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Motivations

• To contribute to develop First-Principles simulation methods to a predictive level:
standard first principle simulation methods are mostly based on Density Functional 
Theory, in practice a mean-field theory, with uncontrolled approximations. Our aim is 
to develop simulation methods where all approximations can be controlled and 
improved, hence switching from non-predictive to predictive methods.  

• To study matter at extreme conditions beyond present experimental capabilities: 
those methods will be able to provide reliable predictions even in absence of 
experimental results. Experiments at extreme conditions are difficult and extremely 
expensive, they often provide only partial information and different methods are 
often in disagreement. Predictive First Principle theories will greatly help our 
understanding and will reduce the cost of these activities.

• Light elements like Hydrogen, Helium, Lithium are very fundamental: their study 
under extreme conditions requires considering explicitly the electronic correlation, a 
fully quantum treatment of nuclei



Hydrogen: the paradigmatic system

• Hydrogen is the simplest element, i.e. the element with the simplest electronic 
structure.

• Hydrogen is the most abundant element in the Universe: the Giant gas planets are 
comprised by 70-90% of hydrogen, plus helium and other heavier elements. Developing 
accurate planetary models requires accurate acknowledge of the equation of state of 
hydrogen, helium and their mixtures.

• Hydrogen is relevant for energy applications: nuclear fusion, etc.

• The hydrogen atom and and the hydrogen molecule have been the prototype models in 
developing Quantum Mechanics. Hydrogen is the ideal playground to develop new 
theoretical approaches and methods.

• Being the simplest element, it is desirable to be able to predict its properties from first-
principle (the Hamiltonian is known and simple) from a theoretical perspective.

• Despite its simplicity Hydrogen under pressure presents a reach and difficult physics.
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FIG. 2 Hydrogen Phase diagram. Solid lines show the bound-
aries between the gas, liquid and solid phases. The solid cir-
cles show location of critical and triple points. The dashed
lines on the left estimate when fluid hydrogen changes from
H2 to fluid H and then to a classical two component plasma
(TCP). The dotted lines on the above 106 bar estimate the
temperature when the electrons become degenerate: the non-
interacting fermi energy EF and 0.1 EF . Also shown are three
phases (I,II,III) of solid H2 which occur as the molecules be-
come more oriented. How precisely hydrogens change from
solid H2 to solid H is not established so it is shown as a grey
box. The line going vertically away from the grey box shows
the separation between the mostly insulating molecular fluid
and the mostly conducting atomic fluid; the first order liquid-
liquid transition ends at a critical point; what is shown at
higher temperatures is a crossover. The almost vertical tran-
sition line at the extreme right of the diagram indicates the
quantum melting of the protons lattice under compression.

tics of the light protons could be important and could
lead to very interesting phases such as occur in liquid
3He and 4He. In solid hydrogen, since electron-phonon
coupling is very large, it has been estimated(Ashcroft,
1968) that atomic hydrogen will be a room temperature
superconductor.

Further motivation for studying dense hydrogen comes
from technological applications, for example, inertial con-
finement fusion (ICF), where hydrogen gas is compressed
with a laser-driven shock into the region where DT fu-
sion could occur, at physical conditions close to that of
HD209458b in Fig.1. Such aspects will not be directly
addressed in this review; the reader is instead referred to
Lindl et al., 2004, for example. Nonetheless, the focus of
our discussion is equally pertinent.

A final theoretical motivation for studying hydrogen is
to develop and test computer simulation methods. Hy-
drogen and helium are somewhat simpler than other el-
ements but pose unique di⌅culties for simulation. Since
they have no core electrons, their atomic structure is sim-
ple and the errors from the pseudopotential approxima-
tion, often employed to increase computational e⌅ciency,

are significantly smaller or absent. Furthermore, rela-
tivistic e�ects are small, hence spin orbit e�ects can be
ignored. However, because the protons, deuterons, and
alpha particles that constitute the nuclei are so light,
they too behave as quantum mechanical particles. This
has a strong influence on even the most basic proper-
ties of the system, such as relative stabilities of atomic
structures (Natoli et al., 1993). Harmonic corrections to
account for nuclear motion do not always work in hydro-
gen and helium. Thus, both the electrons and the ions
must be treated using quantum mechanics in order to
make definitive predictions. The availability of experi-
mental data and the intense physical interest has made
the study of high pressure hydrogen and helium into a
test-bed for theory and simulation. If the modern com-
putational techniques to treat electron correlation, such
as those based on quantum Monte Carlo (QMC) meth-
ods and density functional theory (DFT) are not accurate
for hydrogen and helium, there are serious problems in
trusting them for heavier elements.

This article concerns the thermodynamic properties of
Hydrogen and Helium at pressures above 10 GPa and for
temperatures less than 100,000K. Our primary focus is
on advanced simulation methods used for hydrogen and
helium in this region of pressure and temperature and
their comparison with experimental results.

We start by describing the theoretical and numerical
tools that are used for describing hydrogen (Section II).
We then provide a brief discussion of the experimental
methods that are in use (Section III), in order to facili-
tate the understanding of theory vs. experiment compar-
isons that follow. In Section IV, we describe the current
understanding of the phase diagram of hydrogen under
extreme conditions and its properties and interesting pre-
dictions such as metallization, superconductivity, and the
possibility of a quantum fluid ground-state. In Section V
we provide a brief discussion of helium, and describe the
behavior of the hydrogen–helium mixtures of primary im-
portance to astrophysical applications. Section VI con-
cludes and discusses some of the open questions that re-
main.

II. PREDICTING PROPERTIES OF MATTER UNDER
EXTREME CONDITIONS

In this section we review some of the computational
methods for hydrogen and helium at high pressures. The
properties of hydrogen and helium at conditions of inter-
est are described to high accuracy by the non-relativistic
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First-principles theoretical methods

• first-principle methods based on Quantum Mechanics and Statistical Mechanics.
• they treat nuclei and electrons explicitly and are unique methods to study systems 

in a large variety of chemical and physical states
• they assume the non-relativistic Hamiltonian of the system of nuclei and electrons 

in a volume Ω at temperature T (in condensed phase)
• Under rather general conditions, the energy scales for nuclei and electrons are 

widely separated: adiabatic approximation (Born-Oppenheimer) 

Sec. III, in order to facilitate the understanding of compari-
sons that follow. In Sec. IV, we describe the current under-
standing of the phase diagram of hydrogen under extreme
conditions, as well as interesting predictions that have been
made regarding it, such as metallization, superconductivity,
and the possibility of a low- or zero-temperature quantum
fluid. In Sec. V, we provide a discussion of helium as well as
H-He mixtures important to planetary physics. Section VI
concludes by discussing some of the open questions that
remain.

II. PREDICTING THE PROPERTIES OF MATTER UNDER
EXTREME CONDITIONS

In this section, we review some of the computational
methods to model hydrogen and helium at high pressures.
Their properties, at the conditions of interest, are described to
a high degree of accuracy by the nonrelativistic Hamiltonian
for a collection of electrons and ions:

Ĥ¼ T̂nþ Ĥel ¼ T̂þ V̂;

Ĥel ¼ T̂eþ V̂n#nþ V̂e#eþ V̂e#n; T̂¼ T̂nþ T̂e;

T̂n ¼
XNn

I¼1

#!I5̂2
I ; T̂e ¼#!e

XNe

i¼1

5̂2
i ;

V̂ ¼ V̂n#nþ V̂e#eþ V̂e#n; V̂n#n ¼
X

I<J

zIzJ

j ~RI # ~RJj
;

V̂e#e ¼
X

i<j

1

j ~ri# ~rjj
; V̂e#n ¼#

X

i;I

zI

j~ri# ~RIj
; (1)

where Nn and Ne are the number of ions and electrons,
respectively, !e ¼ 1=2, !I ¼ 1=ð2MIÞ, and MI and zI
are the mass and charge (in units of the electron mass
me and charge e) of the nucleus I.1 Note that we implicitly
assume charge neutrality of the system

P
IzI ¼ Ne; hence, for

hydrogen, the number of electrons is also Nn and for helium it
is 2Nn. Note also that ~r with lower case indices (i; j; . . . ) is
used to denote the position of electrons and ~R with upper case
indices (I; J; . . . ) is used for the nuclei. When no indices are

used, ~r and ~R represent the full 3Ne and 3Nn dimensional
vectors. The electronic Hamiltonian Ĥel corresponds to the
solution of the problem in the clamped-nuclei approximation,
where the ions produce a fixed external potential for the
electrons. We always treat electrically neutral systems.
Another quantity that is of interest is the electron number
density given by ", and parametrized with rs ¼ a=a0, where
4#a3=3 ¼ "#1. Given Eq. (1), we only need to add the
temperature, particle statistics, and boundary conditions to
completely specify the physical and numerical problem to be
solved.

Finding the eigenvalues and eigenfunctions of the
Hamiltonian in Eq. (1) is a formidable task, impossible to
do analytically except for the single hydrogen atom or the
H2

þ molecular ion. In practice, numerical or approximate
theoretical methods must be used. Two of the most widely
applicable methods are based on either imaginary-time path
integrals or DFT, as discussed in the following sections. In
what follows, we also briefly discuss semiempirical methods.

A. The formalism of imaginary-time path integrals

Path integrals provide a theoretical and computational
framework to discuss the many-body problem. The partition
function of a quantum system at an inverse temperature $ ¼
1=kBT is the trace of the many-body density matrix:

Z ¼
Z

d ~Rd~r"ð ~R; ~r; ~R; ~r;$Þ; (2)

where "ð ~R; ~r; ~R0; ~r0;$Þ is the density matrix in the position
basis for the appropriate ensemble.2 In the thermal ensemble,
it has the form

"ð ~R; ~r; ~R0; ~r0;$Þ ¼ h ~R; ~rje#$Ĥj ~R0; ~r0i: (3)

The equilibrium average of an operator Ô can then be com-
puted as

hÔi" ¼ Z#1hÔ "̂i

¼ Z#1
Z

d ~Rd~rd ~R0d~r0"ð ~R; ~r; ~R0; ~r0;$Þh ~R0; ~r0jÔj ~R; ~ri:

(4)

The product property of the exponential of commuting
operators,

e#ð$1þ$2ÞĤ ¼ e#$1Ĥe#$2Ĥ; (5)

repeatedly applied, gives the path-integral expression for the
partition function:

Z ¼
Z YP#1

t¼0

d ~Rtd~rth ~Rt; ~rtje#%Ĥj ~Rtþ1; ~rtþ1i; (6)

where % ¼ $=P and periodic boundary conditions in the

index t applies: ~R0 ¼ ~RP, ~r0 ¼ ~rP. To account for Bose or
Fermi statistics, a permutation of identical particles can also
be applied, as we note below.

We define3 the path as ~R ¼ f ~R0; ~r0; . . . ; ~RP; ~rPg; it consists
of 3PðNe þ NnÞ variables. This expression, exact for any
value of P (the number of time slices or beads), allows us
to compute properties of a quantum system at inverse tem-
perature $, using a density matrix evaluated at a smaller
inverse temperature % ¼ $=P. At small enough %, accurate
and computationally simple approximations exist for the
thermal density matrix which becomes exact as % ! 0. The
best known example is the Trotter formula (Trotter, 1959):

1In this section, we use atomic units, where Planck’s constant ℏ ¼
me ¼ kB ¼ e ¼ 1 with kB being Boltzmann’s constant, and the
energy is measured in Hartrees Eh ¼ 315 775 K, K ¼
27:2114 eV. Note that, in these units, the energy of a hydrogen
atom is 0:5Eh, the binding energy of a hydrogen molecule is 0:17Eh,
the unit of length is the Bohr radius a0 ¼ 0:0529 nm, and the
equilibrium bond length is 1:4a0.

2For simplicity, we limit our discussion to the canonical en-
semble; it is straightforward to extend the discussion to other
ensembles.

3Superscripts label imaginary-time indices, in order to avoid
confusion.
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2. Computational Methods92

In this section, we review some of the Quantum Monte Carlo methods used in the first principles93

modeling of condensed matter systems. Under normal conditions of temperature and pressure, such94

systems are described to a high degree of accuracy by the non-relativistic Hamiltonian for a collection95

of electrons and ions:96

Ĥ = T̂n + Ĥel = T̂n + T̂e + V̂ ,

T̂n = �
Nn�

I=1

�I⇥̂
2

I , T̂e = ��e

Ne�

i=1

⇥̂
2

i ,

V̂ =
�

I<J

zIzJ

|�RI � �RJ |
+
�

i<j

1

|�ri � �rj|
�
�

i,I

zI

|�ri � �RI |
, (1)

where Nn and Ne are the number of ions and electrons, respectively, in atomic units �e = 1/2,97

�I = 1/(2MI), and MI and zI are the mass and charge (in units of the electron mass me and charge98

e) and charge of the nucleus I . The system occupies a volume �.3. Note that �r with lower case99

indexes (i, j, ...) is used to denote the position of electrons and �R with upper case indexes (I , J , ...)100

is used for the nuclei. When no indices are used, �r and �R represent the full 3Ne and 3Nn dimensional101

vectors, respectively. The electronic Hamiltonian Ĥel corresponds to the solution of the problem in102

the clamped-nuclei approximation, where the ions produce a fixed external potential for the electrons.103

Another quantity that will be of interest is the electron number-density given by ⇤ = Ne/�, and104

parameterized with rs = a/a0, where 4⇥a3/3 = ⇤�1. Given Eq. (1), we only need to add the temperature,105

particle statistics and boundary conditions to completely specify the physical and numerical problem to106

be solved.107

Finding the eigenvalues and eigenfunctions of the Hamiltonian in Eq. (1) is a formidable task,108

impossible to do analytically except for a few simple systems such as the single hydrogen atom.109

In practice, numerical or approximate theoretical methods must be used. Two of the most widely110

applicable methods are based either on imaginary-time path integrals or density functional theory (DFT),111

as discussed in the following subsections.112

3In this section, we use atomic units, where Planck’s constant h̄ = me = kB = e = 1 with kB being Boltzmann’s constant,
and the energy is measured in Hartrees Eh = 315, 775 K= 27.2114 eV. Note that, in these units, the energy of a hydrogen
atom is 0.5Eh, the binding energy of a hydrogen molecule is 0.17Eh, the unit of length is the Bohr Radius a0 = 0.0529 nm,
and the equilibrium bond length is 1.4 a0.

