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Chapter 1: Where do we start?  



Source:	CDC		

WATER EXTREMES 

WATER FOR PATHOGENS  

WATER FOR VECTORS/
HOSTS 

WATER FOR CROPS 



Chapter 2: Things are complicated!  

We will see that relationships between health and water  are  
uncertain, 
nonlinear 
and often  

location specific 



Example 1: Cholera 
•  Infection of the small intestine caused by the bacterium 

Vibrio cholerae (Filippo Pacini, 1854). 
•  The bacterium produces a toxin, which can cause profuse 

diarrhea and death due to dehydration. 
•  Transmission is oro-fecal, via the ingestion of 

contaminated water or food. Usually the infecting 
inoculum is rather high (ca. 1 million bacteria).  

•  75% of infectives are asymptomatic, but produce bacteria 
in fecal excretions for 7-14 days 

Filippo	Pacini	
7-05-2013	 5	Ga:o	-	Waterborne	diseases	
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Diversity in seasonality 

Estaurine	
Regions	
	
Peak	in	dry	
season	
	
Monsoon	rains	
dilute	pathogen	

Dry	Regions	
	
Peak	in	monsoon	
season	
	
In	dry	regions,	
water	is	a	
limiIng	factor	
for	transmission	



Transport is by host movement and by water 
transport  

i 

j 
Pij 

i j 
Qij 

random walk on oriented graph 

Hydrologic Transport 

advection-diffusion equation 
on a river network 

Need to know: Water temperature, salinity, PH and flow characteristics 



Vector Borne Disease 

•  There are many diseases 
(viruses, parasites, 
bacteria) that are 
transmitted by a vector 
or have an intermediate 
host. 
–  Dengue 
–  Malaria  
–  Blue Tongue 
–  Rift Valley Fever 
–  Chagas 
–  Yellow Fever 
–  Japanese Encephalitis  

•  These diseases are 
climate sensitive – why? 

Water provides 
breeding site for 
vectors – can be 

complicated 



Example 2: Dengue Virus 
•  Aedes Mosquito vector  
•  Urban environments 
•  4 serotypes of virus – 

population migration 
important 

Source:	h:p://viraldiseasesd.wikispaces.com/Dengue+Fever	



Thanks:	Rachel	Low
e	

Rainfall provides breeding sites for Aedes: Singapore has banned 
gutting on new houses to remove common breeding grounds 
 
Need: urban micro-scale hydrology? 
 
But in drought situation rain harvesting can provide breeding sites if 
storage facilities are poor 



Example 3: Rift 
Valley Fever 

•  Outbreaks occur 
at >10 year 
intervals 

•  Associated with 
immunity 
(lifetime of 
livestock) 

•  Vulnerability = 
loss of immunity  

•  Hazard = flood 
event that 
enable large 
proliferation of 
Aedes and then 
Culex vectors 

 



RiR	Valley	Fever	outbreaks	in	Mauritania	

Sheep	+	goat	+	ca:le	density	(FAO)	

Rainfall	(mm)	 Cumulated	Rainfall	(mm)	

Red	line	
Climatology	
	
Black	line	
Current	year	

Caminade et al. suggest 
subseasonal variability 
important in West Africa, 
rather than season mean 



Need: hydrology of village ponds 

Wetting followed by dry period and then wetting again 
Pond level important 



Example 4: Schistosomiasis 

CDC	



Intermediate host snail 

•  Intermediate host snail species with 
different habitat preferences, e.g.: 
– Permanent lakes and ponds 
– The edges of permanent rivers 
– Seasonal streams and ponds 
–  Irrigation systems 

h:p://www.nhm.ac.uk	

Do	lake	levels	ma:er?	
Does	lake	topography	ma:er?	
	
Two	main	species	of	intermediate	snail	
host	with	different	preferences	for	water	
depth.			
	
Slope	also	determines	lake	contact	
points	



Map	of	Booma	village	
• SpaIal	distribuIon	of	tribes	and	snail	species	vary	across	Booma	village	



Variation in Biomphalaria spp 
abundance  

Jan ‘00 – Dec ’02 in Lake 
Albert, Uganda 
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Low water flows 

•  Some species can survive the temporary drying out of 
their habitats by aestivation. 

