Dark matter & Axions!

Javier Redondo (Zaragoza U. & MPP Munich)

- Strong CP problem
- Axions and ALPs
- Axion Dark matter
- Dark matter experiments

Parity and Time reversal

P-violation (Wu 56)

T-violation (CPLEAR 90's)

$$\frac{R(\bar{K}^0 \to K^0) - R(K^0 \to \bar{K}^0)}{R(\bar{K}^0 \to K^0) + R(K^0 \to \bar{K}^0)}$$

... but not in the strong interactions

many theories based on SU(3)c (QCD)

 $\theta \in (-\pi, \pi)$ infinitely versions of QCD... all are P,T violating

Neutron EDM

Most important P, T violating observable $d_n \sim \theta \times \mathcal{O}(10^{-15}) \text{e cm}$

The theta angle of the strong interactions

- The value of θ controls P,T violation in QCD

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

Roberto Peccei and Helen Quinn 77

CP Conservation in the Presence of Pseudoparticles*

R. D. Peccei and Helen R. Quinn[†]

Institute of Theoretical Physics, Department of Physics, Stanford University, Stanford, California 94305 (Received 31 March 1977)

We give an explanation of the CP conservation of strong interactions which includes the effects of pseudoparticles. We find it is a natural result for any theory where at least one flavor of fermion acquires its mass through a Yukawa coupling to a scalar field which has nonvanishing vacuum expectation value.

grangian.

If all fermions which couple to the non-Abelian

any special value?

- QCD vacuum energy is $\underline{\text{minimum}}$ at $\,\theta=0$

Energy density (potential) as a function of (Euclidean path integral) $t \rightarrow -ix_0$

$$e^{-\int d^4 x_E V[\theta]} = \left| \int \mathcal{D}g^a_{\mu} e^{-S_E[g^a_{\mu}] - i\theta \int d^4 x_E \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \widetilde{G}^{\mu\nu}_a} \right|$$

$$\leq \int \mathcal{D}g^a_{\mu} e^{-S_E[g^a_{\mu}]} \left| e^{-i\theta \int d^4 x_E \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \widetilde{G}^{\mu\nu}_a} \right|$$

$$\leq \int \mathcal{D}g^a_{\mu} e^{-S_E[g^a_{\mu}]} = e^{-\int d^4 x V[0]}$$

*we have assumed S_E does not contain P, T violation->Real In the SM, CP-violation in the CKM will propagate (three loops) and shift slightly the minimum of the potential from 0

- Potential is <u>periodic</u> $V(\theta) = V(\theta + 2\pi)$

The theta-term is a total derivative and its integral a topological index

$$\int d^4x \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \widetilde{G}^{\mu\nu}_a = \int d^4x \partial_\mu K^\mu = \int d\sigma_\mu K^\mu = n \in \mathbb{Z}$$
$$e^{iS} = e^{iS + i2\pi}$$

QCD vacuum energy minimised at CP conservation!!

- but ... theta is a constant of the SM **Energy** generated by QCD! Η π n \bar{n}

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

beyond the SM ...

-... if $\theta(t, \mathbf{x})$ is dynamical field, relaxes to its minimum

Measured today $|\theta| < 10^{-10}$ (strong CP problem will be solved dynamically!)

a new particle is born ...

and a new particle is born ... the axion

- if $\theta(t, \mathbf{x})$ is dynamical field

and a new scale sets the game, fa

And we have our simplest axion model (low energy theory ... of course!)