Coulomb law

First principles

kinetic energies

McMahon, Morales, Pierleoni, Ceperley, Rev. Mod. Phys. 84, 1607 (2012)



Electrons: solve the electronic problem at given nuclear positions

Ĥel = K̂el + V̂

Ĥel�0(r|R) = E0(R)�0(r|R)

ground state wave function

ground state energy
nuclear coordinates (3Nn)

electronic coordinates (3Ne)

Density Functional Theory: maps the interacting electrons problem onto a single 
electron problem in a self-consistent effective potential. 
Solve the single electron SE as an eigenvalue problem in 3 dimensions.  
Mean field solution, introduces uncontrolled approximations. 

Quantum Monte Carlo: assumes an explicit form of the many-electrons wave 
function based on physical insight and exploits the Variational Principle to control 
the accuracy

Schroedinger equation (SE)

trial wave functionE0(R)  ET (R) ⌘
R

dr  ⇤
T (r|R) Ĥel T (r|R)

R
dr | T (r|R)|2

0  �2
T (R) ⌘

R
dr  ⇤

T (r|R)
h
Ĥel � ET (R)

i2
 T (r|R)

R
dr | T (r|R)|2



 T (r|R) depends explicitly on some free parameters to be optimized using the 
variational principle: the lower the energy and the variance the better the 
quality of the solution.  

The variational principle provides an internal consistency check when comparing 
various trial functions.
Imaginary time projection automatically optimizes but requires an approximation for 
fermions: the fixed node approximation but the method remain variational
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Advantages:  
• DFT is reasonably fast and accurate.
• it is far more transferrable than the 
effective potential approach.
• electronic dynamical properties can also 
be computed in the single-electron theory 
(optical spectra, transport properties….) 
(not fully justified).  
Limitations:
• DFT misses an internal check on the 
accuracy of the various approximations
• assessment of accuracy based on 
comparison with experiments or more 
accurate theories (like QMC).
• dispersion interactions, band gaps and 
excited states are generally bad.
• the approximation is an extra variable to 
choose.

DFT QMC
Advantages:  
• electron correlation is explicitly put in the 
wave function. 
• the accuracy can be assessed by the 
Variational Principle (internal check of the 
theory).
• efficient methods to compute properties 
other than the energy are available 
Limitations:
• projection introduces the fixed node 
approximation. But the method is still 
variational.
• it needs larger computer resources. 
• electronic dynamics is more difficult but, 
to some extend, can be dealt with by 
CFQMC (see Li et al, PRL 2010)
• the development of community codes is 
much behind DFT, so the use of QMC 
much less spread.



Nuclear sampling: use the electronic energy (or forces) to sample the nuclear 
configurational space at physical temperature (Boltzmann):

Molecular Dynamics 
or

Monte Carlo  +
importance sampling

classical nuclei are point particles (P=1)

quantum nuclei are paths in configuration space 
(P>1, closed for diagonal observables)

⇢n(R) ⇠ e�[Kn+ET (R)]/kBT R 2 R3NnP

BOMD (CPMD): uses DFT forces and MD to sample nuclear configuration space

CEIMC: uses QMC energy and Metropolis MC for nuclear sampling
QMCMD: uses QMC forces and LD for nuclear sampling



Coupled Electron-Ion Monte Carlo (CEIMC): 
an ab-initio simulation method with QMC accuracy

CEIMC: Metropolis Monte Carlo for finite T ions.  The BO energy in the Boltzmann 
distribution is obtained by a QMC calculation for ground state electrons. 
•Ground state electrons:  
• Variation Monte Carlo (VMC) & Reptation Quantum Monte Carlo (RQMC)
• Twist Average Boundary Conditions (TABC) within CEIMC to reduce electronic 

(single particle) finite size effects.
• Efficient energy difference method
• Efficient RQMC algorithm: The bounce algorithm

•Finite temperature ions: Noisy Monte Carlo  The Penalty Method
•Quantum Protons: Path Integral Monte Carlo (PIMC) within CEIMC
•Moving the nuclei: two level sampling

•The computational cost of CEIMC in the present implementation is quite higher 
than for BOMD (limited to small systems ~100 protons), but the scaling is the 
same (~N3).

•HPC Tier-0 systems are now available for this generation of calculations!



Moving the ions

- In Metropolis MC we generate a Markov chain of ionic states S distributed according to

Boltzmann

P (S) ∝ exp(−βEBO(S))

EBO(S) = Born-Oppenheimer energy for the configuration S.

- Given an initial state S we propose a trial state S′ with probability

T (S → S′) = T (S′ → S)

and we accept the move with probability

A(S → S′) = min
ˆ

1, exp
˘

−β[EBO(S′) − EBO(S)]
¯˜

- After a finite number of moves the Markov chain is distributed with Boltzmann (if ergodicity

holds).

- But EBO(S) from QMC is noisy⇒ use the penalty method

RPMBT 14; July 16-20, 2007, Barcelona Spain – p. 10/62

The penalty method for random walks with uncertain energies

D. M. Ceperley and M. Dewing
Department of Physics and NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

⇤Received 28 December 1998; accepted 1 March 1999�

We generalize the Metropolis et al. random walk algorithm to the situation where the energy is

noisy and can only be estimated. Two possible applications are for long range potentials and for

mixed quantum-classical simulations. If the noise is normally distributed, we are able to modify the

acceptance probability by applying a penalty to the energy difference and thereby achieve exact

sampling even with very strong noise. When one has to estimate the variance we have an

approximate formula, good in the limit of a large number of independent estimates. We argue that

the penalty method is nearly optimal. We also adapt an existing method by Kennedy and Kuti and

compare to the penalty method on a one-dimensional double well. © 1999 American Institute of

Physics.  S0021-9606⇤99�50920-3⇥

I. INTRODUCTION

As Metropolis et al. showed in 1953,1 Markov random

walks can be used to sample the Boltzmann distribution and

thereby calculate thermodynamic properties of classical

many-body systems. The algorithm they introduced is one of

the most important and pervasive numerical algorithms used

on computers because it is a general method of sampling

arbitrary highly-dimensional probability distributions. Since

then many extensions have been developed.2 In addition to

the sampling of classical systems, many quantum Monte

Carlo algorithms such as path integral Monte Carlo,3 varia-

tional Monte Carlo,4 and lattice gauge Monte Carlo use a

generalization of the random walk algorithm.

In a Markov process, one changes the state of the system

�s⌅ randomly according to a fixed transition rule, P (s
�s�), thus generating a random walk through state space,

�s0 ,s1 ,s2 , . . . ⌅. The transition probabilities often satisfy the
detailed balance property ⇤a sufficient but not necessary con-
dition�. This means that the transition rate from s to s� equals
the reverse rate,

⌃⇤s �P ⇤s�s��⇥⌃⇤s��P ⇤s��s �. ⇤1�

Here ⌃(s) is the desired equilibrium distribution which we

take for simplicity to be the classical Boltzmann distribution,

⌃(s)⌥exp(�V(s)/(kBT)), where T is the temperature and

V(s) is the energy. If the pair of functions �⌃(s),P (s
�s�)⌅ satisfy detailed balance and if P (s�s�) is ergodic,
then the random walk will eventually converge to ⌃ . For
more details see Refs. 5 and 6.

In the particular method introduced by Metropolis one

ensures that the transition rule satisfies detailed balance by

splitting it into an a priori sampling distribution T(s�s�) ⇤a
probability distribution that can be directly sampled such as a

uniform distribution about the current position� and an ac-
ceptance probability a(s�s�) with 0⇧a⇧1. The overall
transition rate is

P ⇤s�s��⇥T⇤s�s��a⇤s�s��. ⇤2�

Metropolis et al.1 made the choice for the acceptance prob-

ability,

aM⇤s�s��⇥min 1,q⇤s��s �⇥ , ⇤3�

where

q⇤s�s��⇥
⌃⇤s��T⇤s��s �

⌃⇤s �T⇤s�s��

⇥exp⇤�⇤V⇤s���V⇤s ��/⇤kBT ��. ⇤4�

Here we are assuming for the sake of simplicity that T(s�
�s)⇥T(s�s�). The random walk does not simply proceed
downhill; thermal fluctuations can drive it uphill. Moves that

lower the potential energy are always accepted but moves

that raise the potential energy are often accepted if the en-

ergy cost ⇤relative to kBT⇥1/↵) is small. Since asymptotic
convergence can be guaranteed, the main issue is whether

configuration space is explored thoroughly in a reasonable

amount of computer time.

What we consider in this article is the common situation

where the energy, V(s) needed to accept or reject moves, is

itself uncertain. This can come about because of two related

situations:

⇤1� The energy may be expressed as an integral, V(s)

⇥�dxv(x ,s). If the integral has many dimensions, one
might need to perform the integral with another subsid-

iary Monte Carlo calculation.

⇤2� The energy may be expressed as a finite sum, V(s)
⇥⌦k⇥1

N ek(s), where N is large enough that performing

the summation slows the calculation. It might be desir-

able for the sake of efficiency to sample only a few terms

in the sum.

A. Mixed quantum-classical simulation

First, consider the typical system in condensed matter

physics and chemistry, composed of a number of classical

nuclei and quantum electrons. In many cases the electrons

can be assumed to be in their ground state and to follow the

nuclei adiabatically. To perform a simulation of this system,

JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 20 22 MAY 1999
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The Penalty Method

Assume mean value and variance of the energy difference over the noise distribution

P (δ|S, S′) exist

β[EBO(S′) − EBO(S)] = < δ(S, S′) >= ∆(S, S′)

< (δ − ∆)2 > = σ2(S, S′)

We want to find the new acceptance probability a(S → S′) such that we satisfy detailed

balance on average:

T (S → S′) < a(S → S′) >= T (S′ → S) < a(S′ → S) > exp[−β∆(S, S′)]

< a(S → S′) >=

Z ∞

−∞
dδP (δ|S, S′)a(δ|S,S′)

Under general assumption one can show that

a(δ|σ) = min

»

1, exp

„

−δ −
σ2

2

«–

The noise always causes extra rejection !

RPMBT 14; July 16-20, 2007, Barcelona Spain – p. 11/62



The Penalty Method

EFFICIENCY: which level of noise is optimal?

For a generic observable we ask which level of noise minimizes its statistical error ϵ2 at

fixed computer time T : T = m[nt + t0]

m=total number of ionic steps attempted

n=number of electronic calculations before the acceptance test

t=CPU time for a single electronic calculation

t0=time in the noiseless part of the code per total step

In general ϵ = c(s)m−(1/2) and s = σn−(1/2). (c(s) and sigma are unknown).

A measure of the inefficiency of our calculation is:

T ϵ2 = c2(s)t0

»

1 +
f

s2

–

f = σ2 t

t0

For any given application we have to chose s which minimize this quantity.

In few simple examples the optimal noise level was found to be s2 = σ2/n ≈ 1.

In CEIMC other constraints imposes the noise level but as a rule of thumb we always try

to stay around 1.

σ2 ∼ T−2: lowering the temperature requires smaller noise level, i.e. longer electronic

runs
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Quantum Protons in CEIMC
PIMC: we need to consider the thermal density matrix of the nuclei

• for diagonal observables we map protons onto ring polymers
• we limit to distinguishable particles so far, but nuclear Bose or Fermi statistics could 

be considered.
• to minimize the time step error in the Trotter break-up, we introduce pairwise 

effective potentials between nuclei:

Quantum protons

By increasing pressure or decreasing temperature, ionic quantum effects start to

become relevant. Those effects are important for hydrogen at high pressure.

Static properties of quantum systems at finite temperature can be obtained with Path

Integral Monte Carlo method (PIMC).

We need to consider the thermal density matrix rather than the classical Boltzmann

distribution:

ρP (S, S′|β) =< S|e−β(Kp+EBO)|S′ >

The same formalism as in RQMC applies. However

1 - β is the physical inverse temperature now.

2 - to compute averages of diagonal operators we map quantum protons over ring

polymers

3 - we limit to distinguishable particle so far (T > Td), but Bose or Fermi statistics could

be considered.