•  Mortality is high during aestivation 
–  snail populations will not survive long desiccation 

periods 
–  require time to recover population between dry 

seasons. 
•  Factors affecting survival are poorly understood 

–  speed at which habitats dry up?  
–  soil moisture? 

 
 
Appleton CC. Review of literature on abiotic factors influencing the distribution and life cycle of 
bilharzia intermediate host snails. Malacological Review 1978;11:1-25. 
 
Brown D. Freshwater Snails Of Africa And Their Medical Importance. 2nd ed. London, UK: Taylor & 
Francis, 1994. 



Kariuki	et	al	Parasites	&	Vectors	2013	

Impact	of	extreme	weather	
events	on	snail	abundance	in	a	
Kenyan	stream	system	

High water flows 
Need	to	know:	
•  Water	flow	rates	
•  Lake	levels	
•  Water	temperatures	
	



Chapter 3: Things are Simple!  

How much information do we need to know? 
 

In this chapter we will see that complex systems of many degrees of 
freedom can be approximated with simple parametrization schemes. 



Example 5 : malaria 

•  Caused by plasmodium parasite  
•  Transmitted by Anopheles mosquito  



Bomblies et al. 2009 

TEMPERATURE 
Warmer temperatures speed up parasite, larvae and egg development 
High temperature impact mortality of vector (adult and larvae) 

 

RAINFALL 
Provides but also flushes 
breeding sites 



Craig et al 1999 





FLUSHING 
•  Stage 1  larvae can be flushed by intense rainfall (Paaijmans et al. 2007) 
•  Implies that transmission related to sub-seasonal rainfall variability 

(implications for seasonal forecasting potential) 

Seidahmed and Eltahir (2016)  



Statistical Models

When the data is actually shown, as in the earlier paper of Thomson et al.
(2005) (Fig. 1.2), the uncertainty associated with these fits is apparent.

Figure : Quadratic regression fit of the
anomaly national malaria incidence in
Botswana against the rainy season daily
average rainfall from Thomson et al.
(2005).

Statistical test did not reject the
quadratic form as a good fit, but it is
likely other forms would also be
acceptable, especially if the year
2000 is neglected. The relationship is
also dependent on the method used
to remove trends and account for
interventions.
Q: Would you choose a quadratic
form ?

A.Tompkins (tompkins@ictp.it) Climate, Environmental and Health December 15, 2015 5 / 44

Nonlinear relationship between lagged rainfall and malaria  

Thomson et al. 2005 

Question: Would 
the relationship be 
nonlinear without 
the 2000 outlier? 



ity mainly in areas of high endemicity located in Regions 1, 2 and 4
(Figure 10). Compared to the results for Rwanda, this finding seems
counter-intuitive. However, it is recalled that based on our data, malaria
is endemic across the whole of Uganda, and so no epidemic-prone
regions were detected. It is noted that the lack of epidemic-prone areas
in Uganda greatly differs from the malaria endemicity maps proposed by
MOH (2005) where highland areas, mainly located in the south-western
part of the country, are prone to epidemics. Moreover, Regions 1, 2 and 4
in Uganda show a large year-to-year variability in malaria data in certain
months of the year (see for example the box-plots for July, August and
September from Figure 5), which agree well with the variations observed

in rainfall in these regions (Appendix Figure 2). Therefore, it is likely
that temp0:2 and rain0:2 improve the predictive ability of the model in
areas of great climate-driven variability. From Table 3 we noted that mod-
els including temp0:2 resulted in lower MAEt,h estimates than those from
models with no climatic information (models 1 and 4) only if such mod-
els also included rain0:2 (models 5 and 8). When temp0:2 was used in iso-
lation or in combination with socioeconomic variables (models 3 and 7),
the MAEt,h estimates were consistently greater than those from the mod-
els with no weather information. This finding suggests that once season-
ality and long-term trends are controlled for, AMSR-E derived temp0:2 may
not be the best predictor for explaining the remaining residual variation

                                                                                                                                Article

Figure 12. Generalised additive mixed model-estimated relationships among average monthly malaria incidence, monthly average
near-surface air temperature, and precipitation lagged 0 to 2 months from a distributed lag nonlinear model, average number of
female outpatient visits per year and urbanisation levels in Rwanda (A) and Uganda (B) after having controlled for temporal correla-
tion in the residuals. The smooth lines indicate the restricted maximum likelihood estimates, and the shaded areas represent the 95%
confidence intervals. 

