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Can meteorological ensembles be
usefully used in water resources
management?

Ezio Todini
Italian Hydrological Society



Rational decision-making in water resources management
should be based on Bayesian prediction and decision
approaches, thus requiring the assessment of the so-called
“predictive probability distributions”

This is why hydrological model forecasts are important tools
to support decision-making in the area of water resources
management, provided they allow assessing the predictive
probability distributions to be used within the decision
making process.



Why Predictive Uncertainty ?

In many fields of hydrology (flood warning and evacuation
management; flood diversion and detention; real-time
reservoir management; etc.), Decision Makers have to take
important decisions without perfect knowledge of future
events.

Since decisions frequently have heavy social, economical and
environmental consequences, simulation and forecasting
models are generally used to complement all available data
and information and to predict the future outcomes.



Why Predictive Uncertainty ?

Predictive models cannot forecast “exactly” what will happen,
but allow the Decision Makers to improve their prior belief on

what will actually occur.

Given that predictions are not exact, it is essential to assess
Predictive Uncertainty in order to correctly estimate the
“expected consequences” of decisions in order to increase
their reliability and reduce the possibility of wrong decisions.



Deterministic Vs Uncertain Forecasts

The Reservoir Management Case

In the Reservoir Management Problem it is
easy to show that Deterministic Forecasts

lead to wrong estimates of losses. T

In this simple example losses occur if the Probabilistic Forecast oA s
e oIS T

reservoir is ov_ertopped. If the I_Determlnlstlc ? .

Forecast predicts that the maximum level

will not exceed the dam top, the estimated Expected Losses # 0

losses are equal to zero.

This is obviously wrong because the uncertainty in
the forecast implies that the “expected value” of
losses is not null. The “expected value” of losses can
be estimated if and when an assessment of Predictive
Uncertainty will be available.



Definition of Predictive Uncertainty (PU)

Bearing in mind that damages are caused by a real
future event and not by our model(s) forecasts, PU

can be defined as our assessment of the
probability of occurrence of a future (real) event

conditional upon all available knowledge, generally
based on observations and models forecasts.
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WARNING:  Predictive Uncertainty should not be
confused with Validation Uncertainty.



Validation vs Predictive Uncertainty

Medidiation Uncertainty
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Benefits for using predictive distributions: an example
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A model forecasts that in the
next few hours the volume
stored in the reservoir will
reach the value of V

The forecast is uncertain.
Therefore, the objective is to
find an optimal release V,
by minimizing the expected
damages as a function of
the decision variable Vi
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Benefits for using predictive distributions: an example

Using specific techniques (MCP, QR, BMA, etc.) one can

assess the “predictive density”
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Benefits for using predictive distributions: an example

If the model forecast would have been “perfect” then V=V
and the optimal release would be V, =V — V4«

Since the forecast is not
Expected “perfect”, minimization of the
\Volume Release expected losses leads to the

Tuvv Vy - » | following interesting result
/ Damages

Volume D (V)
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Current
Volume

In other words, the more one

[ \\ IS uncertain, the more he has

\ | torelease on the basis of the
principle of precaution




Predictive Uncertainty or Predictive Knowledge

Until the present times limited benefits have been gained by
the use of Predictive Uncertainty, mostly because it has
always been perceived by the end-users in the negative
meaning of “lack of knowledge”.

On the contrary, as in the classical case of the half-empty -
half-full glass, what is generally referred-to as a measure of
Predictive Uncertainty should be better communicated,
perceived and interpreted as a measure of “Predictive
Knowledge” (PK), aimed at supporting rational decision
making.
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The Role of Flood Forecasting Models

Coherently, flood forecasting models are not the end of the
prediction-decision process, but rather “tools™ aimed at
iIncreasing the DMSs predictive knowledge on future events.

Models are allowed to be imperfect, provided that they
increase DMs Predictive Knowledge, no more in terms of
actual forecasts, but rather in terms of denser predictive
densities, the measures of PK, to be operationally used in the
rational decision making process.