Factorization β = P τp and Trotter break-up

For efficiency introduce an effective proton-proton potential Ĥeff = K̂P + V̂eff

ρ̂P (τp) = e−τp[Ĥeff +(ÊBO−V̂eff )] ≈ e−τpĤeff e−τp[ÊBO−V̂eff ]
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Quantum nuclei in CEIMC

Let us consider a many body system of nuclei and electrons with general hamiltonian

H = Kp +Hel (1)

where Kp is the kinetic energy operator of the nuclei and Hel is the electronic hamiltonian that includes the electronic
kinetic energy and all the interaction potential terms (Coulomb). In CEIMC for quantum nuclei we introduce an
e↵ective two-body potential between any pair of pseudo nuclei and therefore an e↵ective potential energy operator
Veff in such a way to write the unnormalized many-body nuclear density matrix as

⇢̂(�) = e

��H = e

��[Kp+Veff+(Hel�Veff )] (2)

In the coordinate representation the short time density matrix is

⇢(S, S0|⌧) = hS|e�⌧ [Kp+Veff+(Hel�Veff )]|S0i (3)

⇡ hS|e�⌧ [Kp+Veff ]|S0ie� ⌧
2 [(EBO�Veff )(S)+(EBO�Veff )(S

0)]

where ⌧ = �/P and P is the number of imaginary time slices, S the set of nuclear coordinates S = {r1, . . . , rN}
and EBO is the electronic energy function in the Born-Oppenheimer approximation, obtain with some method. For
the first term we use the pair density matrix approximation which represents a many-body density matrix for a
pair interaction potential in terms of the product over all distinct pairs of the 2-body density matrix, this obtained
numerically but without uncontrolled approximations

hS|e�⌧ [Kp+Veff ]|S0i ⇡
Y

ij

⇢

(2)(ri, rj ; r
0
i, r

0
j |⌧) = ⇢0(S, S

0|⌧)e�
P

ij
u(ri,rj ;r

0
i,r

0
j |⌧) (4)

where in this expression ⇢0 indicates the density matrix for an ideal system and u = �log[⇢(2)/⇢(2)0 ] is the pair action
corresponding to the e↵ective potential. Note that the many body potential energy surface is introduced at the
primitive level approximation (symmetrized). With this form of the e↵ective density matrix we finally obtain

⇢(S, S0|⌧) ⇡ ⇢0(S, S
0|⌧)e�

P
ij

u(ij)
e

� ⌧
2 [(EBO�Veff )(S)+(EBO�Veff )(S

0)] (5)

Let us discuss the specific case of molecular hydrogen in conditions where the probability of molecular dissociation
is negligible (low enough density and temperature). In this case we introduce two e↵ective potentials, one to represent
the interaction within a molecule, the bonding potential (this is very similar to a Morse potential), and another to
represent the interaction between any two protons belonging to di↵erent molecules. Those potentials can be obtained
in many di↵erent ways. What we do is to extract the e↵ective potentials from inverting the computed structure (g(r)
and S(k)) in the molecular liquid at some thermodynamic conditions (Boltzmann inversion). This optimal potentials
are the ones that contains all two-body e↵ects of the many-body potential energy surface, in such a way that the
corrective factor at the primitive level only include three-body terms and above. However the optimal potentials will
depend on the thermodynamic state itself and will require simulating the system before obtaining the potential. But
we don’t need to be very accurate and we will use the optimal potential obtained at some thermodynamic state, also
to simulate system at nearby states. We also have notice that the potential extracted from the structure for classical
nuclei does not reproduce the structure of the system with quantum nuclei which is disappointing. In any case given
some pair potentials the e↵ective potential energy will be

Veff (S) =
1

2

X

i 6=j

vnb(rij) +
X

I

vb(dI) (6)

where vnb is the non-bonding potential, vb the bonding potential, the first sum runs over all distinct pairs except for
nuclei within the same molecules, while the second sum runs over all molecules and dI is the bond distance of that
molecule. To this form of the e↵ective potential correspond two pair actions, bonding and non-bonding.
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is negligible (low enough density and temperature). In this case we introduce two e↵ective potentials, one to represent
the interaction within a molecule, the bonding potential (this is very similar to a Morse potential), and another to
represent the interaction between any two protons belonging to di↵erent molecules. Those potentials can be obtained
in many di↵erent ways. What we do is to extract the e↵ective potentials from inverting the computed structure (g(r)
and S(k)) in the molecular liquid at some thermodynamic conditions (Boltzmann inversion). This optimal potentials
are the ones that contains all two-body e↵ects of the many-body potential energy surface, in such a way that the
corrective factor at the primitive level only include three-body terms and above. However the optimal potentials will
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Let us consider a many body system of nuclei and electrons with general hamiltonian

H = Kp +Hel (1)

where Kp is the kinetic energy operator of the nuclei and Hel is the electronic hamiltonian that includes the electronic
kinetic energy and all the interaction potential terms (Coulomb). In CEIMC for quantum nuclei we introduce an
e↵ective two-body potential between any pair of pseudo nuclei and therefore an e↵ective potential energy operator
Veff in such a way to write the unnormalized many-body nuclear density matrix as
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where ⌧ = �/P and P is the number of imaginary time slices, S the set of nuclear coordinates S = {r1, . . . , rN}
and EBO is the electronic energy function in the Born-Oppenheimer approximation, obtain with some method. For
the first term we use the pair density matrix approximation which represents a many-body density matrix for a
pair interaction potential in terms of the product over all distinct pairs of the 2-body density matrix, this obtained
numerically but without uncontrolled approximations
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where in this expression ⇢0 indicates the density matrix for an ideal system and u = �log[⇢(2)/⇢(2)0 ] is the pair action
corresponding to the e↵ective potential. Note that the many body potential energy surface is introduced at the
primitive level approximation (symmetrized). With this form of the e↵ective density matrix we finally obtain
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Let us discuss the specific case of molecular hydrogen in conditions where the probability of molecular dissociation
is negligible (low enough density and temperature). In this case we introduce two e↵ective potentials, one to represent
the interaction within a molecule, the bonding potential (this is very similar to a Morse potential), and another to
represent the interaction between any two protons belonging to di↵erent molecules. Those potentials can be obtained
in many di↵erent ways. What we do is to extract the e↵ective potentials from inverting the computed structure (g(r)
and S(k)) in the molecular liquid at some thermodynamic conditions (Boltzmann inversion). This optimal potentials
are the ones that contains all two-body e↵ects of the many-body potential energy surface, in such a way that the
corrective factor at the primitive level only include three-body terms and above. However the optimal potentials will
depend on the thermodynamic state itself and will require simulating the system before obtaining the potential. But
we don’t need to be very accurate and we will use the optimal potential obtained at some thermodynamic state, also
to simulate system at nearby states. We also have notice that the potential extracted from the structure for classical
nuclei does not reproduce the structure of the system with quantum nuclei which is disappointing. In any case given
some pair potentials the e↵ective potential energy will be
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where vnb is the non-bonding potential, vb the bonding potential, the first sum runs over all distinct pairs except for
nuclei within the same molecules, while the second sum runs over all molecules and dI is the bond distance of that
molecule. To this form of the e↵ective potential correspond two pair actions, bonding and non-bonding.
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Let us consider a many body system of nuclei and electrons with general hamiltonian

H = Kp +Hel (1)

where Kp is the kinetic energy operator of the nuclei and Hel is the electronic hamiltonian that includes the electronic
kinetic energy and all the interaction potential terms (Coulomb). In CEIMC for quantum nuclei we introduce an
e↵ective two-body potential between any pair of pseudo nuclei and therefore an e↵ective potential energy operator
Veff in such a way to write the unnormalized many-body nuclear density matrix as
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��H = e
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where ⌧ = �/P and P is the number of imaginary time slices, S the set of nuclear coordinates S = {r1, . . . , rN}
and EBO is the electronic energy function in the Born-Oppenheimer approximation, obtain with some method. For
the first term we use the pair density matrix approximation which represents a many-body density matrix for a
pair interaction potential in terms of the product over all distinct pairs of the 2-body density matrix, this obtained
numerically but without uncontrolled approximations
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where in this expression ⇢0 indicates the density matrix for an ideal system and u = �log[⇢(2)/⇢(2)0 ] is the pair action
corresponding to the e↵ective potential. Note that the many body potential energy surface is introduced at the
primitive level approximation (symmetrized). With this form of the e↵ective density matrix we finally obtain
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Let us discuss the specific case of molecular hydrogen in conditions where the probability of molecular dissociation
is negligible (low enough density and temperature). In this case we introduce two e↵ective potentials, one to represent
the interaction within a molecule, the bonding potential (this is very similar to a Morse potential), and another to
represent the interaction between any two protons belonging to di↵erent molecules. Those potentials can be obtained
in many di↵erent ways. What we do is to extract the e↵ective potentials from inverting the computed structure (g(r)
and S(k)) in the molecular liquid at some thermodynamic conditions (Boltzmann inversion). This optimal potentials
are the ones that contains all two-body e↵ects of the many-body potential energy surface, in such a way that the
corrective factor at the primitive level only include three-body terms and above. However the optimal potentials will
depend on the thermodynamic state itself and will require simulating the system before obtaining the potential. But
we don’t need to be very accurate and we will use the optimal potential obtained at some thermodynamic state, also
to simulate system at nearby states. We also have notice that the potential extracted from the structure for classical
nuclei does not reproduce the structure of the system with quantum nuclei which is disappointing. In any case given
some pair potentials the e↵ective potential energy will be

Veff (S) =
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I
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where vnb is the non-bonding potential, vb the bonding potential, the first sum runs over all distinct pairs except for
nuclei within the same molecules, while the second sum runs over all molecules and dI is the bond distance of that
molecule. To this form of the e↵ective potential correspond two pair actions, bonding and non-bonding.

• we use the pair action approximation for the effective many body density matrix
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where Kp is the kinetic energy operator of the nuclei and Hel is the electronic hamiltonian that includes the electronic
kinetic energy and all the interaction potential terms (Coulomb). In CEIMC for quantum nuclei we introduce an
e↵ective two-body potential between any pair of pseudo nuclei and therefore an e↵ective potential energy operator
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where ⌧ = �/P and P is the number of imaginary time slices, S the set of nuclear coordinates S = {r1, . . . , rN}
and EBO is the electronic energy function in the Born-Oppenheimer approximation, obtain with some method. For
the first term we use the pair density matrix approximation which represents a many-body density matrix for a
pair interaction potential in terms of the product over all distinct pairs of the 2-body density matrix, this obtained
numerically but without uncontrolled approximations
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where in this expression ⇢0 indicates the density matrix for an ideal system and u = �log[⇢(2)/⇢(2)0 ] is the pair action
corresponding to the e↵ective potential. Note that the many body potential energy surface is introduced at the
primitive level approximation (symmetrized). With this form of the e↵ective density matrix we finally obtain
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Let us discuss the specific case of molecular hydrogen in conditions where the probability of molecular dissociation
is negligible (low enough density and temperature). In this case we introduce two e↵ective potentials, one to represent
the interaction within a molecule, the bonding potential (this is very similar to a Morse potential), and another to
represent the interaction between any two protons belonging to di↵erent molecules. Those potentials can be obtained
in many di↵erent ways. What we do is to extract the e↵ective potentials from inverting the computed structure (g(r)
and S(k)) in the molecular liquid at some thermodynamic conditions (Boltzmann inversion). This optimal potentials
are the ones that contains all two-body e↵ects of the many-body potential energy surface, in such a way that the
corrective factor at the primitive level only include three-body terms and above. However the optimal potentials will
depend on the thermodynamic state itself and will require simulating the system before obtaining the potential. But
we don’t need to be very accurate and we will use the optimal potential obtained at some thermodynamic state, also
to simulate system at nearby states. We also have notice that the potential extracted from the structure for classical
nuclei does not reproduce the structure of the system with quantum nuclei which is disappointing. In any case given
some pair potentials the e↵ective potential energy will be
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where vnb is the non-bonding potential, vb the bonding potential, the first sum runs over all distinct pairs except for
nuclei within the same molecules, while the second sum runs over all molecules and dI is the bond distance of that
molecule. To this form of the e↵ective potential correspond two pair actions, bonding and non-bonding.
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Let us discuss the specific case of molecular hydrogen in conditions where the probability of molecular dissociation
is negligible (low enough density and temperature). In this case we introduce two e↵ective potentials, one to represent
the interaction within a molecule, the bonding potential (this is very similar to a Morse potential), and another to
represent the interaction between any two protons belonging to di↵erent molecules. Those potentials can be obtained
in many di↵erent ways. What we do is to extract the e↵ective potentials from inverting the computed structure (g(r)
and S(k)) in the molecular liquid at some thermodynamic conditions (Boltzmann inversion). This optimal potentials
are the ones that contains all two-body e↵ects of the many-body potential energy surface, in such a way that the
corrective factor at the primitive level only include three-body terms and above. However the optimal potentials will
depend on the thermodynamic state itself and will require simulating the system before obtaining the potential. But
we don’t need to be very accurate and we will use the optimal potential obtained at some thermodynamic state, also
to simulate system at nearby states. We also have notice that the potential extracted from the structure for classical
nuclei does not reproduce the structure of the system with quantum nuclei which is disappointing. In any case given
some pair potentials the e↵ective potential energy will be
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where vnb is the non-bonding potential, vb the bonding potential, the first sum runs over all distinct pairs except for
nuclei within the same molecules, while the second sum runs over all molecules and dI is the bond distance of that
molecule. To this form of the e↵ective potential correspond two pair actions, bonding and non-bonding.

D.M. Ceperley, Rev.Mod.Phys. (1995) 
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Quantum nuclei in CEIMC

Let us consider a many body system of nuclei and electrons with general hamiltonian

H = Kp +Hel (1)

where Kp is the kinetic energy operator of the nuclei and Hel is the electronic hamiltonian that includes the electronic
kinetic energy and all the interaction potential terms (Coulomb). In CEIMC for quantum nuclei we introduce an
e↵ective two-body potential between any pair of pseudo nuclei and therefore an e↵ective potential energy operator
Veff in such a way to write the unnormalized many-body nuclear density matrix as

⇢̂(�) = e

��H = e

��[Kp+Veff+(Hel�Veff )] (2)

In the coordinate representation the short time density matrix is

⇢(S, S0|⌧) = hS|e�⌧ [Kp+Veff+(Hel�Veff )]|S0i (3)

⇡ hS|e�⌧ [Kp+Veff ]|S0ie� ⌧
2 [(EBO�Veff )(S)+(EBO�Veff )(S

0)]

where ⌧ = �/P and P is the number of imaginary time slices, S the set of nuclear coordinates S = {r1, . . . , rN}
and EBO is the electronic energy function in the Born-Oppenheimer approximation, obtain with some method. For
the first term we use the pair density matrix approximation which represents a many-body density matrix for a
pair interaction potential in terms of the product over all distinct pairs of the 2-body density matrix, this obtained
numerically but without uncontrolled approximations

hS|e�⌧ [Kp+Veff ]|S0i ⇡
Y

ij

⇢

(2)(ri, rj ; r
0
i, r

0
j |⌧) = ⇢0(S, S

0|⌧)e�
P

ij
u(ri,rj ;r

0
i,r

0
j |⌧) (4)

where in this expression ⇢0 indicates the density matrix for an ideal system and u = �log[⇢(2)/⇢(2)0 ] is the pair action
corresponding to the e↵ective potential. Note that the many body potential energy surface is introduced at the
primitive level approximation (symmetrized). With this form of the e↵ective density matrix we finally obtain

⇢(S, S0|⌧) ⇡ ⇢0(S, S
0|⌧)e�

P
ij

u(ij)
e

� ⌧
2 [(EBO�Veff )(S)+(EBO�Veff )(S

0)] (5)

Let us discuss the specific case of molecular hydrogen in conditions where the probability of molecular dissociation
is negligible (low enough density and temperature). In this case we introduce two e↵ective potentials, one to represent
the interaction within a molecule, the bonding potential (this is very similar to a Morse potential), and another to
represent the interaction between any two protons belonging to di↵erent molecules. Those potentials can be obtained
in many di↵erent ways. What we do is to extract the e↵ective potentials from inverting the computed structure (g(r)
and S(k)) in the molecular liquid at some thermodynamic conditions (Boltzmann inversion). This optimal potentials
are the ones that contains all two-body e↵ects of the many-body potential energy surface, in such a way that the
corrective factor at the primitive level only include three-body terms and above. However the optimal potentials will
depend on the thermodynamic state itself and will require simulating the system before obtaining the potential. But
we don’t need to be very accurate and we will use the optimal potential obtained at some thermodynamic state, also
to simulate system at nearby states. We also have notice that the potential extracted from the structure for classical
nuclei does not reproduce the structure of the system with quantum nuclei which is disappointing. In any case given
some pair potentials the e↵ective potential energy will be

Veff (S) =
1

2

X

i 6=j

vnb(rij) +
X

I

vb(dI) (6)

where vnb is the non-bonding potential, vb the bonding potential, the first sum runs over all distinct pairs except for
nuclei within the same molecules, while the second sum runs over all molecules and dI is the bond distance of that
molecule. To this form of the e↵ective potential correspond two pair actions, bonding and non-bonding.

