeley Center for Theoretical Physics, Department of Physics, University of California, Berkeley, CA 94720 ⁴Kavli Institute for the Physics and Mathematics of the Universe (WPI),

Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583, Japan

⁵Center for Experimental Nuclear Physics and Astrophysics,

University of Washington, Seattle, WA 98195-4290

⁶Physikdepartment, Technische Universität München, D-85748 Garching, Germany

Spin	Type	Operator	Interaction	Oscillating DM Effects	Searches
0	scalar	$\phi h^{\dagger} h, \phi \mathcal{O}_{\rm SM}$	Higgs portal / dilaton	m_e, m_p, α variation	Atomic clocks [51]
				acceleration	*
	pseudo-scalar	$a G^{\mu u} \tilde{G}_{\mu u}$	axion-QCD	nucleon EDM	CASPEr [18]
		$a F^{\mu u} \tilde{F}_{\mu u}$	axion-E&M	EMF along B field	ADMX [13]
		$(\partial_{\mu}a)\bar{\psi}\gamma^{\mu}\gamma_{5}\psi$	axion-fermion	spin torque	CASPEr [18]
1	vector	$A'_{\mu} \bar{\psi} \gamma^{\mu} \psi$	minimally coupled	acceleration	*
		$F'_{\mu u}F^{\mu u}$	vector-photon mixing	EMF in vacuum	DM Radio [32], ADMX
		$F'_{\mu\nu}\bar{\psi}\sigma^{\mu\nu}\psi$	dipole operator	spin torque	CASPEr [18]
	axial-vector	$A'_{\mu}\bar{\psi}\gamma^{\mu}\gamma^{5}\psi$	minimally coupled	spin torque	CASPEr [18]
2(?)	tensor	$h'_{\mu\nu}T^{\mu\nu}$ (?)	gravity-like	grav. wave-like	grav. wave detectors?

Dark Matter induced acceleration

Consider Higgs portal DM:

$$\mathcal{L} \supset \frac{b\phi}{m_h^2} \langle h \rangle g_{h\psi\psi} \bar{\psi} \psi$$

Force on matter due to:

$$\nabla \phi$$

-Different materials with different composition, different binding energies etc.
experience relative accelerations due to DM field
-Violates EP

-In direction of grad phi (changes over times longer than coherence time)

Torsion balance tests

• Tests of Equivalence principle

Atomic Interferometers

Also can measure force due to ∇φ
 e.g. for different atomic isotopes

Higgs portal

Vector (B-L) portal

Time-varying acceleration of earth and masses of atoms

$$\begin{split} \frac{\Delta g_n}{g} &= \frac{\Delta M_{\oplus}}{M_{\oplus}} \\ &= \left(\frac{2\rho_{\rm DM}\hbar^3}{m_{\phi}^2 c \Lambda_n^2}\right)^{n/2} \times \frac{1}{2^{(n-1)}} \cos(n\omega_{\phi}t - nk_{\phi} \cdot r + \ldots) \end{split}$$

 $g(t) = g_0 [1 + \delta_g \cos(\omega t + \theta_0)],$ $m(t) = m_0 [1 + \delta_m \cos(\omega t + \theta_0)],$

Mach-Zehnder Atom interferometer

$$v_R(t) = \hbar k_{\text{eff}} / m(t) \approx \frac{\hbar k_{\text{eff}}}{m_0} [1 - \delta_m \cos(\omega t + \theta_0)].$$

$$\phi = -k_{\text{eff}}g_0T^2 - \delta_m \frac{2g_0k_{\text{eff}}T}{\omega}(\sin\omega T - \sin 2\omega T) + [\delta_g + 2\delta_m]\frac{g_0k_{\text{eff}}}{\omega^2}(1 - 2\cos\omega T + \cos 2\omega T) + \delta_m \left(\frac{k_{\text{eff}}(v_L + v_R/2)}{\omega}\right)(2\sin\omega T - \sin 2\omega T)$$

FIG. 1. Spacetime diagram for the Mach-Zehnder atom interferometer. Atomic wave packets are split into a superposition state with differing momenta, reflected with a mirror (π) pulse, and recombined with a final beam splitter pulse. The final population in state |1 > is given by $[1 + \cos(\Delta \phi)]/2$.

AG and Andrei Derevianko, Phys. Rev. Lett. 117, 261301 (2016).

Summary

- New AMO techniques (levitated particles, atom interferometers) could enable search for GWs at higher (and lower) frequency
- Variety of methods to search for oscillating ultralight dark matter
- -time variation of constants (clocks)
- -length changes in materials (resonant bars)
 -accelerometers (torsion balances, atomic interferometers)

(next lectures) Axions, spin-dependent new forces