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Ra5onal	 decision-making	 in	 water	 resources	 management	
should	 be	 based	 on	 Bayesian	 predic5on	 and	 decision	
approaches,	 thus	 requiring	 the	 assessment	 of	 the	 so-called	
“predic5ve	probability	distribu5ons”	
	
	
This	 is	why	hydrological	model	 forecasts	are	 important	tools	
to	 support	 decision-making	 in	 the	 area	 of	 � � water	 resources	
management,	 provided	 they	 allow	 assessing	 the	 predic5ve	
probability	 distribu5ons	 to	 be	 used	 within	 the	 decision	
making	process.		
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Why Predictive Uncertainty ? 

In many fields of hydrology (flood warning and evacuation 
management; flood diversion and detention; real-time 
reservoir management; etc.), Decision Makers have to take 
important decisions without perfect knowledge of future 
events.  
 
Since decisions frequently have heavy social, economical  and 
environmental consequences, simulation and forecasting 
models are generally used to complement all available data 
and information and to predict the future outcomes. 
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Why Predictive Uncertainty ? 

Predictive models cannot forecast “exactly” what will happen, 
but allow the Decision Makers to improve their prior belief on 
what will actually occur.  
 
Given that predictions are not exact, it is essential to assess 
Predictive Uncertainty in order to correctly estimate the 
“expected consequences” of decisions in order to increase 
their  reliability and reduce the possibility of  wrong decisions. 



Deterministic Vs Uncertain Forecasts 
The Reservoir Management Case 

In the Reservoir Management Problem it is 
easy to show that  Deterministic Forecasts 
lead to wrong estimates of losses.  
In this simple example losses occur if the 
reservoir is overtopped. If the Deterministic 
Forecast predicts that the maximum level 
will not exceed the dam top, the estimated 
losses are equal to zero. 

  
  

Deterministic Forecast 

Losses = 0 Expected Losses ≠ 0 

Probabilistic Forecast 

Damages 

Volume 

PU as pdf 

This is obviously wrong because the uncertainty in 
the forecast implies that the “expected value” of 
losses is not null. The “expected value” of losses can 
be estimated if and when an assessment of Predictive 
Uncertainty will be available. 
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Definition of Predictive Uncertainty (PU) 

Bearing in mind that damages are caused by a real 
future event and not by our model(s) forecasts, PU 
can be defined as our assessment of the 
probability of occurrence of a future (real) event 
conditional upon all available knowledge, generally 
based on observations and models forecasts. 
 
 
WARNING:  Predictive Uncertainty should not be 
confused with Validation Uncertainty. 
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Validation vs Predictive Uncertainty 

 
Predictive Uncertainty 
(in operation mode t ≥ t0) 
 
Uncertainty of future occurrences 
knowing (conditional on) the model prediction 
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A model forecasts that  in the  
next few hours the volume  
stored in the reservoir will  
reach the value of 
 
The forecast is uncertain.  
Therefore, the objective is to  
find an optimal release         
by minimizing the expected  
damages as a function of  
the decision variable         
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Benefits for using predictive distributions: an example 
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… and write it as a function 
of the decision variable	
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Using specific techniques (MCP, QR, BMA, etc.) one can 
assess the “predictive density” 	

 �
��
��

����

�

���
��
	��
����

� �
�
��
�

����
����
����

�

!! ! = E V V  V! 

D V  

Benefits for using predictive distributions: an example 



Since the forecast is not 
“perfect”, minimization of the 
expected losses leads to the 
following interesting result	
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If the model forecast would have been “perfect” then             
and the optimal release would be	
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In other words, the more one 
is uncertain, the more he has 
to release on the basis of the 
principle of precaution	

Benefits for using predictive distributions: an example 
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Until the present times limited benefits have been gained by 
the use of Predictive Uncertainty, mostly because it has 
always been perceived by the end-users in the negative 
meaning of “lack of knowledge”. 
 
On the contrary, as in the classical case of the half-empty -
half-full glass, what is generally referred-to as a measure of 
Predictive Uncertainty should be better communicated, 
perceived and interpreted as a measure of “Predictive 
Knowledge” (PK), aimed at supporting rational decision 
making.  