• for molecular state we use bonding and non-
bonding effective potentials

• at molecular dissociation only non-bonding one. 

Potentials obtained at reference thermodynamic states by Boltzmann Inversion

Pair action obtained by the matrix squaring method, stored in numerical tables and used 
during the simulation. 

⇢(2)(r, r0|2⌧) =
Z

dr” ⇢(2)(r, r”|⌧)⇢(2)(r”, r0|⌧)

The form of the potential only affects the convergence with the number of 
proton slices, not the accuracy of the calculation!!!

8 slices at T=600K and at molecular dissociation are enough for convergence.



• we want to displace all protons simultaneously because any nuclear move changes 
the wave function.

• we employ a 2-level Metropolis scheme to pre-screen proposed configurations 
before performing the VMC calculation. 

• Splitting of the Hamiltonian:

Sampling the nuclear paths in CEIMC

Ĥp = K̂p + Êqmc =[K̂p + V̂eff ]+[Êdft � V̂eff ]+[Êqmc � Êdft]

• pair action
• primitive approximation 1st Metropolis test
• primitive approximation 2nd Metropolis test

Propose the new configuration by a drifted random walk

~Fu = �rU U =
X

i<j

uij pair action

~S0 = ~S + h~F + ~⇠ ~F = ~Fkin + ~Fu + ~Fdft � ~Feff < ⇠i⇠j >= 2hkBT �ij

~Fkin Force from kinetic action (spring term)

~Feff = �rVeff



Sampling the nuclear paths in CEIMC

1st Metropolis test (noiseless)

A1(~S ! ~S0) = min
h
1, q1(~S ! ~S0)

i
q1(~S ! ~S0) =

G(~S ! ~S0)⇢eff (S0|�)e��[Edft(S
0)�Veff (S

0)]

G(~S0 ! ~S)⇢eff (S|�)e��[Edft(S)�Veff (S)]

G(

~S ! ~S0
) / exp

2

64�

⇣
~S0 � ~S � h~F (S)

⌘2

2�2

3

75

2nd Metropolis test with penalty  (only if the first step is passed)

A2(~S ! ~S0) = min
h
1, q2(~S ! ~S0)

i
q2(~S ! ~S0) =

e��[Eqmc(S
0)�Edft(S

0)]

e��[Eqmc(S)�Edft(S)]
e��2�2(S,S0)

This scheme is implemented in the normal mode basis of the path (kinetic action) 
to decouple the amplitude of the centroid move (q=0) from the amplitude of the 
internal modes (q>0) moves and to adjust them according to their order for an 
optimal sampling (Cao-Berne, Tuckerman). 

With this scheme we can sample systems of 100 protons with paths of 32 beads 
with no major problems.



in CEIMC quantum nuclei are not more expensive than classical nuclei !! 

In the penalty method we need to run QMC calculations to reduce the noise on the energy 
difference to an acceptable level.  We do this by running many independent QMC calculations 
with different twisted boundary conditions to reduce the size effects.

Suppose we run classical ions with a given noise level (βσcl)2. 

Consider now representing the quantum ions by P slices. To have a comparable extra-
rejection we need a noise level per slice given by 

(βσcl)2 ≈ P(βσq/P)2          which provides:         σq2≈ σcl2/P. 

We can allow the noise P times larger on each slice, i.e. consider P times less independent 
estimates of the energy difference per slice. 
However we need to run P different calculations one for each time slice, so that the amount 
of computing for a fixed global noise level is the same as for classical ions.

With TABC, we replicate all twists for each time slices: optimal for parallel computers.



• QMC for fermions exploits the fixed node approximation and the accuracy depends on 
the accuracy of the many body trial wave function.

• Slater-Jastrow form:

• U(R|S) is a (two-body + three-body + ...) correlation factor (bosonic).

• ∑ is a Slater determinant of single electron orbitals

• The nodes are determined by the form of the orbitals only.  They are the most important 
part of the trial function since the nodes are not optimized by projection.

• Hydrogen trial function

• Single electron orbitals obtained from a DFT calculation (with various approxs) for each 
proton configuration.

• Analytical electron-electron and electron-proton backflow transformation (BF) to 
improve the nodes  [Holzmann, Ceperley, Pierleoni, Esler PRE 68, 046707 (2003)].

• Analytical form for the single and 2-body Jastrow within RPA (Gaskell, 1967)

• Addition of numerical 1-body, 2-body, 3-body Jastrows and backflow terms (3-body e-e 
is not-effective)

• few variational parameters to be optimized (on selected configurations only).

13 variational parameters only !   effect of optimization: ~1 mH/at on the energy
                                                                                 ~40% on the variance

CEIMC: trial functions for hydrogen

Trial wave functions: |ΨT >

Slater-Jastrow form

ΨT (R|S) = exp [−U(R|S)]Det
“

Σ↑
”

Det
“

Σ↓
”

U(R) is a (two-body + three-body + . . . ) correlation factor (”pseudopotential”)

Σ↑ is a Slater determinant of single electron orbitals θk(x⃗i, σi|S).

The nodes are determined by the form of the orbitals only. They are the most important

part of the trial function since the nodes are not optimized by projection.

Hydrogen trial function

Single electron orbitals obtained from a band structure(OEP) or LDA(DFT)

calculation for each proton configuration.

Analytical electron-electron backflow transformation (BF) to further improve the

nodes [Holzmann, Ceperley, Pierleoni, Esler PRE 68, 046707 (2003)].

Analytical form for the two body ”pseudopotential” within RPA (Gaskell, 1967)

Common feature: no variational parameters to be optimized at the QMC level

early implementation (Metallic): fully analytical form of the trial function

free electron orbitals + (ee + ep) backflow + (2body + 3body) Jastrow

CNRS Grenoble, 19 May 2008 – p. 23/41

�k(⌃xi, ⇥i|S)



Backflow-3Body trial function Holzmann et al, Phys. Rev. E 68, 046707 (2003)
Pierleoni et al, Comp. Phys. Comm. 179, 89–97 (2008).

backflow ~xi = ~ri +
NeX

j 6=i

⇥
y

RPA
ee (rij) + ⌘ee(rij)(~ri � ~rj)

⇤

+
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I=1

h
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ep (|ri � SI |) + ⌘ep(|ri � SI |)(~ri � ~

SI)
i
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0
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41
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2
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3
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1

A
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2b exp[�(r/w↵
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2
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Backflow-3Body trial function Holzmann et al, Phys. Rev. E 68, 046707 (2003)
Pierleoni et al, Comp. Phys. Comm. 179, 89–97 (2008).

3-body ~Gi =
NeX

j 6=i

⇥
⇠RPA
ee (rij) + ⇠ee(rij)

⇤
(~ri � ~rj)

+

NpX

I=1

⇥
⇠RPA
ep (|ri � SI |) + ⇠ep(|ri � SI |)

⇤
(~ri � ~SI)

⇠↵(r) = �↵
3b exp[�((r � r↵3b)/w

↵
3b)

2
] ↵ = (ee, ep)



Backflow-3Body trial function Holzmann et al, Phys. Rev. E 68, 046707 (2003)
Pierleoni et al, Comp. Phys. Comm. 179, 89–97 (2008).

3-body ~Gi =
NeX

j 6=i

⇥
⇠RPA
ee (rij) + ⇠ee(rij)

⇤
(~ri � ~rj)

+

NpX

I=1

⇥
⇠RPA
ep (|ri � SI |) + ⇠ep(|ri � SI |)

⇤
(~ri � ~SI)

⇠↵(r) = �↵
3b exp[�((r � r↵3b)/w

↵
3b)

2
] ↵ = (ee, ep)

13 variational parameters only !
effect of optimization: ~1 mH/at on the energy
                                ~40% on the variance

Optimizing each newly proposed nuclear configuration prior its acceptance is 
a major bottleneck for the efficiency of the method 
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FIG. 2 Hydrogen Phase diagram. Solid lines show the bound-
aries between the gas, liquid and solid phases. The solid cir-
cles show location of critical and triple points. The dashed
lines on the left estimate when fluid hydrogen changes from
H2 to fluid H and then to a classical two component plasma
(TCP). The dotted lines on the above 106 bar estimate the
temperature when the electrons become degenerate: the non-
interacting fermi energy EF and 0.1 EF . Also shown are three
phases (I,II,III) of solid H2 which occur as the molecules be-
come more oriented. How precisely hydrogens change from
solid H2 to solid H is not established so it is shown as a grey
box. The line going vertically away from the grey box shows
the separation between the mostly insulating molecular fluid
and the mostly conducting atomic fluid; the first order liquid-
liquid transition ends at a critical point; what is shown at
higher temperatures is a crossover. The almost vertical tran-
sition line at the extreme right of the diagram indicates the
quantum melting of the protons lattice under compression.

tics of the light protons could be important and could
lead to very interesting phases such as occur in liquid
3He and 4He. In solid hydrogen, since electron-phonon
coupling is very large, it has been estimated(Ashcroft,
1968) that atomic hydrogen will be a room temperature
superconductor.

Further motivation for studying dense hydrogen comes
from technological applications, for example, inertial con-
finement fusion (ICF), where hydrogen gas is compressed
with a laser-driven shock into the region where DT fu-
sion could occur, at physical conditions close to that of
HD209458b in Fig.1. Such aspects will not be directly
addressed in this review; the reader is instead referred to
Lindl et al., 2004, for example. Nonetheless, the focus of
our discussion is equally pertinent.

A final theoretical motivation for studying hydrogen is
to develop and test computer simulation methods. Hy-
drogen and helium are somewhat simpler than other el-
ements but pose unique di⌅culties for simulation. Since
they have no core electrons, their atomic structure is sim-
ple and the errors from the pseudopotential approxima-
tion, often employed to increase computational e⌅ciency,

are significantly smaller or absent. Furthermore, rela-
tivistic e�ects are small, hence spin orbit e�ects can be
ignored. However, because the protons, deuterons, and
alpha particles that constitute the nuclei are so light,
they too behave as quantum mechanical particles. This
has a strong influence on even the most basic proper-
ties of the system, such as relative stabilities of atomic
structures (Natoli et al., 1993). Harmonic corrections to
account for nuclear motion do not always work in hydro-
gen and helium. Thus, both the electrons and the ions
must be treated using quantum mechanics in order to
make definitive predictions. The availability of experi-
mental data and the intense physical interest has made
the study of high pressure hydrogen and helium into a
test-bed for theory and simulation. If the modern com-
putational techniques to treat electron correlation, such
as those based on quantum Monte Carlo (QMC) meth-
ods and density functional theory (DFT) are not accurate
for hydrogen and helium, there are serious problems in
trusting them for heavier elements.

This article concerns the thermodynamic properties of
Hydrogen and Helium at pressures above 10 GPa and for
temperatures less than 100,000K. Our primary focus is
on advanced simulation methods used for hydrogen and
helium in this region of pressure and temperature and
their comparison with experimental results.

We start by describing the theoretical and numerical
tools that are used for describing hydrogen (Section II).
We then provide a brief discussion of the experimental
methods that are in use (Section III), in order to facili-
tate the understanding of theory vs. experiment compar-
isons that follow. In Section IV, we describe the current
understanding of the phase diagram of hydrogen under
extreme conditions and its properties and interesting pre-
dictions such as metallization, superconductivity, and the
possibility of a quantum fluid ground-state. In Section V
we provide a brief discussion of helium, and describe the
behavior of the hydrogen–helium mixtures of primary im-
portance to astrophysical applications. Section VI con-
cludes and discusses some of the open questions that re-
main.