                                                                          [Geospatial Health 2016; 11(s1):379]                                                         [page 33]

A

B

gh-2016_1S.qxp_Hrev_master  31/03/16  11:38  Pagina 33

Non
 co

mmer
cia

l u
se

 on
ly

Multivariate model – Relationship between lagged (0-2) 
rainfall and malaria relative risk 
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Colon-Gonzalez et al. Geospat. Health 2016 

Risk peaks at 
approximately 

5 mm/day 



averaging over all temperatures gives σ2 ¼ 0:0127mm"1

(Figure 2a).
The prolonged absence of water also affects immature

longevity; anopheline egg survival in desiccating condi-
tions is two to three weeks [29], while An. gambiae s.l.
eggs are viable for up to 12 days without water [30]. To
model the decrease in egg viability in dry habitats, the
findings of [31] are used, which demonstrate that the
duration of exposure to desiccating conditions is a better
measure of egg viability than soil moisture content. If
pi(D) is the daily survival probability of stage i given D
days without water, the functional form pi(D) = 2exp
(−ωiD)/(1 + exp(−ωiD)) (i= 1, 2, 3) is fitted, where ωi

quantifies the sensitivity of stage i to desiccation and
the functional form ensures that survival is near unity
when D is small and approaches zero as desiccation
increases. Least-squares estimation using field popula-
tions under medium-moisture conditions gives ωi =
0.405days−1 (R2 > 0.99). Survival of larvae and pupae may
be similarly parameterized using [29], which demonstrates
that L4 larvae survive significantly better than L1, L2 and
L3 instars in such conditions – weighting by the average

duration in each instar stage gives ω2 = 0.855days−1 (R2 =
0.97). In the absence of data on pupal survival, pupae are
assumed to demonstrate a similar response to L4 larvae,
whereupon using [29] gives ω2 = 0.602days−1 (R2 = 0.94)
(Figure 2b).

Temperature
Despite the strong influence of water temperature on
immature populations, few detailed experimental studies
have been undertaken. The model here requires the daily
survival probability pi(TW) and stage duration di(TW) for
each i. For all three stages, age-independent mortality
is assumed and hence pi TWð Þ ¼ exp "1=di TWð Þð Þ
(Figure 3a and 3b).
Egg survival is poor outside 10-40°C and [32] find that

no An. gambiae s.s. eggs survive more than five hours at
or above 41°C, with survival decreasing exponentially
beyond 40°C. For egg development time d1(TW), the
functional form of [33], with the corrected coefficients
of Bayoh and Lindsay (unpublished data) (Table 2), is
adopted.

a

b

Figure 2 Juvenile survival in response to (a) excess rainfall (pi
(Rt)) and (b) desiccating conditions (pi(D)).

a

b

Figure 3 (a) Average development time di(TW) and (b) survival
probability pi(TW) of immature stage i.

Parham et al. Malaria Journal 2012, 11:271 Page 5 of 13
http://www.malariajournal.com/content/11/1/271

Parham  and Micheals 2012 

Model implementation of the flushing effect 
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Desiccation effect on mortality relationships  



Modeling the effects of climate change on malaria

Environmental Health Perspectives  VOLUME 118 | NUMBER 5 | May 2010 623

essentially because of the rapid decline in vec-
tor survival probability at higher temperatures 
and a rapid increase in the duration of the 
cycle at lower temperatures. At fixed vector 
densities, P. falciparum and P. vivax differ 
by a few weeks in their rate of spread, with 
P. vivax spreading more rapidly. Figure 2B 
demonstrates that the transmission rate 
depends more strongly on vector density than 
on parasite species, with a doubling in vec-
tor density more than halving the doubling 
time and on the order of months, rather than 
weeks. This is true of both P. falciparum and 
P. vivax.