Forecasting models are no-more the essential component of a
flood forecasting system, but just imperfect virtual reality tools.



The use of Predictive Uncertainty
To improve management of the Lake Como in ltaly
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The full use of Predictive Knowledge
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Managing the LLake Como by using Predictive
Knowledge approach

Results obtained by simulating 15 years of operations
from January 1st, 1981 to December 31st, 1995

<-40 cm
=120 cm
> 140 cm
=173 cm

Water Level

Number of Days

Historical

214
133
71
35

Optimized
0
54
32
11

Water Deficit decreased from 890.27 Mm3to 694.49 Mm?

Energy Production increased by 3%
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The use of Predictive Uncertainty

To improve management of the Lake Nasser in Egypt
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Managing the Aswan Reservoir by using PK

Predictive Knowledge can be used to improve management of
a large reservoir such as the Aswan Reservoir. Results obtained
by minimizing the sum of losses due to unprofitable releases of
water + future expected losses, estimated using the predictive
density conditional to a model forecast, resulted into an average
additional water availability of

2.7 Billion m3/year

of water. A large volume at
no-cost if compared to the
expected benefit of the Jonglei
canal, estimated in

3.5 - 4.8 Billion m3/year

but at enormous economical, sogial and environmental costs.




To meet the aim of correctly describing the predictive
density, increasing interest has been directed towards
ensemble hydrological forecasts of flow, water volume or
level forecasts at predefined river sections, to be derived
through model prediction chains where precipitation
meteorological ensembles (Tracton and Kalnay, 1993;
Molteni et al., 1996) are used as forcing.

However, it can be proven that ensembles do not provide a
correct description of the predictive probability densities to
be used to estimate expected damages or expected benefits
within the frame of a Bayesian decision-making process. They
provide biased and lesser-dispersed estimates (Hamill and
Colucci, 1997; Eckel and Walters, 1998; Schwanenberg et al,
2015).



In parallel to the use of ensembles, with the aim of obtaining
a correct predictive probability density, a number of
uncertainty post processors were also developed such as the
Hydrological Uncertainty Processor (HUP, Krzysztofowicz,
1999), the Bayesian Model Averaging (BMA, Raftery, 1993;
Raftery et al., 2005) or the Model Conditional Processor
(MCP, Todini 2008). However, not all these uncertainty post
processors allow accounting for the time variability of the
meteorological and hydrological ensembles spread.

The two approaches, the ensembles and the post processors,
can be combined in order to meet the goal of properly
describing the predictive probability densities, and,
consequently improving decision-making.



MODEL AND PARAMETER UNCERTAINTY

When the behaviour of a set of conditions such as
errors deriving from the different sources varies at
random in time in an “unpredictable manner” then
one can use the “mixture of models” concept.

Please bear in mind that if the conditions ARE
predictable then one is better off by using the
Model which best fits the observations under the
relevant conditions.




MODEL AND PARAMETER UNCERTAINTY




MODEL AND PARAMETER UNCERTAINTY
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For a given model and a set of parameters one can derive

predictand and model joint/conditional probability densities



MODEL AND PARAMETER UNCERTAINTY




MODEL AND PARAMETER UNCERTAINTY

Therefore one must derive the “Posterior Density”

of parameters & (#M.9,) using the classical
Bayesian Inference. This PD is then used to

marginalise, namely to integrate out, the effect of
parameters.

In @ continuous domain:

or in discrete mode:




MODEL AND PARAMETER UNCERTAINTY

Please note that this is TOTALLY different from
what is proposed in GLUE, where the definition of
PU is given as:

P(Z<z)=N L M ()

where £=8&; (Q‘M»@Zst) is nothing else

than the posterior parameter density.

The conditional predictive density (???) and the
marginalisation of parameters uncertainty (???) are
not present in this definition.
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MODEL AND PARAMETER UNCERTAINTY

From the presently available experiences,
Marginalisation of parameters uncertainty,
although statistically correct, does not produce
substantial differences from using a best fit
parameter set.