II. PREDICTING PROPERTIES OF MATTER UNDER
EXTREME CONDITIONS

In this section we review some of the computational
methods for hydrogen and helium at high pressures. The
properties of hydrogen and helium at conditions of inter-
est are described to high accuracy by the non-relativistic
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FIG. 1 (Color online) The phase diagram (temperature vs
pressure) for hydrogen. The principal Hugoniot of hydrogen
(the densities and pressures that can be reached by shock-
ing solid hydrogen initially at 1 Bar) is shown as a solid line,
the secondary Hugoniot (i.e. points reached with a double
shock) is also shown branching downward from the principal
Hugoniot. The isentropes of three giant planets (Jupiter, Sat-
urn, and HD 209458b) and a representative brown dwarf (G1
229B) are shown as dashed lines; the estimated melting tem-
peratures of H2 is shown as a dashed-dot line. Static diamond
anvil experiments are able to access temperatures less than
roughly 1100 K and pressures less than 300 GPa as delimited
by the green dashed-line.
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protons. From the slope of the two branches of the EOS at the
transition (indicated by linear segments in Fig. 2A) we extracted
the isothermal compressibility of the coexisting phases. We find
that the lower pressure phase is ∼ 15− 30% more compressible
than the higher pressure phase, the effect being slightly larger for
classical nuclei than for quantum protons. Moreover, the critical
compressibility is found to increase roughly linearly with temper-
ature along the transition line from ∼ 1.5× 10−3 to ∼ 3.0× 10−3
a.u. in the range T = 600− 1,500 K. Finally, the critical com-
pressibility of quantum hydrogen is ∼ 20% larger than for classical
nuclei because of the lower transition pressure of quantum hy-
drogen. The direct observation of the transition pressure allows us
to extract the latent heat of the transition as the difference of the
enthalpy per atom between the coexisting phases at the transition
pressure. The estimated latent heat, 630ð150Þ K, is in agreement
with previous estimate (20) and is roughly constant in the range
600–1,500 K. See the SI Appendix for more details.
Concerning structural properties, we observe a mostly mo-

lecular phase (lower density) in coexistence with a mostly atomic
phase (higher density) at the transition pressure. This is signaled
by the amplitude of the molecular peak in the proton–proton
pair-correlation functions gppðrmolÞ, where rmol ’1.4a0 as illus-
trated in Fig. 2B. Note that the two coexisting points have a
mixed character but the adjacent pressures are fully character-
ized as molecular (lower density) and atomic (higher density).
This is at variance with recent results from FPMD using vdW-
DF2 approximation, where the molecular character persists in
the high-pressure phase well beyond the transition pressure (see
the supporting information of ref. 24). The structure of the high-

pressure phase is peculiar because protons can still be found at
distance of the molecular bond (∼ 1.4a0), although with a re-
duced probability with respect to the low-pressure phase. How-
ever, analysis of the dynamics reveals that the protons change
partners easily, a clear indication that a molecular description is
not appropriate for these thermodynamic states.
The electronic properties of the coexisting phases can be

characterized in several ways. Here we report the calculation
of the electrical conductivity as obtained using the Kubo–
Greenwood formula with well-converged DFT orbitals and
nuclear configurations sampled during the CEIMC runs. The
results for the dc conductivity, obtained by averaging over 10
statistically independent nuclear configurations, and obtained
by Kohn–Sham orbitals from PBE and vdW-DF1 X-C ap-
proximations, are reported in Fig. 2C. The quantitative value
of the conductivity depends on the DFT approximation but
the sudden appearance of the metallic character at the tran-
sition pressure is clear: The two coexisting points both show a
nonvanishing signal supporting our observation of a mixed
character, but the adjacent densities are insulating at lower
pressure or metallic at higher pressure.
An alternative way to characterize the electronic state is through

the reduced single-electron density matrix ρð1Þðr, r′Þ= hψ†ðrÞψðr′Þi,
where ψ†ðrÞ and ψðr′Þ are, respectively, creation and annihilation
operators and h. . .i denotes the integral over the electronic wave
function and over nuclear configurations. At the insulator-to-metal
transition the envelope of the curve, a measure of the electron lo-
calization in real space, should change from an exponential to an
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Fig. 2. Results for the system with classical protons along the T = 600 K isotherm. (A, Upper Left) EOS expressed by the coupling parameter rs versus the
pressure. Raw data (black diamonds) and size-corrected results (red circles) are reported, together with linear fits for the two branches near the discontinuity.
Note that below ∼ 200 GPa our EOS is for the metastable fluid because the thermodynamically stable state should be the phase I crystal. (B, Lower Left)
Amplitude of the molecular peak observed in the proton–proton radial distribution functions gppðrmolÞ, where rmol ’1.4a0. Beyond the vertical blue lines,
gppðrÞ do not exhibit a maximum but only a shoulder at the molecular distance. (C, Upper Right) dc electrical conductivity as obtained by optical calculation
within DFT with two X-C approximations (black squares, PBE; red circles, vdW-DF). The points are averages over 10 statistically independent nuclear con-
figurations sampled during the CEIMC run at each density. (D, Lower Right) Integral of the absolute value of the single-electron off-diagonal density matrix
from variational Monte Carlo, as a measure of the electron localization, obtained by averaging over 10 independent nuclear configurations. In all panels the
blue vertical dashed lines represent the transition pressure with its uncertainty.
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• absence of hysteresis 
allows to detect the 
transition pressure 
directly

• Electrical 
conductivity from 
Kubo-Greenwood 
with DFT on nuclear 
configurations from 
CEIMC

algebraic decay. Following ref. 36, we compute the following in-
tegral over the simulation cell:

Γρ =
1
N

Z

V

drdr′
V

!!!ρð1Þðr, r′Þ
!!!, [1]

as shown in Fig. 2D. Whereas in the insulating phase Γρ weakly
increases with pressure, it is constant in the metallic phase, and a
clear jump is observed at the transition. This discontinuity re-
flects a clear change of behavior in the integrand at the transi-
tion. Although an 8 × 8 × 8 grid of twist angles is used for these
calculations, the size of our systems is too small to saturate the
integral even in the insulating phase. This reflects the residual
itinerant character of the electrons in the molecular liquid
near metallization.
In Fig. 3 we report our data for the transition lines together

with predictions from FPMD simulations with different DFT
approximations (24) and previous QMC-based results (20, 33,
35, 36). We report transition lines from four different X-C ap-
proximations, namely PBE, HSE, vdW-DF, and vdW-DF2, and
for both classical and quantum protons. For each functional
(except for HSE), the line at higher pressure corresponds to
classical nuclei, whereas the line at lower pressure corresponds
to quantum protons. The general trend of the DFT approxima-
tions is quite clear. GGA-PBE favors the dissociated-metallic
phase followed by HSE, then by vdW-DF, and finally by vdW-
DF2. The difference in pressure between GGA-PBE and vdW-
DF2 is as much as 250 GPa. The CEIMC data lie between the
two extremes and in rough agreement with the vdW-DF and
HSE approximations. This was expected on the basis of a de-
tailed analysis of functional performance (37). However, even in

these cases the agreement is only qualitative; e.g., the HSE line
for classical nuclei describes well the classical CEIMC data at
lower temperature but is too low in pressure at higher temper-
ature. On the other hand, vdW-DF for quantum hydrogen agrees
with CEIMC at high temperature but overestimates the transi-
tion pressure at lower temperature. In general, none of the DFT
curves exhibits the change of curvature of the transition line
observed for CEIMC and for the static compression data. Fig. 3
also shows CEIMC results of a previous investigation (20, 33),
which however have been found to be biased by nonconverged
orbitals (38).
Finally, in Fig. 3 we report recent results from MD-QMC

which, as mentioned above, have predicted two different tran-
sitions, the first one ascribed to the insulator–metal transition
(IMT in the figure) (36), the second one, at higher pressure,
associated with the molecular dissociation transition (35). It is
important to discuss the reason for such large disagreement
because both our present work and the above-mentioned work
are based on QMC methods. In the supporting information of
ref. 36, a quantitative comparison between the trial wave func-
tions for selected configurations was reported. The present trial
wave function (DFT orbitals + two-body and three-body Jastrow +
backflow) is shown to have a lower energy with respect to the trial
function used in refs. 35, 36. However, we believe that the largest
contribution to the disagreement arises from the different treat-
ment of size effects in the two studies. Here we used small systems
(54 and 128 protons) with twist-averaged boundary conditions
(TABC), while in refs. 35 and 36 larger systems (up to 256 protons)
at the Γ-point were considered. As discussed in ref. 20, size effects
in hydrogen, in particular near metallization, are quite large and
required systems of 432 atoms or larger at the Γ-point for an ac-
curate location of the transition. Conversely, smaller systems re-
quire k-point sampling to exhibit the transition. This picture, seen
in both DFT and QMC simulations, is the largest contribution to
the finite-size corrections (39) (SI Appendix). The purely electronic
origin of the leading finite-size effects is consistent with the residual
itinerant character of the electrons found in both phases and re-
veals a slow decay of the single-electron density matrix with dis-
tance. Another source of bias is the use of localized orbitals in
refs. 35, 36 which favor the molecular-insulating phase over the
atomic-metallic phase, hence separating the two phenomena
(metallization and dissociation) and pushing the transition lines
to higher pressures.
In conclusion, we have reported what we believe are the

most accurate predictions for the location of the liquid–liquid
transition line in high-pressure hydrogen. We confirm the ex-
istence of a single transition at which metallization and mo-
lecular dissociation simultaneously occur. Our prediction is
25–30 GPa higher in pressure than recent experimental results
from static compression techniques (22). Note that in those
experiments the pressure is measured at ambient temperature
only, i.e., in the crystal phase I, and used at higher pressure in
the liquid phase. This might be a possible origin of the dis-
agreement with our predictions. On the other hand, recent
shock wave experiments located the transition line at a higher
pressure and almost independent of temperature (24), in
striking disagreement with DAC experiments and with our
predictions. The origin of this disagreement remains unclear.
Our predictions are far more reliable than DFT-based predic-
tions of the transition line and should be considered a better
theoretical reference.

Materials and Methods
Using constant volume simulations we have studied dense hydrogen along
five isotherms at 3,000, 1,500, 1,200, 900, and 600 K for a range of densities
around the transition. We used the CEIMC method, an ab initio method in
which the nuclear configuration space is explored by Metropolis Monte
Carlo, and the Born–Oppenheimer potential energy surface is provided by

Mazzola diss.

100 200 300 400
Pressure (GPa)

0

1000

2000

T
em

pe
ra

tu
re

 (
K

)

Fluid H2

Fluid H

Solid H2

III

I

II

IV

DF2

DF

PBE

HSE-cl

Mazzola IMT
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FIG. 8. (color online) EOS along the T=600K isotherm and across the LLPT for quantum protons with P = 4 (black
diamonds), P = 8 (red circles) and P = 16 (blue squares). Statistical error bars are smaller than the symbols.

with a much reduced molecular peak when using � point energies. The nuclear system is frustrated by the
imposed insulating character of the electronic liquid (a 54 electrons system corresponds to a closed shell in
the reciprocal space in 3D) and not able to form proper molecules. On the other hand the use of TABC
energies removes such constraint and drives the system toward its equilibrium state. Note how similar the
observed gpp(r) with � point energies is to the one reported in ref [17] (see figure 3 of the Supplemental
Material). As concerns thermodynamic properties, the average internal energy is lower by 15mH/atom when
using electrons at the � point, a usual results for closed shell systems [15]. The change in pressure between
the two systems is also dramatic: the system with � point electrons has a pressure of P = 116.7(1) GPa
while the system with TABC electrons has a pressure of P = 177.3(1) GPa, a pressure jump larger than
the one observed in ref. [16] when going from systems of 64 to 256 protons with � point electrons. This
analysis suggests that the di↵erences between the results of that investigation and our present results might
be mainly related to the di↵erent treatment of size e↵ects during the sampling of the nuclear configuration
space.

Residual size corrections to our predictions for the internal energy and pressure are computed following
ref [18] and added to the raw data (see numerical tables in the last section of this Supporting Information).

To check that size e↵ects are not a major issue in our study we have simulated larger systems of Np =
Ne = 128 at four densities and T=1200K. In figure 10 we compare the proton-proton g(r) for the two system
sizes at the four densities. The agreement at the highest (rs = 1.34) and the lowest (rs = 1.44) densities is
remarkable, showing that the local structure of the liquid far from the transition point is captured already
with Np = 54 protons. Closer to the transition, occurring here between rs = 1.38 and rs = 1.39, the
agreement is less good; the larger system appears to exhibit a sharper transition. Indeed we observe that at
rs = 1.37 the smaller system still presents some molecular character not seen in the larger system. On the
other side of the transition, at rs = 1.40, the molecular character is more pronounced in the larger system.
However the e↵ect is quite small and could also be related to the finite sampling since fluctuations are larger
near phase boundaries, in particular for the smaller system, and properties converge much slower than away
from the transition.

Finally we want to discuss finite size e↵ects on the conductivity and �⇢, the integral of the o↵–diagonal
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system, which has no symmetry built in, plays the role of the trial functions
in RQMC and permutations need to be sampled explicitly with an additional
level of difficulty in the method [19, 26]. However, protonic statistics become
relevant when the quantum dispersion is comparable to the interionic distances
Λp =

√
2λpβ ≈ (Np/V )−1/3 = n−1/3

p . This define a degeneracy temperature
kBTD(np) = 2λpn

2/3
p below which quantum statistics need to be considered.

For hydrogen TD ≃ 66.2(K)/r2
s , where rs is the usual ion sphere radius of

coulomb systems rs = (3/4πnp)1/3. Therefore proton statistics in metallic
hydrogen (rs ≤ 1.3) becomes relevant below 50K depending on the density,
a regime that we have not investigated yet. Proton statistics in molecular
hydrogen is also quite important and results in the separation between ortho-
and para-hydrogen [49]. Because this effect is relevant only at low temperature,
we have disregarded it as well.