R0 under static environmental conditions. 
Under the common, but highly simplified, 
assumption of vector abundance independent 
of environmental conditions, we can substi-
tute factors in Equation 1 with parameters in 
Supplemental Material Table 1 (doi:10.1289/
ehp.0901256) and the expressions from 
Martens (1998) to obtain a temperature-
 dependent expression for R0 as
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but we have already found that mos-
quito abundance is strongly dependent on 
environmental variables. Thus, relaxing the 
assumption of a fixed vector population size, 
substituting the dependence on temperature 
and rainfall from the stochastic population 
model, and making the improved approxi-
mation that the vector population is at a cli-
matically determined equilibrium, we can 
substitute (R,T )/µ(T ) for the vector popula-
tion into Equation 2 to obtain a more accurate 
dependence of R0 on temperature and rainfall. 
At this equilibrium, R0 M , and hence the 
dependence of R0 on rainfall, is the same as 
the dependence of  on rainfall. Figure 2A 
qualitatively illustrates the dependence of R0 
on rainfall, and the dependence on tempera-
ture is plotted in Figure 2C. As in the invasion 

dynamics, the R0(T ) curve illustrates an opti-
mum transmission window around 32–33°C 
[where T = Tmax (maximum temperature)], 
and the center of this window is identical for 
P. falciparum and P. vivax. It is also easy to see 
that R0(T ) is strongly driven by the probabil-
ity that mosquitoes survive long enough for 
parasites to complete their life cycle. Figure 2C 
begins to address the issue of how transmission 
may shift with climate change. For a T rise 
in mean temperature, endemic regions where 
T + T < Tmax will experience a considerable 
increase in prevalence as conditions become 
more favorable for transmission, whereas in 
regions where T > Tmax, the survival probabil-
ity of mosquitoes declines and transmission 
is reduced. Thus, the major impact of these 
results is that although the global distribu-
tion of malaria will change as climatic vari-
ables change, the impact will not always be 
for the worse. However, subject to sufficient 
mosquitoes to drive transmission, it is clear 
that increasing temperatures always increase 
the probability of emergence in regions where 
there is currently insufficient transmission to 
drive endemnicity, as these regions always have 
T + T < Tmax. Indeed, more robust model 
parameterization and validation will permit 
identification of areas where a given shift in 
average temperatures will permit emergence 
at doubling rates captured by Figure 2B, as 
well as a better understanding of how changes 
in rainfall affect the possibility of emergence 
and endemnicity.

The effects of seasonality in rainfall. So far, 
we have considered a deterministic transmis-
sion model within an unchanging environ-
ment. Although this yields useful insights, there 
is generally considerable environmental vari-
ability and uncertainty within the system. This 
may arise from natural temporal fluctuations in 
environmental variables, parameter inference, 
or estimation of parameters from other sources 
(e.g., predictions from GCMs for different 
emission scenarios). Full consideration of the 
implications of uncertainty and variability is 
beyond the scope of this paper; thus, we make 
only preliminary comments here.

The inclusion of periodic forcing in epi-
demic models has received attention across a 
range of infectious diseases (Grassly and Fraser 
2006), although the forcing of malaria trans-
mission by climate variability has received 
only limited attention to date (McKenzie et al. 
2001). Recent theoretical advances have con-
sidered how seasonality in transmission rates 
affect R0 and the growth rate of an outbreak 
(Bacaër and Ouifki 2007). Understanding 
the effects of temperature variability is chal-
lenging, as temperature dependence appears 
in multiple places in the transmission model, 
whereas a preliminary understanding of the 
impact of rainfall variability is simpler by 
virtue of appearing only through the vector 
abundance. Thus, we consider here only the 
effect of rainfall variability on R0 and assume 
no variability in temperature.

Given the strong dependence of vector 
abundance on rainfall, we make the simplifying 
assumption that M(t) R (t) [1 + cos( t- )], 
where  is the amplitude of a constant rep-
resenting seasonal variation (dimensionless) 
and  represents the frequency of seasonal 
variation (in months–1). If mmax represents the 
maximum number of mosquitoes per human 
and we simplify the analysis by ignoring the 
human and vector latent periods, a calculation 
identical to that in Bacaër (2007) shows that 
R0 may be approximated as

 
.

