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Climate change can profoundly
affect the Earth’ s hydrologic cycle
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Observed trend in global temperature

qubal Mean Estimates based on Land and Ocean Data
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Global temperature projections

CMIPS models, RCP scenarios

Historical (42)
RCP 2.6 (26)
RCP 4.5 (32)
RCP 6.0 (17)
RCP 8.5 (30)
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Global warming is generally expected to lead to
iIncreased global precipitation while relative humidity
remains relatively unchanged
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Observed global precipitation
trends are still unclear

80 ] Global Annual Land Precipitation Anomalies
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Temperature and precipitation projections

show large variability at regional scales

RCP 8.5

RCP 2.6
Change in average surface temperature (1986

—2005 to 2081-2100)
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Observed regional
precipitation trends

Observed change in annual precipitation over land
1901- 2010 1951-2010
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Observed trends in
precipitation
characteristics

IPCC 2007: “The frequency of heavy

precipitation events has increased

Trend 1951 - 2003 contribution from very wet days
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over most land areas”

IPCC 2007: “More intense and longer

droughts have been observed over

wider areas since the 1970s”
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Trend in the global number of
catastrophic events

WORLD NATURAL CATASTROPHES, 1980-2014

(Number of events)

Number B Geophysical events
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Source: © 2015 Munich Re, Geo Risks Research, NatCatSERVICE. As of January 2015




Major weather events cited in the UK 2000

World Meteorological Organisation study Widespread riooding In
October and November

Us 2011 CANADA 2005 during the wettest

A serles of storms moved The warmest summer autumn In England and

across the south-eastern on record In Canada Wales since records

US spawning a record i began In 1766

number of tornadoes and

Killing hundreds of

people, Including nearly

100 In Joplin, Missourl

&

v EUROPE 2003

Record heatwave In
France and other parts
of Europe. Some 35,000
people are estimated to
have died from
heat-related causes

RUSSIA 2010
Extreme heatwave sees
temperatures soaring In

@, Moscow, which was
& & badly affected by
. surrounding wildrires

$

CHINA 2010
Torrential rain In China
causes landslides. Some
1,500 peope Killed In
one mudslide In
north-west china
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0 BRAZIL 2005
Worst drought In
US 2005 60 years In Brazll
Most active hurricane cavsed by lowest
season on record. Amazonfiow In
Hurricane Katrina hits New 30 years
Orleans causing extensive
flooding and kllling more
than 1,300 people
KEY
Q Heatwaves
severe drought -,Q:-
’
"*‘ Extreme flooding :
ARGENTINA 2009 HORN OF AFRICA 2006
. Hurricanes An exceptional heatwave Long-term drought
In northern and central rfollowed by torrential
Argentina sees record dow npours produce worst
0 Tornadoes temperatures of 40C over flooding for 50 years
large areas

PAKISTAN 2010
Worst rfloods In
Pakistan’s history
affecting some 20
million people. Many
hundreds dle

AUSTRALIA 2010

Worst floods In more than 50
years affect north-eastern
Australla, causing devastation
across area the size of France and
Germany combined



Projected changes in precipitation characteristics
IPCC (2007)
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Global warming might lead to
more intense, more frequent events
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Giorgi et al. (2011), hypothesis:
The increases in dry day frequency
and precipitation intensity are deeply
interconnected and can be seen as a combined
hydroclimatic signature of global warming

Define an index of hydroclimatic intensity that combines
precipitation intensity and dry spell length

HY-INT =1+ DSL
| = Normalized Precipitation Intensity
DSL = Normalized Dry Spell Length

HY-INT is NOT an index of extremes
HY-INT is calculated from daily precipitation on an annual basis




Giorgi et al. (2014):

Extend the work of Giorgi et al. (2011)
using new models (CMIP5) and observations
along with an analysis multiple
interconnected hydroclimatic indices

SDIlI= Mean intensity of precipitation events
R95= Fraction of precipitation above the 95t percentile
DSL= Mean dry spell length
WSL= Mean wet spell length
PA= Precipitation area
HY-INT~ SDIl x DSL
All indices are calculated on an annual basis




CMIP5 models analyzed (RCP8.5)

MODELS

MPI-ESM-MR

HadGEM2-ES

GFDL-ESM2M

CCsm4

EC-EARTH

IPSL-CM5A-MR

MIROC-ESM

CSIRO-MK3.6.0

CNRM-CM5

CanESM2

INSTITUTE

Max Planck Institute for
Meteorology,, Hamburg,
Germany

Met Office Hadley Centre,
Exeter, UK

NOAA/Geophysical Fluid
Dynamics Laboratory,
Princeton University,
Princeton, New Jersey

NCAR, Boulder, CO

KNMI, De Bilt, The
Netherlands

LMD/IPSL, Paris, France

Japan Agency for Marine-
Earth Science and
Technology, Yokohama,
Japan

The Centre for Australian
Weather and Climate
Research, CSIRO Marine
and Atmospheric Research,

CNRM-GAME and Cerfacs,
France

Los Alamos National
Laboratory, Los Alamos,
New Mexico, USA

HORIZONTAL RESOLUTION
IN DEGREES

1.875 x 1.875

1.875 x 1.25°

2 x2.5°

0.9" x 1.250°

1125 x 1.125°

1.5 x1.27°

2.8 x2.8°

1.875 x 1.875°

14" x1.4°

2.8"x2.8°
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Observations:
Climate Prediction Center (CPC)
Unified Gauge-Based Analysis of
Global Daily Precipitation

Gauge-based, land only
Global coverage
0.5 Degree resolution
1979-2005 period
Chen et al. (2008a,b)




Ensemble average precipitation change
for the selected CMIP5 models

6ON -
e
40N -
30N -
20N -
10N
EQ-
1051 _
205
305+
4084
505 -

605 T T T ; .
180 120W GOW 0 60E 120E 180




Ensemble average trend in the 6 indices
for the future period 2005-2100 (RCP8.5)
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Ensemble average and inter-model SD of
the trend in the six indices

(2005-2100,RCP8.5) over different regions
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Time evolution of the six indices averaged
over the tropical region (RCP8.5)
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Observed trend in the 6 indices
for the period 1979-2005
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Ensemble average simulated trend in the
6 indices for the period 1976-2005
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Observed, ensemble average and inter-model
SD of the trend in the six indices

(1976-2005) over different regions
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Hydroclimatic response to global warming
emerging from the analysis of multiple
interconnected indices

Colder

SDIl, R95




A diagnostic explanation of this response.

ECHAMS model, A1B scenario

TMP(K)

% change per degree of

global warming
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Summary

A regime shift towards more intense, shorter, less frequent
and less widespread precipitation events appears to be a
robust response to global warming

Observations for the late decades of the 20" century appear
to generally confirm this response

The HY-INT, R95 and (to a lesser extent) PA indices show the
most spatially consistent and pronounced response

This finding has applications in model evaluation and
detection/attribution work (in addition to hydrologic impacts)

Understanding of this hydroclimatic shift might provide key
information on the inherent behavior of the Earth’ s hydrologic
cycle, tropical convection likely playing a key role in it