In order to implement the PIMC we need a suitable approximation for
the high temperature density matrix ρp(S, S′|τp). We could use either the
primitive approximation or the importance sampling approximation described
earlier. However a better approximation, in particular for distinguishable par-
ticles, is the pair product action [19] which closely resembles the pair trial
function. The idea is to build the many body density matrix as the product
over all distinct pairs of a two-body density matrices obtained numerically for
a pair of isolated particles. At high temperature the system approaches the
classical Boltzmann distribution which is indeed of the pair product form. The
method is described in detail in [19]. Here we just explain how we can take
advantage of this methodology within the CEIMC scheme. In order to use
the method of pair action, we need to have a pair potential between quantum
particles. In CEIMC, however, the interaction among protons is provided by
the many-body BO energy. Our strategy is to introduce an effective two-body
potential between protons V̂e and to recast the ionic density matrix as

ρP (S, S′|τp) = ⟨ S|e−τp[Ĥe+(ÊBO−V̂e)]|S′ ⟩

≈ ⟨ S|e−τpĤe |S′ ⟩ e−
τp
2 [EBO(S)−Ve(S)]+[EBO(S′)−Ve(S′)] (92)

where Ĥe = K̂p + V̂e and the corrections from the effective potential to the
true BO energy are treated at the level of the primitive approximation. We
can compute numerically the matrix elements of the effective pair density
matrix ρ̂(2)

e (τp) as explained in [19]. The effective Np-body density matrix is
approximated by

⟨S|e−τpĤe |S′⟩ ≈
Np∏

ij

⟨si, sj |ρ̂(2)
e (τp)|s′i, s′j⟩ = ρ0(S, S′|τp)e−

∑
ij ue(sij ,s′

ij |τp)

(93)
where ρ0 is the free particle density matrix and ue(sij , s′

ij |τp) is the effective
pair action. The explicit form for the partition function is then
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≈ ⟨ S|e−τpĤe |S′ ⟩ e−
τp
2 [EBO(S)−Ve(S)]+[EBO(S′)−Ve(S′)] (92)
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reflectivity but at much higher pressure (∼300 GPa) along an
almost temperature-independent line. The dissociated character
of the fluid was inferred by using ab initio theory.
On the theoretical side, the occurrence of a first-order tran-

sition between two liquids of different character was conjectured
a long time ago based on various methods (25–27), by ab initio
simulations (28, 29) and more recently firmly established within
the first-principles molecular dynamics (FPMD) with density
functional theory (DFT) (20, 24, 30–32). Within this theory the
exact location of the transition line depends on the specific
approximation adopted for the exchange–correlation (X-C)
functional: semilocal functionals like Perdew–Burke–Ernzerhof
(PBE) predicting lower transition pressures than the van-der-
Waals–corrected functionals (vdW-DF and vdW-DF2), with the
prediction of the nonlocal hybrid Heyd–Scuseria–Ernzerhof
(HSE) functional lying somewhat between the two sets. The lo-
cation of the transition line ranges from 100 to 400 GPa. Nuclear
quantum effects, considered both explicitly by path integral
methods (30) and by approximate theories (24), reduce the
transition pressure by ∼ 10− 20% (depending on the tempera-
ture) with respect to calculations for classical protons. Results
obtained using the coupled electron–ion Monte Carlo (CEIMC)
method (20, 33) also supported the existence of a first-order
phase transition in agreement with FPMD, although the location
of the transition line was different. In CEIMC the electronic
problem is solved by quantum Monte Carlo (QMC), which is
formulated directly in terms of electrons and protons, and thus a
more fundamental description of correlation (5, 34). QMC is
more accurate than DFT and because of its variational character
the relative accuracy of various approximations can be estab-
lished. In contrast, establishing the relative accuracy of various
approximations within DFT requires predictions from a more
fundamental theory or from experiments. Recently, a different
QMC-based method (MD-QMC) has been exploited to in-
vestigate high-pressure liquid hydrogen (35, 36). This new
method predicted the occurrence of two distinct phase transi-
tions, a nonmetal to metal transition at lower pressure (from 150
to 450 GPa depending on temperature) between a purely mo-
lecular-insulating phase and a mixed molecular-atomic and me-
tallic phase of liquid hydrogen, and a second dissociation transition
at higher pressure (from 400 to 600 GPa depending on temper-
ature). This disagrees both with experiments and previous the-
ories and is not confirmed by our calculations based on more
accurate treatment of finite-size effects and better trial wave func-
tions as discussed below.
Here we report results of an extensive study of the LLPT and

the properties of the liquid in the transition region by CEIMC.
With respect to our previous studies, we have an improved trial
wave function using several types of orbitals, a much more ex-
tensive set of data (more isotherms and a wider range of den-
sities), and we consider both classical and quantum protons. We
carefully investigate and correct for all main sources of bias af-
fecting the results. Our present results, summarized and compared
with the recent experiments in Fig. 1, confirm the picture of a
unique LLPT where molecular dissociation and metallization
occur simultaneously. The location of the transition line lies
between the two experimental results, at only 25− 30 GPa higher
pressure than the DAC experimental data. Also, the shapes of
DAC-derived and CEIMC-predicted lines are similar: they both
exhibit a change of curvature for increasing pressure, clearly
detectable despite the sparse grid of temperatures investigated.
The origin of such change of behavior is unclear at present. The
transition measured in the dynamical experiments instead is located
at higher pressure and it is almost temperature independent. (Note
that the DAC experiment used hydrogen and should be compared
with our line at lower pressure whereas the dynamical compression
experiment used deuterium and should be compared with our line
at higher pressure.) At present the origin of the disagreement

between the two experiments is unclear, as well as the origin of
the shift between our predictions and the experimental lines.
We have studied the systems of both classical and quantum

protons along five isotherms: T = 600, 900, 1,200, 1,500, and
3,000 K. We explicitly avoid isotherms close to the predicted
critical point (2,000 K) because we expect critical fluctuations
and size effects to hamper an accurate location of the transi-
tion. Fig. 2 illustrates the results along the T = 600 K isotherm
for classical protons. It is illustrative of the results for all iso-
therms except T = 3,000 K where no transition is observed. In
Fig. 2A we report the EOS in terms of rs vs. pressure. The
occurrence of a discontinuity with two distinct branches, and
two coexisting densities at the transition is evident. We report
both the raw data (black diamonds) and the size-corrected
data (red circles) and show that size effects, although not
negligible, are very limited and push the transition pressure to
∼ 5% higher values (see the SI Appendix for a more extensive
discussion). The observed discontinuity is a clear signature of a
first-order phase transition with an associated latent heat. In
all cases, and in agreement with previous work (20), we ob-
serve a small specific volume jump at the transition and the
absence of detectable metastable states along the two branches
of the EOS. These features of a weakly first-order transition
allow us to accurately locate the transition pressure without
the need to compare free energies of the coexisting phases.
The values of the transition pressure along the various iso-

therms obtained with this method are reported in Fig. 1 for hy-
drogen treated quantum mechanically; the data for deuterium
are obtained by interpolating results from classical and quantum
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Fig. 1. Hydrogen phase diagram with experimental liquid–liquid transition
lines and CEIMC predictions. Black continuous lines indicate the melting line as
well as the transition lines between different experimentally detected (3, 13)
crystalline phases: I–IV. Melting line of phase IV and the new phase IV′, in-
dicated by dashed black lines, are still speculative (13). Blue circles and squares
are CEIMC predictions for the liquid–liquid transition line in hydrogen and in
deuterium, respectively. DAC experimental results for hydrogen are indicated
by green circles (22) and purple circles (23), whereas red squares indicate shock
wave experimental data for deuterium (24). We also report an earlier exper-
imental point for the conductivity onset in liquid hydrogen (yellow circle) (15)
and two points for deuterium dissociation and metallization (maroon squares)
(16). The error bars on the temperature for the latter two sets of data reported
here were inferred from theories (5). In fact, all dynamical experiments (15, 16,
24) used models to determine T. The blue triangle at 3,000 K indicates the
CEIMC prediction for a metallization cross-over above the critical point where
the conductivity is 2−4× 103ðΩ cmÞ−1.

4954 | www.pnas.org/cgi/doi/10.1073/pnas.1603853113 Pierleoni et al.

deuterium
hydrogen

Pierleoni, Morales, Rillo, Holzmann, Ceperley PNAS 113, 4953 (2016)



Nuclear Quantum Effects (NQE) in DFT

Isotherm at 
T=1000K

PBE < vdW-DF2

PIMD < BOMD

experiments, having a slightly lower reflectivity than PBE.
As discussed above though, this is not unexpected, due to
the well-known band gap problem of local and semilocal
DFs. On the other hand, reflectivity results from configu-
rations obtained with PIMD PBE are !3 times larger than
the experimental values, even when the optical calculations
are performed with HSE DF. This effect likely derives from
the strong tendency of PBE to favor delocalized electronic
states combined with its poor treatment of dispersion
interactions, which probably results in inaccurate proton
statistical configurations, and thus the metallization and
LLPT process altogether.

It is important to mention that the above simulation data
agrees very well with the SESAME EOS [47,48], the latter
used to convert experimental shock velocity data to pres-
sure, density, and temperature. For example, our present
thermodynamic data (PIMD vdW-DF2) predicts a pressure
only slightly higher !3–5 percent than SESAME in the
relevant density range. Further, along the T ¼ 5000 K
isotherm, the agreement is better than 1% for pressures
in the range of the experiments (30–60 GPa).

Figure 3 shows a comparison of pressure versus density
along the T ¼ 1000 K isotherm for both FPMD and PIMD
simulations using either PBE DFs [21] or vdW-DF2.
Notice that both DFs show a plateau in the pressure, a
clear indication of a first-order LLPT. There is, however, a
further qualitative similarity in that the transition occurs
between an insulating molecular liquid and a conductive
atomiclike liquid. There is a large quantitative difference
in the transition pressures. The inset of Fig. 3 shows a

comparison of the PCF between FPMD and PIMD simu-
lations using vdW-DF2. As can be seen, NQEs have a
strong influence on the properties of the molecular peak,
zero-point motion producing a wider distribution of bond
distances. This results in a destabilization of the molecular
state, explaining the lower transition pressures. (Notice
that the primary vdW-DF2 results shown in the figure are
performed with PIMD, so systems of classical protons
are expected to exhibit even higher transition pressures,
above 365 GPa).
Figure 4 shows the electronic conductivity as a function

of pressure along various isotherms, comparing both PBE
and HSE DFs. Note that in both cases, proton configuration
were generated with vdW-DF2. Notice also that while the
conductivity values differ between HSE and PBE DFs, they
nonetheless agree on the existence of a jump atT ¼ 1000 K.
Returning to Fig. 1, a schematic phase diagram of hydro-

gen in the regime of molecular dissociation and below
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LLPT by DFT: structure and DC conductivity
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PPT is elusive on the basis of the molecular 
fraction but is quite clear on the basis of the DC 
conductivity (in the single-electron theory)

• PPT is a first order phase transition below 
Tc~1000-1500K
• Molecular dissociation is driven by metallization
• Above Tc the metallization and the molecular 
dissociation are continuous processes
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FIG. 4: The DC electronic conductivity of hydrogen as a
function of pressure calculated using the Kubo-Greenwood
formula and DFT. The black, red and blue points correspond
to averages over protonic configurations sampled from the
BOMD, CEIMC and PIMD simulations, respectively.

transition has strong e�ects on electronic properties, in
particular, those related to electron localization. The
molecular fraction changes slowly across the transition;
in fact, partial dissociation is seen at densities well below
the transition. The molecular state in these conditions
is very di�erent from that found at lower densities where
there is no overlap between molecules. Close to the tran-
sition, the molecular state is transient and very weakly
bound; molecules form and break on small time scales of
the order of the collision frequency [28, 29]. While the
description of molecular and atomic fractions based on
somewhat arbitrary bonding state criteria has been used
to describe the transition region, and has lead to conl-
cude in favor of a continuous dissociation transition [31],
we believe that it is more indicative to use the discon-
tinity of the electrical conductivity: it coincides precisely
with the onset of the (dP/dV )T = 0 plateau.

Figure 4 shows the (time averaged) DC conductivi-

ties as a function of pressure for CEIMC, BOMD and
PIMD simulations. At 2000 K and above, the conductiv-
ity increases smoothly as a function of pressure, but for
T � 1500 K there is a sharp and discontinuous increase
in the conductivity at the transition. The size of the dis-
continuity increases with decreasing temperature in both
BOMD and CEIMC simulations. By extrapolating to the
pressure where the size of the discontinuity in conductiv-
ity goes to zero, we can estimate the critical point of the
transition. Above this temperature, the conductivity and
the dissociation as a function of density is continuous. At
lower temperatures, a first order transition is encountered
as we go across the dissociation regime with a volume dis-
continuity and a sharp metallization of the liquid. Notice
that as mentioned before, the location of the transition is
di�erent when computed with CEIMC and BOMD. We
expect the CEIMC results to be more accurate since they
avoid the approximate exchange-correlation functional.
Nonetheless, both methods produce the same qualitative
picture of the transition.

Melting Line

As indicated in figure 1, at low temperatures the pre-
dicted PPT is expected to meet the melting line of the
molecular solid. In this work, we determine the melting
line of the system by comparing the free energy of the liq-
uid phase and the free energy of the molecular solid phase
(phase I, hcp rotationally disordered). For computational
reasons, we limit our study to the DFT level of theory.
It is well known that the semi-local exchange-correlation
functionals in DFT underestimate the band gap in most
semiconductors and favor delocalized states. This ex-
plains why the PPT is predicted at lower pressure with
DFT than with QMC. For pressures below the metaliza-
tion, the band gap is finite and the ground state prop-
erties should be accurately reproduced. As soon as the
DFT- band gap closes, the nature of the ground state in
this theory changes significantly and the predictions from
DFT become inaccurate. This discrepancy will continue
until the true band gap of the system closes. At higher
densities, DFT will again produce reliable results. This
is consistent with our finding here and in previous work
[39] and limits the range of pressure for which DFT can
be used to predict the melting line (see figure 1).