Predictive Uncertainty or Predictive Knowledge 
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Is the glass half empty or half full? 
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Coherently, flood forecasting models are not the end of the 
prediction-decision process, but rather “tools” aimed at 
increasing the DMs predictive knowledge on future events. 
 
Models are allowed to be imperfect, provided that they 
increase DMs Predictive Knowledge, no more in terms of 
actual forecasts, but rather in terms of denser predictive 
densities, the measures of PK, to be operationally used in the 
rational decision making process. 
 
Forecasting models are no-more the essential component of a 
flood forecasting system, but just imperfect virtual reality tools.  

The Role of Flood Forecasting Models 



The use of Predictive Uncertainty 
To improve management of the Lake Como in Italy 
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The full use of Predictive Knowledge     
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Managing the Lake Como by using Predictive 
Knowledge approach 

Results obtained by simulating 15 years of operations 
from January 1st, 1981 to December 31st, 1995 
 

   Water Level                         Number of Days 

                                       Historical                  Optimized 
      <-40  cm                          214                           0 
     ≥ 120 cm                          133                          54 
     ≥ 140 cm                            71                          32 
     ≥ 173 cm                            35                          11 
      

Water Deficit decreased from  890.27 Mm3 to   694.49 Mm3 

                    Energy Production  increased by 3% 
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The use of Predictive Uncertainty 

To improve management of the Lake Nasser in Egypt 
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Managing the Aswan Reservoir by using PK 

Predictive Knowledge can be used to improve management of  
a large reservoir such as the Aswan Reservoir. Results obtained  
by minimizing the sum of losses due to unprofitable releases of 
water + future expected losses, estimated using the  predictive 
density conditional to a model forecast, resulted into an average 
additional water availability of 
2.7 Billion m3/year  
of water. A large volume at  
no-cost if compared to the  
expected benefit of the Jonglei  
canal, estimated in  
3.5 - 4.8 Billion m3/year  
but at enormous economical, social and environmental costs.  
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To	 meet	 the	 aim	 of	 correctly	 describing	 the	 predic5ve	
density,	 increasing	 interest	 has	 been	 directed	 towards	
ensemble	 hydrological	 forecasts	 of	 flow,	 water	 volume	 or	
level	 forecasts	 at	 predefined	 river	 sec5ons,	 to	 be	 derived	
through	 model	 predic5on	 chains	 where	 precipita5on	
meteorological	 ensembles	 (Tracton	 and	 Kalnay,	 1993;	
Molteni	et	al.,	1996)	are	used	as	forcing.	
However,	 it	 can	be	proven	 that	ensembles	do	not	provide	a	
correct	 descrip5on	 of	 the	 predic5ve	 probability	 densi5es	 to	
be	used	to	es5mate	expected	damages	or	expected	benefits	
within	the	frame	of	a	Bayesian	decision-making	process.	They	
provide	 biased	 and	 lesser-dispersed	 es5mates	 (Hamill	 and	
Colucci,	1997;	Eckel	and	Walters,	1998;	Schwanenberg	et	al,	
2015).	
		
	
		



In	parallel	to	the	use	of	ensembles,	with	the	aim	of	obtaining	
a	 correct	 predic5ve	 probability	 density,	 a	 number	 of	
uncertainty	post	processors	were	also	developed	such	as	the	
Hydrological	 Uncertainty	 Processor	 (HUP,	 Krzysztofowicz,	
1999),	 the	 Bayesian	 Model	 Averaging	 (BMA,	 Ra_ery,	 1993;	
Ra_ery	 et	 al.,	 2005)	 or	 the	 Model	 Condi5onal	 Processor	
(MCP,	Todini	2008).	However,	not	all	 these	uncertainty	post	
processors	 allow	 accoun5ng	 for	 the	 5me	 variability	 of	 the	
meteorological	and	hydrological	ensembles	spread.	
	
The	two	approaches,	the	ensembles	and	the	post	processors,	
can	 be	 combined	 in	 order	 to	 meet	 the	 goal	 of	 properly	
describing	 the	 predic5ve	 probability	 densi5es,	 and,	
consequently	improving	decision-making.	
		