Example: Simple model KSVZ

Axion-like particles (ALPs)

Axions and axion-like particles (ALPs) appear very naturally beyond the SM

pseudo Goldstone Bosons

- Global symmetry spontaneously broken

- massless Goldstone Boson @ Low Energy

shift symmetry $\theta(x) \to \theta(x) + \alpha$ $\mathcal{L}_{kin} = \frac{1}{2} (\partial_{\mu} \theta) (\partial^{\mu} \theta) f^2$

- HE decay constant, $\,f=\langle \rho
angle$

- small symmetry breaking — — > small mass

stringy axions

- Im parts of moduli fields (control sizes)

- O(100) candidates in compactification
- -"decay constant", string scale M_{s}
- masses from non-perturbative effects

Axion couplings at low energy

- From θ -term, axion mixes with eta' and the rest of mesons

In our simple axion theory, axion interactions are all generated from $\theta \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \widetilde{G}^{\mu\nu}_a$ so the axion field interations will always be suppressed by 1/fa

Axion couplings at low energy

 $m_a = \sqrt{V_{\theta\theta}(\theta)} \frac{1}{f_a} = \sqrt{\chi} \frac{1}{f_a} \simeq 5.7 \text{ meV} \frac{10^9 \text{GeV}}{f_a}$

hadrons, Photons $\frac{1}{f_a} a \cdots f_1^{q} \gamma_{\mu} \gamma_5 \qquad \qquad \frac{1}{f_a} a \cdots f_n^{c_a \gamma \gamma} f_n^{-1} \qquad \qquad \frac{1}{f_a} a \cdots f_n^{-1} f_n^{-1} = 0$

Leptons (in some models)

Mass

Axion couplings at low energy

Axion Landscape

Bounds and hints from astrophysics

Axions emitted from stellar cores accelerate stellar evolution
Too much cooling is strongly excluded (obs. vs. simulations)
Some systems improve with additional axion cooling!

Tip of the Red Giant branch (M5)

White dwarf luminosity function

HB stars in globular clusters

Neutron Star CAS A

Axion Landscape

Axion Landscape

Axions and dark matter

- $\theta(t, \mathbf{x})$ dynamical relaxes to its minimum ...

Evolution of the axion dark matter field

- We move back to the very early Universe ...
- Assume some random set of initial conditions ...
- Let us see how the field evolves !
- fa is soooooo small, and the relevant momenta sooooo small than we neglect all interactions of the axion
- The evolution of a lonely scalar field

Field evolution

$$S = \int d^4x \sqrt{-g} \mathcal{L} = \int d^4x \sqrt{-g} \left(\frac{f_a}{2} (\partial_\mu \theta) (\partial^\mu \theta) - V(\theta) + \mathcal{L}_{int} \right)$$
$$= \int d^4x \sqrt{-g} \left(\frac{1}{2} (\partial_\mu a) (\partial^\mu a) - V(a/f_a) + \mathcal{L}_{int} \right)$$

Equations of motion $\delta S=0$ Scale factor is now R(t)

$$\left(\frac{\delta \mathcal{L}}{\delta(\partial^{\mu}a)}\right)_{;\mu} - \frac{\delta \mathcal{L}}{\delta a} = 0 \qquad \ddot{a} + 3H\dot{a} - \frac{1}{R^2}\nabla^2 a + \frac{\partial V}{\partial a} = 0$$

For simplicity I linearised around a=0

$$\frac{\partial V}{\partial a} = \frac{\chi}{f_a} \sin \theta \sim \frac{\chi}{f_a} \theta = m_a^2 a$$

Fourier transform (linear equation) and modes decouple

$$\ddot{a}_k + 3H\dot{a}_k + \frac{k^2}{R^2}a_k + m_a^2a_k \simeq 0$$

Energy density and pressure

$$T^{\mu}_{\ \nu} = (\partial^{\mu}a)(\partial_{\nu}a) - \mathcal{L}\delta^{\mu}_{\ \nu}$$

$$\rho = \frac{1}{2} (\dot{a})^2 + \frac{1}{2} (\nabla a)^2 + V(a)$$
$$p = \frac{1}{2} (\dot{a})^2 - \frac{1}{2} (\nabla a)^2 - V(a)$$

Relativistic modes

Again a damped oscillator (time-dependent frequency...)

$$\ddot{a}_k + 3H\dot{a}_k + \frac{k^2}{R^2}a_k = 0 \longrightarrow \ddot{a}_k + 3H\dot{a}_k + \omega^2(t)a_k = 0$$