R T
a T b b m l T

T
T

1

1
2

max M
0

2
1 2

2

2

2

.
cn f

~ c n

cn f

+

-
+ +

^ ^
^ ^

^
^

f

h h
h h

h
h

p
6 @" ,

 
[3]

Fitting to historical WorldClim rainfall 
data for Tanzania and letting mmax = 40, 
representing typical vector abundance per 
human during the rainy season, gives  ≈ 0.65 
months–1 and  ≈ 0.98. Supplemental Material, 
Figure 1 (doi:10.1289/ehp.0901256), shows 
that rainfall seasonality always decreases R0 in 
a static environment, with a small amount of 
seasonality having a more significant impact 
on transmission around the optimum tem-
perature window of 32–33°C. Given the 

Figure 2. Effect of temperature and rainfall on mosquito population and Plasmodium species dynamics. (A) The mean number of mosquitoes per unit area as a 
function of temperature and rainfall. (B) Estimated doubling times of P. falciparum and P. vivax; high and low refer to vector density values: the number of mosqui-
toes per humans (M ÷ N). (C) The dependence of R0 on temperature for P. falciparum and P. vivax.
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essentially because of the rapid decline in vec-
tor survival probability at higher temperatures 
and a rapid increase in the duration of the 
cycle at lower temperatures. At fixed vector 
densities, P. falciparum and P. vivax differ 
by a few weeks in their rate of spread, with 
P. vivax spreading more rapidly. Figure 2B 
demonstrates that the transmission rate 
depends more strongly on vector density than 
on parasite species, with a doubling in vec-
tor density more than halving the doubling 
time and on the order of months, rather than 
weeks. This is true of both P. falciparum and 
P. vivax.
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tute factors in Equation 1 with parameters in 
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but we have already found that mos-
quito abundance is strongly dependent on 
environmental variables. Thus, relaxing the 
assumption of a fixed vector population size, 
substituting the dependence on temperature 
and rainfall from the stochastic population 
model, and making the improved approxi-
mation that the vector population is at a cli-
matically determined equilibrium, we can 
substitute (R,T )/µ(T ) for the vector popula-
tion into Equation 2 to obtain a more accurate 
dependence of R0 on temperature and rainfall. 
At this equilibrium, R0 M , and hence the 
dependence of R0 on rainfall, is the same as 
the dependence of  on rainfall. Figure 2A 
qualitatively illustrates the dependence of R0 
on rainfall, and the dependence on tempera-
ture is plotted in Figure 2C. As in the invasion 

dynamics, the R0(T ) curve illustrates an opti-
mum transmission window around 32–33°C 
[where T = Tmax (maximum temperature)], 
and the center of this window is identical for 
P. falciparum and P. vivax. It is also easy to see 
that R0(T ) is strongly driven by the probabil-
ity that mosquitoes survive long enough for 
parasites to complete their life cycle. Figure 2C 
begins to address the issue of how transmission 
may shift with climate change. For a T rise 
in mean temperature, endemic regions where 
T + T < Tmax will experience a considerable 
increase in prevalence as conditions become 
more favorable for transmission, whereas in 
regions where T > Tmax, the survival probabil-
ity of mosquitoes declines and transmission 
is reduced. Thus, the major impact of these 
results is that although the global distribu-
tion of malaria will change as climatic vari-
ables change, the impact will not always be 
for the worse. However, subject to sufficient 
mosquitoes to drive transmission, it is clear 
that increasing temperatures always increase 
the probability of emergence in regions where 
there is currently insufficient transmission to 
drive endemnicity, as these regions always have 
T + T < Tmax. Indeed, more robust model 
parameterization and validation will permit 
identification of areas where a given shift in 
average temperatures will permit emergence 
at doubling rates captured by Figure 2B, as 
well as a better understanding of how changes 
in rainfall affect the possibility of emergence 
and endemnicity.

The effects of seasonality in rainfall. So far, 
we have considered a deterministic transmis-
sion model within an unchanging environ-
ment. Although this yields useful insights, there 
is generally considerable environmental vari-
ability and uncertainty within the system. This 
may arise from natural temporal fluctuations in 
environmental variables, parameter inference, 
or estimation of parameters from other sources 
(e.g., predictions from GCMs for different 
emission scenarios). Full consideration of the 
implications of uncertainty and variability is 
beyond the scope of this paper; thus, we make 
only preliminary comments here.