		
	
		



		MODEL	AND	PARAMETER	UNCERTAINTY	

When	the	behaviour	of	a	set	of	condi5ons	such	as	
errors	deriving	from	the	different	sources	varies	at	
random	in	5me	in	an	“unpredictable	manner”	then	
one	can	use	the	“mixture	of	models”	concept.	
	
Please	 bear	 in	 mind	 that	 if	 the	 condi5ons	 ARE	
predictable	 then	 one	 is	 befer	 off	 by	 using	 the	
Model	which	 best	 fits	 the	 observa5ons	 under	 the	
relevant	condi5ons.	



EV	

5me	

M1	

M1	

1	

0	
Predictable	Behaviour	Unpredictable	Behaviour	

		MODEL	AND	PARAMETER	UNCERTAINTY	
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The	basic	idea	is	to	plot	the	predictand	versus	the	predic5on	
In	prac5ce	one	has	to	look	at	the	SCATTERPLOT	

 
For a given model and a set of parameters one can derive 
predictand and model joint/conditional probability densities 
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Therefore	one	must	derive	the	“Posterior	Density”	
of	parameters																							using	the	classical	
Bayesian	Inference.	This	PD	is	then	used	to	
marginalise,	namely	to	integrate	out,	the	effect	of	
parameters.	
In	a	con5nuous	domain:	
	
	
or	in	discrete	mode:	
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Please	note	that	this	is	TOTALLY	different	from	
what	is	proposed	in	GLUE,	where	the	defini5on	of	
PU	is	given	as:	
	
	
	
where																																								is	nothing	else	
than	the	posterior	parameter	density.	
The	condi5onal	predic5ve	density	(???)	and	the	
marginalisa5on	of	parameters	uncertainty	(???)	are	
not	present	in	this	defini5on.	
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From	the	presently	available	experiences,		
Marginalisa5on	 of	 parameters	 uncertainty,	
although	 sta5s5cally	 correct,	 does	 not	 produce	
substan5al	 differences	 from	 using	 a	 best	 fit	
parameter	set.	
This	is	mostly	due	to	the	fact	that	the	nearly	best	
parameters	produce	predic5ons	that	are	closely	
related	among	them,	while	the	posterior	
probability	of	the	worst	parameters	is	obviously	
very	low.	
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This	is	why	it	is	more	interes5ng	to	approach	the	
problem	in	terms	of	few	alterna5ve	models	of	widely	
different	nature.	For	instance	a	physically	based	
model,	a	conceptual	model	and	a	data	driven	ANN	
model.	
	
This	has	given	rise	to	the	development	of	several	
mul5-model		
									Predic5ve	Uncertainty	Processors.	

		MODEL	AND	PARAMETER	UNCERTAINTY	
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								Available	Single	or	Mul5-model		
								Predic5ve	Uncertainty	Processors		
	
BINARY	RESPONSE	
Logis5c	Regression	–	Hosmer	and	Lemeshow,1989;	
Bayesian	Nonparametric	Binary	Response		-	Qian	et	al.,	1998;	
Binary	Predic5on	Trees	–	Pifman	et	al.,	2003;	
Bayesian	Mul5variate	Binary	Predictor	–	Todini	et	al.,	2008.	
………………………	
	
FULL			DENSITY	
Hydrological	Uncertainty	Processor	–	Krzysztofowicz,	1999;		
																																												Krzysztofowicz	and	Kelly,	2000	
Bayesian	Model	Averaging	–	Ra_ery	et	al.,	2003;	
Model	Condi5onal	Processor	–	Todini,	2008.	
………………………	
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Today	the	possibility	exists	of	merging	the	different	
types	of	models	through	Uncertainty	Post-
Processors,	using		the	so	called	Bayesian	Model	
Averaging	(BMA)	proposed	by	Ra_ery	or	to	
generalise	the	Krzysztofowicz	results	to	mul5-
models	via	the	Model	Condi5onal	Processor	(MCP)	
proposed	by	Todini.	