(This corresponds to the wavelength entering the horizon) $t=1/H
ightarrow HR \sim k$

Zero and non-relativistic modes

Again a damped oscillator $\,\omega=m_a\,$

$$\ddot{a}_k + 3H\dot{a}_k + m_a^2 a_k \simeq 0$$
 (SIMPLIFIED)

Equation of state and speed of sound

 $\ddot{a}_k + 3H\dot{a}_k + (k^2/R^2 + m_a^2)a_k \simeq 0$

$$\langle c_s^2 \rangle_t = c_{s,{\rm eff}}^2 = \frac{k^2/4m_a^2a^2}{1+k^2/4m_a^2a^2} \, . \label{eq:cs}$$

Even for NR modes, k/R << ma, the fact that axions

and ALPs have non-zero momentum can be important -> field gradients oppose to compression because of the uncertainty principle leading to a "uncertainty pressure", (sometimes called "quantum pressure"....)

Why the axion is so COLD ?

Modes above $k \sim m_a R$ are quite suppressed

Energy density

- Energy density redshifts as matter, from the onset of oscillations $H(t_1) \sim m_a$

$$\rho_a(t) \sim \theta_I^2 \chi \left(\frac{R_1}{R(t)}\right)^3 \propto \theta_I^2 \chi m_a^{-3/2}$$

- dilution until today $\left(\frac{R_1}{R_0}\right)^3 \sim$

$$\left(\frac{T_0}{T_1}\right)^3 \sim \left(\frac{T_0}{\sqrt{H_1 m_{\rm Pl}}}\right)^3 \sim \left(\frac{T_0}{\sqrt{m_a m_{\rm Pl}}}\right)^3 \propto m_a^{-3/2}$$

Smaller mass axions, start oscillating later, and get less diluted ...

Effective mass, lattice calculations

Lattice QCD: we can compute axion mass

$$m_a^2 f_a^2 = \chi(T)$$

At high T (no mesons) we can analytically compute potential (DIGA)

$$V(\theta) = -\chi(T)\cos\theta$$

Axion-like particle and axion dark matter

Everything I've told you applies to any ALP weakly coupled

$$V = \frac{1}{2}m^2\phi^2 \qquad \rho_{\phi}^0 \sim V_I (R_1/R_0)^2 = m_{\phi}^2 \phi_I^2 \left(\frac{T_0}{\sqrt{m_{\phi}m_{\rm Pl}}}\right)^3$$

0

Many things :

- production is NON-THERMAL
- the relic density depends on initial condition!
- typical momenta k~H(t1)R(t1) related to Hubble, not T

Axions are a bit special because their periodic potential

 $V = \chi(1 - \cos\theta)$

Simple model KSVZ

1st typical scenario: random initial conditions in our Universe

- PQ transition after inflation

1st typical scenario: random initial conditions in our Universe

- PQ transition after inflation

2nd typical scenario: 1 initial condition for our whole Universe

- PQ phase transition before inflation

2nd typical scenario: 1 initial condition for our whole Universe

- PQ phase transition before inflation

SCENARIO I (N=1): axion evolution around t1

Strings

Axionic strings : cores

Huge din. range!
realistic strings have
d ~ 1/f_a
distances ~ t

$$\frac{d}{t} \sim \frac{H}{f_a} \sim \frac{T^2}{M_p f_a}$$

Axion DM, how much

Dark matter density, inhomogeneous at comoving mpc scales

Minicluster size $\delta \sim 1$

Region with delta~1 and size ~ 1/H(t1) , axion field freezes out soon after t1, overdense region expands At Matter-radiation equality

 $m_a \sim 100 \mu \text{eV}$

Q: Horizon size at t1? H(t1)~m(T1) Q: What is the mass inside a Horizon^3 ? Q: what is the physical size at z~1000

Q: what will be the density in a MC today?

