

Rainfall runoff simulation in semi-arid area using distributed CHyM model (Case study: DEZ River Basin (Iran))

June 2017

Fourth Workshop on Water Resources in Developing Countries:

Hydroclimate Modeling and Analysis Tools

Ali Shahabzi Hamireza mosaffa Vesta Afzali

- Introduction
- Rainfall & discharge variability
- Model setup and configuration
- **Results**
- Conclusion

Introduction

Why this area...?!!! Why flood study ...?!!!

- ✓ In comparison with the total inflow, Dez dam capacity is very low so spill is very frequent
- ✓ Base on dam rule curve we need a big amount of flood control volume in rainy season
- ✓ In late of rainy season it means we can lose the opportunity of fulfilling dam and encountering drought in down stream
- ✓ If We do not obey the rule curve flooding downstream is a high risk (like 2016 Jan. flood)
- ✓ So we need forecasting of flood discharge parameters (like volume and peak); in this step rainfall-runoff model have a vital rule

- Introduction
- *Rainfall & discharge variability
- Model setup and configuration
- **Results**
- Conclusion

Rainfall & discharge

Longitude: (30.279 34.120) Latitude: (48.026 51.988)

Linear Trend y = -2.3x + 435.19Average (398.46 mm)

MKT: NO TREND, alpha: 0.05, P: 0.11

--- Temperature

Wet and dry periods in 50 years

- Introduction
- Rainfall & discharge variability
- Model setup and configuration
- **Results**
- Conclusion

Model setup & configuration

Rainfall: TRMM

• DEM: Hydroshed

Temprature: ERAI

• Start date: 2011.01.01

Date of event 1 March to 17 March 2011

Model setup & configuration

	nlon	nlat	dij	CHYM steps	α	infiltra	Return flow factor
1	836	622	0.00225	50	0.0015	40	4.8 * 10^-7
2	836	622	0.00225	80	0.0015	40	4.8 * 10^-7
3	836	622	0.00225	120	0.0015	40	4.8 * 10^-7
4	418	311	0.0045	120	0.0015	40	4.8 * 10^-7
5	209	156	0.009	120	0.0015	40	4.8 * 10^-7
6	418	311	0.0045	120	0.0015	80	4.8 * 10^-7
7	418	311	0.0045	120	0.0015	100	4.8 * 10^-7
8	418	311	0.0045	120	0.001	40	4.8 * 10^-7
9	418	311	0.0045	120	0.0013	40	4.8 * 10^-7
10	418	311	0.0045	120	0.0015	100	4.8 * 10^-7
11	418	311	0.0045	120	0.0015	100	2.8 * 10^-7
12	418	311	0.0045	120	0.0015	100	6.8 * 10^-7

- Introduction
- Rainfall & discharge variability
- Model setup and configuration
- Results
- Conclusion

Accumulated discharge during simulation period pixel size (225m) ΔT=50

Accumulated discharge during simulation period pixel size(225m) ΔT=80

Accumulated discharge during simulation period pixel size (225m) ΔT=120

Accumulated discharge during simulation period pixel size (450 m)

Effect of changing infiltration parameter in output hydrograph

Effect of changing return flow parameter in output hydrograph

- Introduction
- Rainfall & discharge variability
- Model setup and configuration
- *Results
- Conclusion

Conclusion

✓ Chym Model estimates precisely peaks of Hydrographs for the mentioned basin

More and more study

Sensitivity Analysis Validation

THANK YOU!