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Introduction 

Ø  Water resources are particularly vulnerable to climate change and this 
tendency is expected to continue in the future (IPCC, 2013).  

Ø  The hydrologic models have been widely applied in Southeast Europe 
to assess water-related impacts of climate change (Haddeland, 2013; 
World Bank, 2014; World Bank 2017).  

Ø  The results of hydrologic simulations with future climate suggest that the 
temporal and spatial changes in the runoff pattern should be expected 
in this region.  

Ø  These changes have a dominant regional character and present the 
consequence of the expected chages in climatic drivers in the lower 
Danube River basin. 

 
 

 



Introduction 
Ø    Assessment of relations among the hydrological and meteorological 

processes is essential for developing hydrological models.  

Ø   Two approaches to obtaining hydrologic response under different climate 
change scenarios are common in hydrologic practice (Zeng et al. 2012).  

Ø   The first approach uses the physically based hydrologic models, in which 
the precipitation and runoff relationship is described with a set of physical 
laws and/or some conceptual methods.  

Ø   Alternatively, data-driven (empirical or statistical) models can be employed 
to assess the relationship between the hydrologic response and climate 
parameters in a basin.  

Ø  Both model types use the climate projections from the Global Climate 
Models (GCMs), downscaled by the Regional Climate Models (RCMs), are 
used.  

 
 

 



Introduction 

Ø   The long-term prediction of hydrologic time series can also be obtained 
with the stochastic models developed from the observed hydrologic 
pattern (e.g. Pekarova et al. 2003; Pekarova and Pekar, 2006).  

Ø  The stochastic models can be used to identify long-term hydrological 
behaviour (trend and/or multi-decadal cycles) expressed as a function of 
time, which can then be extrapolated in the future.  

Ø   This approach brings a considerable uncertainty that is closely 
connected to the nature of multi-decadal flow variation that is referred to as 
“sudden shifts” (Sveinsson and Salas, 2003).  

Ø   Also, this approach does not take into account the climate projections 
under a particular climate change scenario.  

 
 

 



Introduction 

Ø   We have used the deterministic-stochastic modelling scheme (Stojkovic et 
al. 2017) to develop a two-stage transfer function time series model. 

Ø   Such an idea can be used to convey the influence of the climate drivers on 
the variability of the hydrologic time series.  

Ø   This approach is applied to examine the impact of the climate change on 
hydrological regime for the Lim River basin (Serbia).  

 
 

 



Methodology 
 
 

 
Ø   The methodology is developed with an assumption that the future changes in 

climate variables are the major driver for the changes in hydrologic response. 

Ø   The methodology is applied in two stages (Figure 1): 

q  In the first stage the Annual Transfer Function Model (ATFM) is applied with 
climate scenarios. 

q  The results of the first stage are then used in the second stage to identify the 
deterministic components, which in turn provides the long-term projections instead of 
simply extrapolating the deterministic components into the future. 
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Figure 1. Illustration of the two-stage procedure for long-term hydrologic projections 
with time series models based on transfer functions 



Methodology 
 
 

 Ø    In the first stage, the Annual Transfer Function Model (ATFM) is used: 

     yu - the differenced annual flow series, 
     x1u - the differenced annual precipitation, 
     x2u - the differenced annual temperature, 
     u - the yearly time index, 
     ω1(B), δ1(B), ω2(B) and δ2(B) - the TF model parameters. 

ATFM Model Identification

1u

2u

u u

1u

2u

Ø  Identification of ATFM (Figure 2) involves 
the following steps:  

q  defining the observed input and output time 
series,  

q  standardizing and first-order differencing of 
inputs and outputs,  

q  estimating the parameters of TF by the 
prewhitening method,  

q  verifying TF by means of the Haugh′s statistic. Figure 2. Schematic representation of the ATFM (Annual 
Transfer Function Model) identification procedure. 



Methodology 
 
 

 
Ø  At the second stage, the composite trend and long term periodicity are 

identified by using the annual flow projections from stage 1 (derived from 
ATFM). 

 
Ø  The components with monthly time discretisation (seasonal periodicity, 

stochastic and random components) are assessed at the second stage.  