SCENARIO I, N=1

SCENARIO I, N>1, Domain Walls stable-> cosmological disaster

SCENARIO I, N=1

SCENARIO I, N>1, break slightly degeneracy (but tuning...)

Domain walls move by pressure difference, they are long-lived -> large misalignments for longer time -> more DM

Phase transition (N=1) strings+unstable DW's

Inflation smooth

 $\Omega_{\rm aDM} h^2 \simeq \theta_I^2 \left(\frac{80\,\mu {\rm eV}}{m_a}\right)^{1.19}$

Phase transition (N>1) strings+long-lived DWs

Fuzzy DM and small-scale structure problems

(Hu 2000, ..., Hui 2017)

- If ALP DM has small mass,
- Gradient pressure implies a Jeans mass in structure formation, which suppresses small scale features (cusps, # low mass satelites...)
- Typical value $m \sim 10^{-22} {
 m eV}$ at odds with Ly-alpha

Halos composed of central cores' (Bose star) + CDMlike halo

Detecting Axions

$$\rho_{\rm aDM} = 0.3 \frac{{\rm GeV}}{{\rm cm}^3}$$

 $\theta_0 = 3.6 \times 10^{-19}$

Axion experiments 2017

Detecting Dark Matter

Imperfect Vacuum realignment $\theta(t) = \theta_0 \cos(m_a t)$

$$\rho_{\rm CDM} = 0.3 \frac{\rm GeV}{\rm cm^3} \equiv \frac{1}{2} (\dot{a})^2 + \frac{1}{2} m_a^2 a^2 = \frac{1}{2} m_a^2 f_a^2 \theta_0^2$$

$$\underbrace{\text{OCD axion}}_{m_A^2 f_A^2 = \chi_{\text{QCD}}} \theta_0 \sim 3.6 \times 10^{-19}$$

Non-zero velocity in galaxy -> finite width

$$\omega \simeq m_a (1 + v^2/2 + ...)$$
~10^-6

coherence time

$$\delta t \sim \frac{1}{\delta \omega} \sim 0.13 \mathrm{ms} \left(\frac{10^{-5} \mathrm{eV}}{m_a} \right)$$

Axion DM in a B-field

$$\mathcal{L}_I = -C_{a\gamma} \frac{\alpha}{2\pi} \frac{a}{f_a} \mathbf{B} \cdot \mathbf{E}$$

- In a static magnetic field, the oscillating axion field generates EM-fields

$$\mathcal{L}_{I} = -C_{a\gamma} \frac{\alpha}{2\pi} \theta(t) \mathbf{B}_{ext} \cdot \mathbf{E}$$
Source

- Electric fields $\mathbf{E}_a = C_{a\gamma} \frac{\alpha \mathbf{B}_{ext}}{2\pi} \theta_0 \cos(m_a t)$ (amp independent of mass!)

- Oscillating at a frequency $\omega \simeq m_a$

-B-fields $\propto \nabla \theta$ $|\mathbf{B}_a| \sim \langle v \rangle |\mathbf{E}_a|$

Radiation from a magnetised mirror

Radiation from a magnetised mirror

Radiation from a magnetised mirror : Power

Dish antenna experiment?

Cavity experiments

Signal power in cavity experiments (haloscopes)

Combine MW equations into an oscillator

$$\ddot{\mathbf{E}} - \nabla^2 \mathbf{E} = -\frac{c_{\gamma}\alpha}{2\pi} \mathbf{B}_{\text{ext}} \ddot{\theta}$$

Expand in eigenmodes of the cavity satisfy (with appropriate boundary conditions)

$$\mathbf{E}(t, \mathbf{x}) = \sum_{i} E_i(t) \mathbf{e}_i.$$

$$-\nabla^2 \mathbf{e}_i = \omega_i^2 \mathbf{e}_i.$$

Equation for the amplitude of one mode

$$\ddot{E}_i + \omega_i^2 E_i + \Gamma \dot{E}_i = -c_\alpha B C_i \ddot{\theta}.$$