This is mostly due to the fact that the nearly best
parameters produce predictions that are closely
related among them, while the posterior
probability of the worst parameters is obviously
very low.



MODEL AND PARAMETER UNCERTAINTY

This is why it is more interesting to approach the
problem in terms of few alternative models of widely
different nature. For instance a physically based

model, a conceptual model and a data driven ANN
model.

This has given rise to the development of several
multi-model

Predictive Uncertainty Processors.



MODEL AND PARAMETER UNCERTAINTY




Available Single or-Multi-model
Predictive Uncertainty Processors

BINARY RESPONSE

Logistic Regression — Hosmer and Lemeshow,1989;

Bayesian Nonparametric Binary Response - Qian et al., 1998;
Binary Prediction Trees — Pittman et al., 2003;

Bayesian Multivariate Binary Predictor — Todini et al., 2008.

FULL DENSITY

Hydrological Uncertainty Processor — Krzysztofowicz, 1999;
Krzysztofowicz and Kelly, 2000

Bayesian Model Averaging — Raftery et al., 2003;

Model Conditional Processor — Todini, 2008.



The Binary Processors

0o A Observed levels (reality)
————— Modeled levels (virtual reality)

Real Threshold

Virtual Threshold

No Alert Alert No Alert

—t




MERGING MODELS THROUGH
UNCERTAINTY POST-PROCESSORS

Continuous Processors

Today the possibility exists of merging the different
types of models through Uncertainty Post-
Processors, using the so called Bayesian Model
Averaging (BMA) proposed by Raftery or to
generalise the Krzysztofowicz results to multi-

models via the Model Conditional Processor (MCP)
proposed by Todini.



AVAIABLE PREDICTIVE
UNCERTAINTY PROCESSORS

Krzysztofowicz Bayesian Processor

Krzysztofowicz approach has many limitations:

- It uses an auto-regressive model as the a priori model
(for instance, this type of model is not suitable for
flood routing)

- It has a scalar formulation; it is rathefr complicated
to extend it to the multi-model case



AVAIABLE PREDICTIVE
UNCERTAINTY PROCESSORS

Raftery Bayesian Model Averaging

BMA aims at assessing the unconditional mean and variance
of any future value of a predictand on the basis of several
model forecasts.

EW, v} = S w, BVl |
=1

K 2

Var{yL@; Jf} = i W, Var{y\ﬁk }+ 2 Wi ()A’k - g WkE{y‘j}k })
=] =1 =]

The approach provides a good approximation of the
Conditional Predictive Density



AVAKABLE PREDICTIVE
UNCERTAINTY PROCESSORS

The BMA weights are estimated by solving the following
non-linear optimization problem

( S T
max log & = EElOg(Z Wkpk ‘ykst )
1 =1
s.t. Zwk =1
L =]

on the assumption that the probability densities of the
observations as well as of the model forecasts are all
approximately Gaussian, which is correct if using NQT




AVAIABLE PREDICTIVE
UNCERTAINTY PROCESSORS

Bayesian Model Averaging Limitations

- The probability density of observations and model
forecasts may be far to be Gaussian, but this can be
fixed by converting observations and forecasts in the
Gaussian space.

-The Estimation-Maximization approach proposed to
estimate the BMA weights does not necessarily lead
to the optimal values.



AVAIABLE PREDICTIVE
UNCERTAINTY PROCESSORS

The Model Conditional Processor

If one can make the hypothesis that all the transformed
variables follow a multi-Gaussian joint probability density,
a more natural approach would be to:

- Develop a set of models in the real untransformed
space (one or more than one)

- Build the joint probability density in the Gaussian space
(Predictand, a priori model, deterministic model, etc.)