The inclusion of periodic forcing in epi-
demic models has received attention across a 
range of infectious diseases (Grassly and Fraser 
2006), although the forcing of malaria trans-
mission by climate variability has received 
only limited attention to date (McKenzie et al. 
2001). Recent theoretical advances have con-
sidered how seasonality in transmission rates 
affect R0 and the growth rate of an outbreak 
(Bacaër and Ouifki 2007). Understanding 
the effects of temperature variability is chal-
lenging, as temperature dependence appears 
in multiple places in the transmission model, 
whereas a preliminary understanding of the 
impact of rainfall variability is simpler by 
virtue of appearing only through the vector 
abundance. Thus, we consider here only the 
effect of rainfall variability on R0 and assume 
no variability in temperature.

Given the strong dependence of vector 
abundance on rainfall, we make the simplifying 
assumption that M(t) R (t) [1 + cos( t- )], 
where  is the amplitude of a constant rep-
resenting seasonal variation (dimensionless) 
and  represents the frequency of seasonal 
variation (in months–1). If mmax represents the 
maximum number of mosquitoes per human 
and we simplify the analysis by ignoring the 
human and vector latent periods, a calculation 
identical to that in Bacaër (2007) shows that 
R0 may be approximated as
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Fitting to historical WorldClim rainfall 
data for Tanzania and letting mmax = 40, 
representing typical vector abundance per 
human during the rainy season, gives  ≈ 0.65 
months–1 and  ≈ 0.98. Supplemental Material, 
Figure 1 (doi:10.1289/ehp.0901256), shows 
that rainfall seasonality always decreases R0 in 
a static environment, with a small amount of 
seasonality having a more significant impact 
on transmission around the optimum tem-
perature window of 32–33°C. Given the 

Figure 2. Effect of temperature and rainfall on mosquito population and Plasmodium species dynamics. (A) The mean number of mosquitoes per unit area as a 
function of temperature and rainfall. (B) Estimated doubling times of P. falciparum and P. vivax; high and low refer to vector density values: the number of mosqui-
toes per humans (M ÷ N). (C) The dependence of R0 on temperature for P. falciparum and P. vivax.
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highest uncertainty: surface hydrology 



Surface	
Hydrology	–	
breeding	sites	
studied	in	

Kumasi	Ghana	

Asare et al. 2016 



Schematic of approach: 
Breeding site sum of permanent and temporary 

ponds  

Permanent water body 
•  Many puddles at edges 
•  Body itself not a preferred 

habitat due to ripples and 
predators 

Rain leads to 
seasonal puddles  

Grid cell ~ 10-100 km 

Gianotti et al 2009 



Pond Persistence times as function of depth 

Larger ponds 
persist long enough 
for larvae to 
complete breeding 
cycle – threshold 
very location 
specific 

Gianotti et al, WRR, 2009 



Schematic of approach 
Temporary ponds 

Note:	
•  Hayashi	and	Van	der	Kamp:	pond	geometry	
•  Soil	ConservaIon	service	Curve	number	for	run	off	



Surface	Hydrology	–	model	equaIon	

nonlinear infiltration 



EvaluaIon	with	in	situ	pond	observaIons	

	Asare	,EO,	
Tompkins	AM,	
Amekudzi	LK	and	
Ermert	V,	2016:		A	
breeding	site	model	
for	regional,	
dynamical	malaria	
simulaIons	
evaluated	using	in	
situ	temporary	
ponds	observaIons.	
GeospaIal	health,	
11,1S	
		
	



Mapping of villages at 10m scale 

Bomblies et al. 
2008, 2009a,b 

Model set up for village 
with 10m resolution, 
modelling overland 

flow, soil texture   



Evaluation with 10m (not km!) resolution model at the 
village scale in Niger.  

Ernest	O	Asare,	Adrian	M	Tompkins	and	Arne	Bomblies,	2016:		EvaluaIon	of	a	breeding	
site	availability	model	for	malaria	vectors	using	explicit	pond-resolving	surface	
hydrology	simulaIons	PLOS	ONE	
Two	further	papers	Asare	et	al.	2016	GeospaIal	Health	
		

	

DEFAULT	
MODEL	

MODIFIED	
MODEL	
using	in	situ	pond	
data	from	Kumasi	
in	Ghana		

Soil	moisture	or	iniIal	
abstracIon?	