Ø  Having determined components from Stage 2, the monthly flow projections are 
determined as a sum of all predicted components. 
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Figure 3. Illustration of the two-stage procedure for long-term hydrologic projections 
with time series models based on transfer functions 



Data 
 
 

 
Ø   The study is performed for the Lim 

River basin to the Prijepolje 
hydrological station (h.s.) (Figure 
4).  

Ø   Hydrological and meteorological 
records are available from 1950 to 
2012. 

Ø  Records were obtained by: 

q  Hydro-meteorological Service of 
Republic Serbia, 

q  Hydro-meteorological Service 
Republic Montenegro.  

Figure 4. (a) Location of the Lim River basin (grey polygon); (b) The Lim 
River basin to Prijepolje hydrologic station with locations of meteorological 
stations (m.s.). 

a) b)
h.s. Prijepolje
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m.s. Prijepolje
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The Lim river basin

m.s. Berane



Data 
 
 

 

Ø  Projections of precipitation and air temperature are available as a result of simulations 
with the EBU-POM regional climate model (Đurđević and Rajković, 2008) under the 
greenhouse gas emission scenarios A1B and A2 (IPCC 2013; IPCC 2007).  

Ø  The simulations covered period 2013-2100, while the baseline period is chosen to be 
1961-1990 due to the availability of the observed data.  

Ø  The simulated climate generally shows a decrease in annual precipitation and an 
increse of annual temperature for the future time frame (2013-2010) relative to the 
basline period (1961-1990).  

Ø  A decrease of annual precipitation is equal to 13% (A1B) and 8% (A2).  

Ø  Air temperature shows an overall rise of 2.40C (A1B) and 2.80C (A2). 



Results 
 
 

 Ø  Identification of the model components is conducted under the stochastic-
deterministic modelling scheme.  

Ø  The basic assumption of the proposed scheme that monthly flow time series can 
be decomposed into deterministic, stochastic and random part: 

 QT - the composite trend,  
 QP - the long-term periodic component,  
 QS - the seasonal component,  
 QSTOCH - the stochastic component,  
 et - is the error term (random time series). 
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Results 
 
 

 Ø   T h e a n n u a l d e t e r m i n i s t i c 
component (composite trend QT and 
macro-periodic component QP) is 
identified from the observed data 
(Figure 5a, 5d). 

Ø   The identified annual deterministic 
component is downscaled to the 
monthly time step using the low-pass 
filter. 

Ø  The residuals are used to assessed 
monthly seasonal component (Qs) 
(Figure 5c). 
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(b) Composite trend and Macroperiodicity  component 
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(c)  Composite trend, Macroperiodicity  component and Seasonal  component 
(QTw+QP+QS) Q
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(d) Composite trend, Macroperiodicity  component, Seasonal  component and Stochastic component 
(QTw+QP+QS+QSTOCH) Q

Qstoch

Figure 5. Modelling monthly flows of the Lim River at Prijepolje: Q - 
observed monthly flows, QTw - composite trend, QP - macro-periodic 
component, QS - seasonal component, QSTOCH - stochastic component.  



Results 
 
 

 Ø   The last part is the monthly 
stochastic component (Qstoch). 

Ø  It is modelled by separately developed 
TF model by using monthly climatic 
series. 

Ø  All components are aggregated to 
obtain the modelled mohthly flows 
(Figure 5d).  

Ø   The Nash-Sutcliffe efficiency (NSE) is 
used as a model performance 
indicator.  

Ø   The value of NSE = 0.829 suggests a 
very good agreement between the 
modelled and observed monthly flows. 
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(c)  Composite trend, Macroperiodicity  component and Seasonal  component 
(QTw+QP+QS) Q

Qs
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(d) Composite trend, Macroperiodicity  component, Seasonal  component and Stochastic component 
(QTw+QP+QS+QSTOCH) Q

Qstoch

Figure 5. Modelling monthly flows of the Lim River at Prijepolje: Q - 
observed monthly flows, QTw - composite trend, QP - macro-periodic 
component, QS - seasonal component, QSTOCH - stochastic component.  



Results 
 
 

 Ø   Together with the stochastic-deterministic modelling scheme designed to monthly 
flows, we also use the ATFM model for annual time series. 