 $C_i = \frac{1}{VB} \int dV \mathbf{e}_i \cdot \mathbf{B}_{\text{ext}}.$

damping (energy loss by walls and pick up signal)

damping (energy loss by walls and pick up signal)

Forced oscillator solution

$$E_i = -\frac{c_\alpha B m_a^2 C_i}{(m_a^2 - \omega_i^2)^2 + (m_a \Gamma)^2} \left(\theta(t)(m_a^2 - \omega_i^2) + \dot{\theta}(t)\Gamma\right),$$

$$c_{\alpha} = \frac{c_{\gamma}\alpha}{2\pi}$$

Signal power in cavity experiments (haloscopes)

Energy stored in a mode

$$U_i = V \frac{1}{2} \left(\frac{\omega^2 + \omega_i^2}{2\omega^2} \right) E_i(t_0)^2$$

Energy loss and quality factor

signal I pick from an antenna / intrinsic losses

Extracted power (Signal!)

$$P_{\text{signal}} = \Gamma_{s,i} U_i = V \Gamma_{s,i} \frac{1}{2} \left[\frac{m_a^2 + \omega_i^2}{2m_a^2} \right] \left(\frac{c_\alpha B m_a^2 \theta_0 C_i}{(m_a^2 - \omega_i^2)^2 + (m_a \Gamma)^2} \right)^2 \left(\left(m_a^2 - \omega_i^2 \right)^2 + (m_a \Gamma)^2 \right),$$

On resonance $\omega_i = m_a$

Outside the resonance $\omega_i - m_a \gg \Gamma = \omega_i/Q$

$$P_{\text{signal}} = \frac{\Gamma_s}{\Gamma_s + \Gamma_c} \frac{Q}{\omega_i} \left(g_{a\gamma} B C_i\right)^2 \rho_{\text{DM}} V.$$

 $P_{\rm signal} \sim 0$

Cavity resonators (Haloscopes)

- Haloscope (Sikivie 83)

 $P \sim Q |\mathbf{E}_a|^2 (Vm_a) \mathcal{G}\kappa$ (on resonance)

- Naive ADMX scaling (e.g. an ADMX every octave)

- Signal $(V \propto m_a^{-3})$ $P_{\text{out}} \propto V m_a \sim \frac{1}{m_a^2}$ - <u>Noise</u> $P_{\text{noise}} = T_{\text{sys}} \Delta \nu_a \propto m_a^2$
- Signal/noise in $\Delta \nu_a {\rm of}$ time, t,

- Scanning rate

$$a$$
of time, t, $\frac{S}{N} = \frac{P_{\text{out}}}{P_{\text{noise}}} \sqrt{\Delta \nu_a t}$
 $\frac{1}{m_a} \frac{d\Delta m_a}{dt} \propto \frac{C_{A\gamma}^4}{m_a^7}$

Scanning over frequencies

HAYSTAC

ADMX-Fermilab

CARRACK (discontinued)

CAST-CAPP

CULTASK - CAPP -Korea

Cavity experiments

Cavity experiments

Large freq ... Area vs volume

 $P \sim |\mathbf{E}_a|^2 A$ comparable if $Q \sim 10^4 \sim Am_a^2$ $P \sim Q |\mathbf{E}_a|^2 (V m_a) \mathcal{G} \kappa$

Mixed scheme?

If we could add the power emitted by many mirrors...

Radiation from a dielectric interface ...

Radiation from a dielectric interface ...

Many dielectrics : MADMAX at MPP Munich

- Emission has large spatial coherence; adjusting plate separation -> coherence

$$\frac{P}{Area} \sim 2 \times 10^{-27} \frac{\mathrm{W}}{\mathrm{m}^2} \left(\frac{c_{\gamma}}{2} \frac{B_{||}}{5\mathrm{T}}\right)^2 \frac{1}{\epsilon} \left(\times \beta(\omega) \quad \text{boost factor}\right)$$

- Work in progress at Max Planck Institute fur Physik (Conceptual design)
Axion DM : A developing picture