So how much detail is required? 
•  Do we need to add a treatment of  

–  Slope? 
–  Soil moisture? 
– Evapotranspiration? 

•  Or should we try to retain a low order model 
and calibrate? 
– Calibration can be end-of-line, e.g. malaria cases, 

or at the hydrological level 
– Which data to use for calibration for small scale 

water bodies? 
•  Other factors will always conspire to 

complicate the water-health relationships. 
e.g. irrigation and dams example.  



(Soft) Constraint Genetic Algorithm for Ensemble 
Prediction Model Parameter Setting  

q GeneIc	algorithms	used	for	a	large	variety	of	
problems	

q Can	be	used	for	model	parameter	calibraIon	-	
“tuning”	

q Advantages:	
§  Simple,	no	adjoint	required	
§  Framework	suited	to	exisIng	ensemble	approaches	
§  Can	handle	highly	nonlinear,	disconInuous	problems	

	



•  Method based on evolution: 
•  Ensemble of models with different parameter settings 
•  Metric for their fitness determines their ability to pass 

parameters to child generation  
•  mutation of parameters to search parameter space 



A soft constraint 
•  GA has been applied to a wide 

range of problems 
•  However, the dimensionality of 

the problem is often very high 
•  Introduce concept of soft 

constraint, penalty for departures 
of parameters around their default 
values 

•  Advantages: 
–  Reduction of dimensionality 

(search essential in a N-sphere) 
–  Allow the prior uncertainty of 

each parameter to be accounted 
for, preventing unreasonable 
parameter settings 

•  Not the optimum system in terms 
of skill but best compromise 
solution within the realm of 
assessed uncertainty (flat cost 
minimum). 
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skillful	
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Most	“likely”	
models	
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Tompkins QJRMS in preparation 



final calibration 

very location-specific. Many studies based in diverse locations of Botswana, Malawi
and Rwanda have indicated a decrease in case numbers once monthly rainfall exceeds
a daily average of 3 to 5 mm day−1 [15, 34, 35], while others such as [91] and [36]
indicate a more monotonic relationship.

Figure 8. Timeseries of malaria cases for the Kericho plantation (red line, right axis)
and the simulations of malaria cases per 1000 population from the calibrated 80
member ensemble of VECTRI integrations with the larvae flushing effect effectively
removed by setting the τ parameter default to 200 mm day−1 and a large uncertainty
of 500 mm day−1.

Climate versus model uncertainty

Two further experiments were conducted that calibrated the model parameters and
the climate parameters separately. The simulations differ drastically between the two
cases, seen the the adjustment of the parameter departures and the R2 skill (Fig. 10).
The contrasting initial departure cost is by chance, as it is recalled that only 4 climate
parameters are calibrated. If the experiments were repeated a large number of times
with different random number seeds the mean ensemble departures would be similar.
As the generations progress it is seen that the climate calibration experiment reaches
equilibrium at a high correlation measure. In fact, when the model parameters are
calibrated, despite the fact that over 17 parameters are able to adjust, the calibrated
model is unable to sustain continuous transmission through the earlier part of the
series (Fig. 10). Outbreaks begin to occur in the late 1980s due to the presence of a
weak warming trend in the station data and it is only after the warming of 1998 that
sustained transmission can begin.

In Fig. 11b the result of the temperature and rainfall calibration is revealed to be
very similar to the results with all parameters calibrated. Thus, simply allowing the
calibration process to apply a constant offset to the air and pond water temperature,
and to scale the temperature trend and precipitation amount, leads to a vastly

NIH Report submission August 2016 : Tompkins and Thomson 17/31

calibrated model 

default model! 

Malaria in the Kenyan highlands 
Tompkins and Thomson 2017  



Where next? 
•  Health impacted by small and large scales hydrology  

–  Dams 
–  Irrigation 
–  Village ponds  
–  Puddles 
–  Water storage/harvesting 

•  Many factors are required: 
–  water temperatures 
–  water level  
–  water quality  
–  water flow 

•  Observations of small scale hydrological processes are 
lacking, ideas welcome! 

•  The system does not have to be modeled at full 
complexity 