Ø  Observed anual precipitation and temperature are used to assess the 
parameters. 

Ø   The estimated parameters of the ATFM are given in the following equation: 

Ø   In the first application stage, the ATFM is used for initial projection of annual 
flows in the future.  

Ø   For this purpose, precipitation and temperature from climate modelling under 
emission scenarios A1B and A2 are used instead of the observed time series. 



Results 
 
 

 Ø   In the second application stage 

q  The future composite trend QTw and macro-periodic component QP are identified  
from the predicted annual flows (derived from ATFM) in the same manner as for the 
observation period.  

q  The monthly seasonal component QS is derived for three 30-year time frames:  

q  2013-2040 (near future),  
q  2041-2070 (mid-distant future),  
q  2041-2070 (distant future).  

q  It is assumed that the intra-annual distribution does not change within a 30-year time 
frame, but it differs for each of the three periods.  

q  The long-term projection of the stochastic component QSTOCH is computed using the 
TF model with monthly precipitation and temperature projections from climate 
modelling.   



Results 
 
 

 Ø  The monthly flow predictions for the Lim River are computed by summing all predicted 
components. 

Ø  The obtained projections of annual flows under emission scenarios A1B and A2 are 
shown in Figure 6.  

Ø  The annual flows is expected to reduce in the range from 6% (A1B) to 14% (A2) up to the 
end of 21th century. 
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Figure 6. Observed and projected annual flows of the Lim River at Prijepolje with the composite trend 
under A1B and A2 emission scenarios. 



Results 
 
 

 Ø  The flow projections for the 
near future (2013-2040) 
suggest a decrease in the 
annual flows by 7% (A1B) and 
an increase by 5% (A2). 

 
Ø   The mid-distant future 

(2041-2070) is expected to 
bring a greater reduction in 
annual flows from 1% (A1B) to 
12% (A2).  

 
Ø   The greatest decrease in 

annual flows is expected in the 
distant future (2071-2100), 
with the annual flow medians 
dropping by 18% (A1B) and 
22% (A2).  
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(a) Basline period (1961-1990) (b) Near future (2013-2040)

(c) Mid-distant future (2041-2070)

(d) Distant future (2071-2100)
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A2
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Figure 7. Distributions of the seasonal and annual flows for the Lim River at 
Prijepolje under A1B and A2 emission scenarios for (a) baseline period 1961-1990, 
(b) near future 2013-2040, (c) mid-distant future 2041-2070, (d) distant future 
2071-2100. 



Results 
 
 

 

Ø  The change in the intra-annual 
distribution of precipition and 
an increase of temperature 
brings a significant change in 
the intra-annual flow 
distribution. 

Ø  The greatest reduction is 
expected for the summer 
flows, in the distant future. 

Ø  An increase can be seen for 
the winter flows in the mid-
distant future.  
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Figure 7. Distributions of the seasonal and annual flows for the Lim River at 
Prijepolje under A1B and A2 emission scenarios for (a) baseline period 1961-1990, 
(b) near future 2013-2040, (c) mid-distant future 2041-2070, (d) distant future 
2071-2100. 



 
 

 

Conclusions 

Ø  The presented study has brought an alternative deterministic-stochastic model 
for estimation of monthly flow predictions which uses two-stage time series 
modelling based on the transfer functions.  

Ø  As opposed to a number of recently developed methods for flow prediction, the 
proposed model is capable for modelling observed short-run and long-run 
statistical dependence of flow series.  

Ø  This is provided by employing time series decomposition at annual and monthly 
time scale, which separates the high, seasonal and low frequency 
components.  

 



 
 

 

Conclusions 

Ø  The study results can be used for implementation in a climate change adaptation 
strategy for the Lim River basin.  

Ø  The proposed model could be used for making the effective water management 
plans in Suthestern European region.  

Ø  These plans can present a reliable foundation to optimize the operation rules of 
the constructed water systems and to design new water facilities.  

Ø  The challenge of these water systems in the future will be dealing with the 
potential water scarcity in Southeast Europe caused by climate change. 



 
 

 

 

 
 

Thank you for attention! 