MERGING	MODELS	THROUGH		
UNCERTAINTY	POST-PROCESSORS	

Con5nuous	Processors	



Krzysztofowicz	Bayesian		Processor	
Krzysztofowicz	approach	has	many	limita5ons:	
	
- 		It	uses	an	auto-regressive	model	as	the	a	priori	model	
			(for	instance,	this	type	of	model	is	not	suitable	for		
			flood	rou5ng)	
-  It	has	a	scalar	formula5on;	it	is	rathefr	complicated		
			to	extend	it	to	the	mul5-model	case	

		AVAILABLE	PREDICTIVE		
									UNCERTAINTY	PROCESSORS	



BMA	aims	at	assessing	the	uncondi5onal	mean	and	variance		
of	any	future	value	of	a	predictand	on	the	basis	of	several		
model	forecasts.	
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The	approach	provides	a	good	approxima5on	of	the		
Condi5onal	Predic5ve	Density	
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Ra_ery	Bayesian	Model	Averaging	



The	BMA	weights	are	es5mated	by	solving	the	following	
non-linear	op5miza5on	problem	

on	the	assump5on	that	the	probability	densi5es	of	the		
observa5ons	as	well	as	of	the	model	forecasts	are	all	
approximately	Gaussian,	which	is	correct	if	using	NQT	
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		AVAILABLE	PREDICTIVE		
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Bayesian	Model	Averaging		Limita5ons	

-	The	probability	density	of	observa5ons	and	model	
		forecasts	may	be	far	to	be	Gaussian,	but	this	can	be		
		fixed	by		conver5ng	observa5ons	and	forecasts	in	the		
		Gaussian	space.	
- The	Es5ma5on-Maximiza5on	approach	proposed	to	
		es5mate	the	BMA	weights	does	not	necessarily	lead		
		to	the		op5mal	values.	

		AVAILABLE	PREDICTIVE		
									UNCERTAINTY	PROCESSORS	



The	Model	Condi5onal	Processor	
If	one	can	make	the	hypothesis	that	all	the	transformed	
variables	follow	a	mul5-Gaussian	joint	probability	density,	
a	more	natural	approach	would	be	to:	
	
- 	Develop	a	set	of	models	in	the	real	untransformed		
		space	(one	or	more	than	one)	
- 	Build	the	joint	probability	density	in	the	Gaussian	space	
			(Predictand,	a	priori	model,	determinis5c	model,	etc.)	
- 	Directlyly	compute	the	probability	of	the	predictand		
			condi5onal	on	ALL	the	model	predic5ons	

		AVAILABLE	PREDICTIVE		
									UNCERTAINTY	PROCESSORS	
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Mean		 and	Variance	 this	implies	that	also	

and	 are	Normally	distributed	

The	condi5onal	distribu5on	of	y	given	yhat	is	also	Normal	

with	condi5onal	Mean		

and	condi5onal	Variance	 yy
1
yyyyyyyyy ΣΣΣΣΣ ˆˆˆˆˆ
−−=

A	Useful	Property	of	the		
Mul5variate	Normal	Distribu5on	



The	Model	Condi5onal	Processor	
Therefore,	the	MCP	was	developed	by	directly	applying	this	
defini5on	of	condi5onal	density	a_er	conver5ng	
observa5ons	and	forecasts	into	the	mul5-dimensional	
Gaussian	space.	As	previously	shown	the	predic5ve	density	
is	the	Normal	distribu5on		
	

		AVAILABLE	PREDICTIVE		
									UNCERTAINTY	PROCESSORS	

( )yyyyy Σ,µ ˆˆN

( )y1
yyyyyyy µyΣΣµµ ˆˆˆˆˆ ˆ −+= −with	condi5onal	Mean		

and	condi5onal	Variance	 yy
1
yyyyyyyyy ΣΣΣΣΣ ˆˆˆˆˆ
−−=



		IN	ALL	THIS	DISCUSSION		
WHERE		DO		
ENSEMBLES		

FIT	IN?	