Using thermodynamic integration with BOMD[45], we
performed free energy calculations in the solid and liquid
phases to determine the melting line at high pressures.
We neglected quantum e�ects on the nuclei for these cal-
culations. The melting line of hydrogen should be well
represented by our calculations with classical protons for
pressures below 200 GPa, since the system remains in-
sulating. Unfortunately, we were unable to study the
influence of nuclear quantum e�ects on the melting line
due to the large computational demands of the PIMD

Morales, Pierleoni, Schwegler, Ceperley PNAS 108, 12799 (2010)



algebraic decay. Following ref. 36, we compute the following in-
tegral over the simulation cell:

Γρ =
1
N

Z

V

drdr′
V

!!!ρð1Þðr, r′Þ
!!!, [1]

as shown in Fig. 2D. Whereas in the insulating phase Γρ weakly
increases with pressure, it is constant in the metallic phase, and a
clear jump is observed at the transition. This discontinuity re-
flects a clear change of behavior in the integrand at the transi-
tion. Although an 8 × 8 × 8 grid of twist angles is used for these
calculations, the size of our systems is too small to saturate the
integral even in the insulating phase. This reflects the residual
itinerant character of the electrons in the molecular liquid
near metallization.
In Fig. 3 we report our data for the transition lines together

with predictions from FPMD simulations with different DFT
approximations (24) and previous QMC-based results (20, 33,
35, 36). We report transition lines from four different X-C ap-
proximations, namely PBE, HSE, vdW-DF, and vdW-DF2, and
for both classical and quantum protons. For each functional
(except for HSE), the line at higher pressure corresponds to
classical nuclei, whereas the line at lower pressure corresponds
to quantum protons. The general trend of the DFT approxima-
tions is quite clear. GGA-PBE favors the dissociated-metallic
phase followed by HSE, then by vdW-DF, and finally by vdW-
DF2. The difference in pressure between GGA-PBE and vdW-
DF2 is as much as 250 GPa. The CEIMC data lie between the
two extremes and in rough agreement with the vdW-DF and
HSE approximations. This was expected on the basis of a de-
tailed analysis of functional performance (37). However, even in

these cases the agreement is only qualitative; e.g., the HSE line
for classical nuclei describes well the classical CEIMC data at
lower temperature but is too low in pressure at higher temper-
ature. On the other hand, vdW-DF for quantum hydrogen agrees
with CEIMC at high temperature but overestimates the transi-
tion pressure at lower temperature. In general, none of the DFT
curves exhibits the change of curvature of the transition line
observed for CEIMC and for the static compression data. Fig. 3
also shows CEIMC results of a previous investigation (20, 33),
which however have been found to be biased by nonconverged
orbitals (38).
Finally, in Fig. 3 we report recent results from MD-QMC

which, as mentioned above, have predicted two different tran-
sitions, the first one ascribed to the insulator–metal transition
(IMT in the figure) (36), the second one, at higher pressure,
associated with the molecular dissociation transition (35). It is
important to discuss the reason for such large disagreement
because both our present work and the above-mentioned work
are based on QMC methods. In the supporting information of
ref. 36, a quantitative comparison between the trial wave func-
tions for selected configurations was reported. The present trial
wave function (DFT orbitals + two-body and three-body Jastrow +
backflow) is shown to have a lower energy with respect to the trial
function used in refs. 35, 36. However, we believe that the largest
contribution to the disagreement arises from the different treat-
ment of size effects in the two studies. Here we used small systems
(54 and 128 protons) with twist-averaged boundary conditions
(TABC), while in refs. 35 and 36 larger systems (up to 256 protons)
at the Γ-point were considered. As discussed in ref. 20, size effects
in hydrogen, in particular near metallization, are quite large and
required systems of 432 atoms or larger at the Γ-point for an ac-
curate location of the transition. Conversely, smaller systems re-
quire k-point sampling to exhibit the transition. This picture, seen
in both DFT and QMC simulations, is the largest contribution to
the finite-size corrections (39) (SI Appendix). The purely electronic
origin of the leading finite-size effects is consistent with the residual
itinerant character of the electrons found in both phases and re-
veals a slow decay of the single-electron density matrix with dis-
tance. Another source of bias is the use of localized orbitals in
refs. 35, 36 which favor the molecular-insulating phase over the
atomic-metallic phase, hence separating the two phenomena
(metallization and dissociation) and pushing the transition lines
to higher pressures.
In conclusion, we have reported what we believe are the

most accurate predictions for the location of the liquid–liquid
transition line in high-pressure hydrogen. We confirm the ex-
istence of a single transition at which metallization and mo-
lecular dissociation simultaneously occur. Our prediction is
25–30 GPa higher in pressure than recent experimental results
from static compression techniques (22). Note that in those
experiments the pressure is measured at ambient temperature
only, i.e., in the crystal phase I, and used at higher pressure in
the liquid phase. This might be a possible origin of the dis-
agreement with our predictions. On the other hand, recent
shock wave experiments located the transition line at a higher
pressure and almost independent of temperature (24), in
striking disagreement with DAC experiments and with our
predictions. The origin of this disagreement remains unclear.
Our predictions are far more reliable than DFT-based predic-
tions of the transition line and should be considered a better
theoretical reference.

Materials and Methods
Using constant volume simulations we have studied dense hydrogen along
five isotherms at 3,000, 1,500, 1,200, 900, and 600 K for a range of densities
around the transition. We used the CEIMC method, an ab initio method in
which the nuclear configuration space is explored by Metropolis Monte
Carlo, and the Born–Oppenheimer potential energy surface is provided by
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Fig. 3. Comparison of CEIMC results for the transition line with previous
theoretical predictions. Blue circles and squares are CEIMC transition pres-
sures for hydrogen and systems with classical protons, respectively. Contin-
uous lines are predictions from FPMD with different X-C approximations:
vdW-DF2 (black lines), vdW-DF (red lines), GGA-PBE (green lines), HSE (or-
ange dashed line). For each approximation, except HSE, the line at lower
pressure corresponds to quantum protons whereas the line at higher pres-
sure corresponds to classical protons. For HSE only the classical protons line
(from ref. 24) is shown. Triangles are predictions for metallization (violet)
and molecular dissociation (brown) from MD-QMC (35, 36). Earlier (uncon-
verged) CEIMC data for classical protons are also reported as cyan squares
(20, 33). Transition lines for the crystalline phases are shown by dashed lines
(see Fig. 1 legend).
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- NQE decreases the transition 
pressure by ~ 80GPa at T=600K 
(CEIMC)

- best functionals are HSE and 
vdW-DF, but the quality depends 
on temperature!!
(see also R. Clay et al, PRB 2014)

- HSE is too expensive to be 
routinely used

- PIMD with DFT-PBE predicts 
dissociation and melting of phase I 
not in agreement with experiments 

- optical properties (reflectivity) 
are also much larger (100%) than 
in experiments (Morales et al 
PRL 2013)

- vdW-DF2 tends to overbind 
molecules and predicts a larger 
dissociation pressure (by 
~150GPa).

Pierleoni, Morales, Rillo, Holzmann, Ceperley PNAS 113, 4953 (2016)



computational details

• CEIMC:  (BOPIMC)
• 54-128 protons with 64 twists (4x4x4)
• Slater-Jastrow wfs with DFT orbitals + BF 
• VMC with RQMC corrections (small ~5Gpa)
• Size corrections on the transition line are also small (~10Gpa)
• PIMC with 8 slices at 600K (smart MC with DFT forces for normal-mode sampling)
• We have checked all main biases

• BOMD: (VASP & QuantumESPRESSO)
• PBE xc functional with a Troullier-Martins pseudopot. (rc=0.5a.u.)
• PAW with VASP (HSE)
• energy cutoff of 90 Ry
• 432 protons at the Γ point for PPT (strong size effects in DFT!!!)
• 432 protons in the liquid and 360 protons in the solid for the melting line 
calculation

• PIMD: imaginary time step τ=(4800 K)-1 providing a 8 slice paths at T=600K

Morales, Pierleoni, Schwegler, Ceperley PNAS 108, 12799 (2010)
Morales, McMahon, Pierleoni, Ceperley PRL 110, 065702 (2013)
Pierleoni, Morales, Rillo, Holzmann, Ceperley, PNAS 113, 4953 (2016)
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T=200K: Phase III and VI(?)

Early on, Barbee, III et al. (1989) used DFT to focus
exclusively on structures for phase III, finding a structure
with molecular bonds aligned along the c axis of a hcp lattice.
However, later DFT calculations found more stable structures
with molecules oriented in the ða; bÞ plane (Kaxiras,
Broughton, and Hemley, 1991; Kaxiras and Broughton,
1992). QMC calculations by Natoli, Martin, and Ceperley
(1995) agreed with this assessment, finding the orientation
angle to be roughly 60# (as are the structures shown in
Fig. 4). Note that this is consistent with the experimental
data, as molecular orientation along the c axis will not exhibit
IR activity. By considering larger unit cells, Nagara and
Nakamura (1992) found the hexagonal Pca21 structure.
However, this structure is inconsistent with phase III (Cui,
Chen, and Silvera, 1995), and is a more likely candidate for
phase II, as discussed above. Most promising is the AIRSS
study by Pickard and Needs (2007), which revealed a structure
with 12 molecules per unit cell with molecular centers close to
distorted hcp lattice sites and overallC2=c symmetry, as shown
in Fig. 5. This prediction agrees qualitativelywell with both the
limited diffraction data (Akahama et al., 2010) and the spec-
troscopic data for phase III, such as the intense IR activity.

As can be seen, the use of computational methods to
predict the structures of phases II and III of hydrogen has
resulted in unexpected complexity. While qualitative insight
has been provided, suggesting Pca21 and C2=c as plausible
candidates for phases II and III, respectively, many open
questions remain; and although methods to find systemati-
cally the lowest energy structure have made impressive
advances recently (Woodley and Catlow, 2008) (albeit at a
greatly increased computational cost), challenges remain.
One of the most significant problems is how to accurately

estimate the effect of proton ZPM. For example, by estimat-
ing the ZPE using frozen-phonon calculations, Surh, Barbee,
III, and Mailhiot (1993) suggested that c-oriented molecules
in an hcp lattice were actually more stable than Pca21,
directly in contrast with the static-lattice predictions. Of
course, more accurate estimates of ZPM could be made via
a PIMD, PIMC, or QMC (Ceperley and Alder, 1987) simu-
lations, at a much increased computational cost. We return to
the issue of ZPM in Sec. IV.A.6. It is important to keep in
mind that since the ZPE of the protons can be larger than the
difference in energy between various candidate structures,
structure searching, even including an approximate ZPE
should be approached with caution. Also, the structure-
searching results discussed above have relied primarily on
DFT, the accuracy of which depends on the assumed DF.
Many calculations have employed LDA or GGA DFs, which
do not adequately describe vdW interactions at low pressures
and severely underestimate the band gap at higher ones
(Städele and Martin, 2000). As discussed in Sec. II.H though,
recent advancements have been made to improve DFs so that
one may hope for much more reliable predictions in the near
future. In any case, it is clear that more work needs to be done
both theoretically and experimentally to understand solid
molecular hydrogen at low temperature.

2. Solid molecular hydrogen at finite temperature

Goncharov et al. (1995) noticed a change in the slope of
the I–III phase line of deuterium, along with a subtle dis-
continuity of the intramolecular vibron as a function of
pressure. In addition, the observed discontinuity in the vibron
frequency across the I–III transition line became vanishingly
small above 254 K. These observations suggest that there may
be another phase, denoted by I’, located at higher temperature
than phase I ðT $ 170 KÞ. Those results suggest that this
phase is isostructural with phase III with a critical (or tricrit-
ical) point where the vibron discontinuity vanishes [see, e.g.,
Fig. 5 of Goncharov et al. (1995)].

Further support in favor of phase I’ was provided by PIMC
calculations based on the quantum rotor model (see
Sec. IV.A.1) by Surh et al. (1997). However, the accuracy
of the used effective intermolecular potentials is unknown.

Recent experimental support for phase I’ was provided by
Baer, Evans, and Yoo (2007, 2009) using coherent anti-Stokes
Raman spectroscopy on deuterium samples. Comparing the
pressure dependence of the Raman shift of the deuterium
vibron along two isotherms, at 77 and at 300 K, they observed
a change of slope around 140 GPa which they ascribed to the
signature of the phase transition from phase I to I’ along the
300 K isotherm, in agreement with Surh et al. (1997), and in
qualitative agreement with the early experimental results.
However, to reconcile the two different experiments, the
I–I’ phase line would need to have a negative slope (see
Fig. 3), thus exhibiting a strong temperature dependence not
observed in the early experiments (Goncharov et al., 1995).

Most recently, Goncharov, Hemley, and Mao (2011) per-
formed a more refined study and concluded that the new data
and analysis do not support the existence of phase I’. As can
be seen, uncertainties still remain surrounding the existence
and the details of phase I’, and further systematic investiga-
tions are necessary.

FIG. 5 (color online). The most likely candidate for phase III of
hydrogen, the C2=c structure, as predicted by Pickard and Needs
(2007). This structure essentially consists of rings of three mole-
cules, which are responsible for its strong optical activity.
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experiments are necessary to assess the accuracy of these
predictions.

The other phase transition predicted by the AIRSS study of
Pickard and Needs (2007) occurs near 385 GPa, from
Cmca-12 to Cmca, the structure originally proposed by
Edwards, Ashcroft, and Lenosky (1996); see Sec. IV.A.1
and recall that its structure is shown in Fig. 4. The recent
metadynamics calculation by Liu et al. (2012) supports the
transition to Cmca, and further suggests that at finite tem-
perature, phase III may transform directly to it without pass-
ing through Cmca-12.