- Directlyly compute the probability of the predictand
conditional on ALL the model predictions




A Useful Property of the
Multivariate Normal Distribution

y
Given a vector of random variables * = [§, Normally distributed with
_ Ry . Zyy Zy& Ny -
Mean M=|, | and Variance & = this implies that also
Py iy g

y= N(uy92yy) and Y= N(uyazyy) are Normally distributed

The conditional distribution of y given yhat is also Normal

N(uy|§’2yy|9 )

with conditional Mean Ry =Ry + Zyyz§; (y - lly)

and conditional Variance Zyy\y = - Zyyzyyzyy



AVAIABLE PREDICTIVE
UNCERTAINTY PROCESSORS

The Model Conditional Processor

Therefore, the MCP was developed by directly applying this
definition of conditional density after converting
observations and forecasts into the multi-dimensional
Gaussian space. As previously shown the predictive density
is the Normal distribution N("yW’ZyyW)

A

with conditional Mean By =n, +X X (y—uy)

Yy vy

and conditional Variance X ;= Zyy -y >y

yy| yy = yy =gy






Whoever used hydrological ensemble
forecasting based on meteorological
ensembles, experienced what shown in
the following slides
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The previous figure, although indicative, can be

criticized
objective

on the grounds that it is not a fully
demonstration that ensembles do not

represent Predictive Probability Densities.
Therefore we found a more objective approach to

confirm t
dispersec

nat ensembles provide biased and lesser-
estimates (Hamill and Colucci, 1997;

Eckel anc
2015).

Walters, 1998; Schwanenberg et al,



By assuming that the ranked ensemble members

represent the quantiles of the predictive

distribution, then one expects that observations
will fall evenly distributed betwee quantiles.
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There are two possibilities..

- The first one does not requires ordering of the
ensemble members

- The second one requires ordering of the
ensemble members



FIRST POSSIBILITY

You might think of using the post-processors
in a multi-variable context: virtually every
member of the set would be a different
"model".

However, this requires a link between the
same member at step t and the same
member at step t + At, which actually does
not exist.

However, it Is possible to create a kind of
temporal connection by shuffing members
of an ensemble.



By advocating exchangeability, we can associate
members with quantiles and create a fictitious
succession that allows members to be treated as
different "models® each of which representing a

different quantile.
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SECOND POSSIBILITY

Alternatively, the problem can be addressed using
MCP using the ensemble mean, after transforming
iInto the Gaussian space the observations and the
predictions to derive predictive distribution, that is, the
distribution of future conditioned values to the

models. e 1
{uﬂtlnm,t 5 zﬂnm Zﬁmﬁmﬂm;t
2 _1_y _ y-1 T
077t|ﬁm,t = Zn"m Z"mnm znnm

Please note that this in nothing else than a Univariate
Linear Regression, which does not take into acocunt
the ensemble spread.



Therefore, in the presence of predicion errors
described by an ensemble of m members, the
previous equations can be modified, as in the Deming
regression, with the introduction of the variance
ensemble mean, used asthe regressor and its
variance can be estimated as the variance of the
ensemble divided by the ensemble numerosity

f

1 b
uﬂtmm,t = Znﬁm (Zﬁmﬁm " E Rt) ﬂm,t
3
1 e T
2 X e i
Tl = 1 T Znitm (zﬁmﬁm N Rt) 2 im



Linear Regression







EXAMPLE: THE PO RIVER

s

01/05/2000 30/06/2004 20/01/2009
- —— 00000

MCP: CALIBRATION

VALIDATION

Dati forniti dalla Protezione Civile Regione Emilia Romagna

Valori orari tiranti idrici
Previsioni orarie delle portate fino a 92 h di anticipo
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Lead time 96 hours

© Without R
© With R




Lead time 96 hours
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Forecasting example
Calibration
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Forecasting example
Validation
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with the one directly produced by the ensemble
clearly shows that the new density, although not
Perfect, is definitely closer to the Wislon bounds.
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There are several recent interesting predictive

approaches such as for instance the mult-

temporal approach which allow answering

iImportant questions such as:

-  Which is the probability that flooding will
occur in the next 24 hours

- Which is the most likely time of occurrence

of the event?

In my opinion the future goes into these
approaches rather than using the ensembles.



Thank you
for your attention
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