	Whoever	used	hydrological	ensemble	
forecas5ng	based	on	meteorological	
ensembles,	experienced	what	shown	in	
the	following	slides	















	The	previous	figure,	although	indica5ve,	can	be	
cri5cized	on	the	grounds	that	it	is	not	a	fully	
objec5ve	demonstra5on	that	ensembles	do	not	
represent	Predic5ve	Probability	Densi5es.	
Therefore	we	found	a	more	objec5ve	approach	to	
confirm	that	ensembles	provide	biased	and	lesser-
dispersed	es5mates	(Hamill	and	Colucci,	1997;	
Eckel	and	Walters,	1998;	Schwanenberg	et	al,	
2015).	
		



	By	assuming	that	the	ranked	ensemble	members	
represent	the	quan5les	of	the	predic5ve	
distribu5on,	then	one	expects	that	observa5ons	
will	fall	evenly	distributed	betwee	quan5les.	

	This	is	not	so;	both	in	calibra5on	(le_)	and	in	valida5on	
(right)	most	of	observa5ons	fall	out	of	the	ensemble	range	
and	far	from	the	Wilson	(	1927)	bounds	



		SO	HOW	CAN	WE	PROPERLY	ACCOUNT	FOR	
THE	INFORMATION	CONTAINED		
IN	THE	ENSEMBLES	SPREAD?	



	There	are	two	possibili5es..	
	
-  The	first	one	does	not	requires	ordering	of	the	

ensemble	members	

-  The	second	one	requires	ordering	of	the	
ensemble	members	
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                 FIRST POSSIBILITY 
You might think of using the post-processors 
in a multi-variable context: virtually every 
member of the set would be a different 
"model". 
However, this requires a link between the 
same member at step t and the same 
member at step t + Δt, which actually does 
not exist. 
However, it is possible to create a kind of 
temporal connection by shuffling members 
of an ensemble. 
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By advocating exchangeability, we can associate 
members with quantiles and create a fictitious 
succession that allows members to be treated as 
different "models” each of which representing a 
different quantile. 
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µ!! !!,! = !!!!  !!!!!!! !! ,!            
!!! !!,!
! = 1− !!!!  !!!!!!!  !!!!!  

SECOND POSSIBILITY 
Alternatively, the problem can be addressed using 
MCP using the ensemble mean, after transforming 
into the Gaussian space the observations and the 
predictions to derive predictive distribution, that is, the 
distribution of future conditioned values to the 
models. 

Please note that this in nothing else than a Univariate 
Linear Regression, which does not take into acocunt 
the ensemble spread.  
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Therefore, in the presence of predicion errors 
described by an ensemble of m members, the 
previous equations can be modified, as in the Deming 
regression, with the introduction of the variance 
ensemble mean, used asthe regressor and its 
variance can be estimated as the variance of the 
ensemble divided by the ensemble numerosity 

µ!! !!,! = !!!!  !!!!! +
1
!!!

!!
!! ,!            

!!! !!,!
! = 1− !!!!  !!!!! +

1
!!!

!!
 !!!!!
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Linear Regression 
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Deming Regression 



Previsioni orarie delle portate fino a 92 h di anticipo 
Valori orari tiranti idrici 

01/05/2000 20/01/2009 30/06/2004 

MCP:                                   CALIBRATION                                          
VALIDATION 

Dati forniti dalla Protezione Civile Regione Emilia Romagna 

EXAMPLE: THE PO RIVER 
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Forecasting example 
Validation 
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Comparison	of	the	resul5ng	predic5ve	density		
with	the	one	directly	produced	by	the	ensemble		
clearly	shows	that	the	new	density,	although	not		
Perfect,	is	definitely	closer	to	the	Wislon	bounds.			



		Where	do	we	go	from	here?	



There	are	several	recent	interes5ng	predic5ve		
approaches	 such	 as	 for	 instance	 the	 mul5-
temporal	 approach	 which	 allow	 answering	
important	ques5ons	such	as:	
-  Which	 is	 the	 probability	 that	 flooding	 will	

occur	in	the	next	24	hours	
-  Which	 is	 the	most	 likely	5me	of	occurrence	

of	the	event?	
	
In	 my	 opinion	 the	 future	 goes	 into	 these	
approaches	rather	than	using	the	ensembles.	
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Thank you 
for your attention 

ezio.todini@gmail.com 
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