Labet et al. (2012) and Labet, Hoffmann, and Ashcroft
(2012a, 2012b, 2012c) recently considered this process of
molecular dissociation more in-depth, by focusing on the
relationship between and variations of intramolecular and
intermolecular bond lengths with pressure, or more precisely,
the shortest (rH-H) and second-shortest (RH2-H2

) proton dis-
tances, respectively. To quantify their results, they introduced
an equalization function !ðPÞ at pressure P introduced as

!ðPÞ ¼ 1$ RH2-H2
ðPÞ $ rH-HðPÞ

RH2-H2
ðP1 atmÞ $ rH-HðP1 atmÞ

: (47)

! is an order parameter, evolving from ! ¼ 0 (free-space
molecules) to 1 (an atomic state, where all proton distances
are equal), during dissociation. Focusing on the structures
predicted in the AIRSS study by Pickard and Needs (2007),
Labet et al. (2012), and Labet, Hoffmann, and Ashcroft
(2012a, 2012b, 2012c) found a discontinuous shift at the
transition from Cmca to the atomic phase, leading them
to propose an intermediate phase that would allow for
continuous dissociation. While the proposed static lattices
have higher energies than Cmca (Edwards, Ashcroft, and
Lenosky, 1996; Pickard and Needs, 2007) and C2=cð2Þ
(Liu, Wang, and Ma, 2012) (see below), such continuous
structures could be stabilized by proton ZPM, which was
not included in their calculations.

Recently, an alternative to AIRSS, the particle-swarm
optimization (PSO) method for structure prediction (Wang
et al., 2010), was applied to dense hydrogen (Liu, Wang, and

Ma, 2012). These calculations revealed a stable hydrogen
phase beyond Cmca (% 470–590 GPa). What is particularly
interesting about this structure is that it possesses two differ-
ent nearest-neighbor proton separations (which we refer to at
these high pressures as intramolecular bonds), in a space
group C2=cð2Þ [note that we added the designation (2) to
distinguish it from the C2=c structure predicted for phase III].
This structure is also shown in Fig. 7. Furthermore, both bond
distances are larger than the intramolecular separations in the
Cmca structure, showing indication of molecular dissocia-
tion, and suggesting one structure (perhaps of others) that
allows for the continuous dissociation mechanism suggested
by Labet et al. (2012) and Labet, Hoffmann, and Ashcroft
(2012a, 2012b, 2012c).

4. Melting of the molecular crystal

Significant progress was made both experimentally and
computationally in determining the melting line of hydrogen,
as reviewed by Silvera and Deemyad (2009). At ambient
pressure, both hydrogen and deuterium crystallize in a hcp
lattice at temperatures of 14 and 19 K, respectively (Silvera,
1980). Before the development of DAC techniques, measure-
ments of the melting line (of hydrogen) were limited to
pressures below %2 GPa (Liebenberg, Mills, and Bronson,
1978). Such techniques though extended the melting line
to pressures above 7 GPa (Diatschenko and Chu, 1981;
Diatschenko et al., 1985), and the results fit well to a
modified Simon equation. With improvements in static-
compression techniques (see Sec. III.B), Datchi, Loubeyre,
and LeToullec (2000) and Gregoryanz et al. (2003) were
able, by monitoring the shift in the Raman-active vibron, to
measure the melting line up to 15 and 44 GPa, respectively,
results which are shown in Fig. 8. The latter measurements
interestingly also found a decrease in the slope of the melting
line with respect to pressure, suggesting a maximum in the
curve. This was, in fact, indicated in earlier work by Datchi,
Loubeyre, and LeToullec (2000), on the basis of an extrapo-
lation of the Kechin melting curve, which has a maximum
near 128 GPa and 1100 K.

Using constant-pressure CPMD simulations (neglecting
ZPM), Scandolo (2003) predicted that the melting line at
high pressures will have a negative slope, as a consequence
of the LLT (see Sec. IV.B.2). Following that prediction,
two-phase (solid and liquid) CPMD simulations were per-
formed to trace the melting line to even higher pressures
(Bonev et al., 2004). A maximum in the melting line below
1000 K was found, as well as a negative slope that extrapo-
lates to 0 K near 400 GPa. Of course, such extrapolations do
not take into account possible phase changes in either the
liquid or solid at higher pressures. These calculations were
recently corroborated by Morales et al. (2010b) up to a
pressure of 200 GPa, where the melting line of hydrogen
was calculated by comparing the (DFT) Gibbs free energy of
the liquid and solid molecular phases (using phase I, rota-
tionally disordered). Recent measurements using laser heat-
ing of hydrogen in a DAC (Deemyad and Silvera, 2008)
observed a maximum and subsequent decrease of the melting
temperature with increasing pressure. These measurements
are consistent with those reported by Eremets and Trojan

FIG. 7 (color online). A single layer of the Cmca-12 structure
(Pickard and Needs, 2007) at 300 GPa (left) and the C2=cð2Þ
structure (Liu, Wang, and Ma, 2012) at 500 GPa (right). Note
that due to the higher compression, C2=cð2Þ has been enlarged
relative to Cmca-12. Note also that the other predicted high-
pressure molecular phase Cmca, occurring at pressures intermediate
between Cmca-12 and C2=cð2Þ, is shown in Fig. 4.
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C2/c Cmca12
Most favorable structures 
according to AIRSS with 
GGA-PBE and zero point 
energy accounted by Self-
consistent harmonic 
approximation

Pickard-Needs, Nature Physics 3, 473 
(2007)

for the vdW-DF and vdW-DF2, respectively. This amounts
to an uncertainty of about 500 GPa.
The results for the static lattice show the strong depend-

ence of the molecular dissociation pressure on the func-
tional’s relative accuracy in the metallic and molecular
states. However, no prediction can be made without a
careful treatment of the ZPE. As mentioned previously, an
accurate treatment of the ZPE with DMC is beyond the
current capabilities of the method. Instead, we must resort
to a more approximate treatment within DFT. To make the
task more complicated, the ZPE predicted by DFT is quite
dependent on the functional used on the molecular phase.
As described in the Supplemental Material [39], the
variations of the magnitude of the ZPE component with
DFT functional on the atomic side is on the order of
0.2 mHa=atom and basically independent of structure.
On the molecular side, the variation is bigger than
1.0 mHa=atom and can be as large as 2.0 mHa=atom.
In contrast to the atomic phase, intramolecular vibrations

provide the dominant contribution to the ZPE in the molecu-
lar phase. There is a strong variation in the description of the
molecular bond and the corresponding intramolecular poten-
tial between the different DFT functionals [39,44]. This
variation leads to the observed discrepancy on themagnitude
of the ZPE in each phase. Using correlated sampling
combined with the reptation quantum Monte Carlo, we
studied the dependence of the energy of the crystal with
molecular bond length. This allows us to optimize the bond
lengths withDMC and compare them against DFT results, as
well as to measure the curvature of the molecular potential at
the equilibrium bond length, which is directly related to the
vibrational frequency of themolecule and to themagnitude of
the ZPE. We find a direct correlation between the molecular
bond length, as predicted by DFT, and the magnitude of the
corresponding ZPE (see the Supplemental Material [39]).
The vdW-DF functional produces the best overall agreement
in all aspects of the molecular bond in hydrogen: the
magnitude of the bond length (accurate to ≈1%), pressure
dependence and the curvature of the intramolecular potential.
In contrast, PBE systematically underestimates the bond
length (by 5%) and ZPE, whereas vdW-DF2 overestimates

the bond lengths (by up to≈ 4%) and ZPE.We conclude that
vdW-DF provides the most accurate estimate of the ZPE in
these molecular phases due to its good agreement with QMC
and choose it to provide the ZPE contribution we use for our
QMC results.WhileHSE also offers a reasonable description
of the structural and vibrational properties of the solid, we
have not attempted to calculate the transition pressure with
ZPE from this functional.
Our main result, the total enthalpy (including the QMC

electronic contribution and DFT quasiharmonic ZPE) of all
the structures considered in this work, is shown in Fig. 3.
We find the transition from molecular C2=c to the
atomic Cs-IV phases to follow the progression C2=c →
Cmca-12 → Cs-IV, with transition pressures between
C2=c → Cmca-12 and Cmca-12 → Cs-IV occurring at
424(3) and 447(3) GPa, respectively. Note that the regime

FIG. 1 (color online). Static lattice enthalpy of molecular and
atomic phases relative to the molecular C2=c crystal. In the
absence of ZPE, the phase transition happens at 684(3) GPa.

FIG. 2 (color online). DFT electronic structure contribution to
enthalpy for five functionals: (a) PBE, (b) HSEsol, (c) HSE,
(d) vdW-DF, and (e) vdW-DF2.

FIG. 3 (color online). Enthalpy of molecular and atomic phases
relative to the molecular C2=c crystal. We find a phase transition
from molecular to atomic hydrogen at 439(3) GPa.
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C2/c is favored in the QMC ground 
state with ZPE (SCHA) until the atomic 
phase with Cs-IV structure is reached.
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vdW-DF-PIMD CEIMC-PIMC

Initial configurations relaxed at constant pressure with DFT

with DFT-vdW-DF, C2/c is dynamical unstable towards: 
• layered structures at intermediate densities
• metallic Cmca-4 structure at rs=1.27

with CEIMC no instabilities are seen, molecules progressively disappear with pressure
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Supercells of 96 atoms were used also in this case. We investigated again C2c and Cmca12

in a range of 250-550 GPa, using the same starting configurations of the PIMD simulations,

and Pc48, which is competitive mixed structure proposed for phase IV, optimizing once again

the nuclear positions at constant pressure in the same pressure range using vdW-DF DFT.

RESULTS

Dealing with molecular crystals, we are interested in studying the stability of the structure

and the orientational order of the molecules. This can be characterized by direct inspection

of sampled configurations and by computing pair correlation functions and structure factors

during the dynamical calculation. Moreover following [7], we introduce the orientational

order parameter (OOP): manca il segno di media statistica

Ô =
h 1

N

NX

i=1

P2(⌦̂i · êi)
i2

(1)

where P2 is the Legendre polynomial of second order, ⌦̂i is the orientation of molecule i

during the simulation while êi is its initial orientation in the static lattice (N is the number

of molecules). The OOP is 1 if the molecules stay aligned to their initial orientation while

goes to 0 if they rotate more or less freely.

Another observable of interest is the molecular Lindemann ratio (MLR):

L̂ =

p
�2

d
,�2 =

1

N

NX

i=1

(ri � ri0)
2 (2)

where d is the nearest neighbour distance in the static lattice, ri is the position of the center

of mass of molecule i during the simulation and ri0 the position of its center of mass in the

static lattice.

Since we are interested in mixed structures, all observables can be computed for every

single layer to better characterize the structures. In the same way, we can define a layer-

by-layer pair correlation function (PCF), when only atoms belonging to the same layer are

taken into account, as done in [10].

4

Classical melting ~ 0.15

Quantum melting ~ 0.3
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RESULTS

Dealing with molecular crystals, we are interested in studying the stability of the structure

and the orientational order of the molecules. This can be characterized by direct inspection

of sampled configurations and by computing pair correlation functions and structure factors

during the dynamical calculation. Moreover following [7], we introduce the orientational

order parameter (OOP): manca il segno di media statistica

Ô =
h 1

N

NX

i=1

P2(⌦̂i · êi)
i2

(1)

where P2 is the Legendre polynomial of second order, ⌦̂i is the orientation of molecule i

during the simulation while êi is its initial orientation in the static lattice (N is the number

of molecules). The OOP is 1 if the molecules stay aligned to their initial orientation while

goes to 0 if they rotate more or less freely.

Another observable of interest is the molecular Lindemann ratio (MLR):

L̂ =

p
�2

d
,�2 =

1

N

NX

i=1

(ri � ri0)
2 (2)

where d is the nearest neighbour distance in the static lattice, ri is the position of the center

of mass of molecule i during the simulation and ri0 the position of its center of mass in the

static lattice.

Since we are interested in mixed structures, all observables can be computed for every

single layer to better characterize the structures. In the same way, we can define a layer-

by-layer pair correlation function (PCF), when only atoms belonging to the same layer are

taken into account, as done in [10].

4

<O>=1 perfect alignment

<O>=0 no alignment
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• Cmca12 more “conductive” than 
C2/c

• C2/c at 350GPa at the edge of 
the conductive behavior in 
qualitative agreement with recent 
experiments 

• Eremets2016: arXiv:1601.04479
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Fig. 8. Raman spectra at cooling of hydrogen at the highest pressures. (a) At the first cooling (at 360 GPa) the 
spectra characteristic for phase V transform to nearly featureless spectrum below 220 K. The spectra are shifted 
vertically for more clear presentation of changes in the spectra as well in (b). (b) At the second cooling (pressure 
increased to 370 GPa in between two cooling) the transition to the featureless spectrum was reproduced and the 
temperature of the transition was localized at 203 K. The resistance was measured (Fig. 9a) simultaneously with 
the measurements of Raman spectra. Only Raman spectra were measured in (b) as the electrical leads were 
broken after the first cooling. (c) The same spectra as (b) but without vertical shift to show that in spite of the 
increasing luminescence the 300 cm

-1
  K is clearly seen at 204 K but disappears at 203 K and below.  
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Fig. 9.  Electrical measurements. (a) At cooling at 360  GPa the resistance  first increased showing 
semiconducting behavior (drops in the resistance are from illumination by laser during  the Raman 
measurements). At 200 K the resistance strongly dropped, at the same  temperature Raman spectra dramatically 
changed too and characteristic peaks disappeared (Fig. 8).  At lower temperatures the resistance is nearly 
temperature independent. The absolute value of resistance is too high for metal however. Probably the high 
resistance belongs not to the sample but can be explained by a contact sample-electrode resistance included in the 

 measurements. 
(b) The pressure dependence of conductivity measured at room temperature shown in normal and logarithmic 

 (insert) scale. The conductivity appears at P> 220 GPa  as soon as hydrogen transforms to phase IV. 
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Conclusions

• BOMD is reasonably accurate in a large region of the thermodynamic space but 
breaks down near metallization and molecular dissociation in hydrogen.

• Hydrogen metallization and dissociation in the liquid phase occur simultaneously 
through a weakly first order phase transition below some critical temperature 
(Tc~2000K ?).

• The precise location of the transition line and of the critical point depend on the 
level of theory, the CEIMC’s ones being intermediate between PBE and vdW-DF2. 
Different experiments are also in disagreement. We are closer (but at slightly 
higher pressure) to the static compression experiments (Silvera) than to the 
dynamic compression experiments (Knudson).

• Molecular crystalline structures: PE surface from CEIMC seems to be more 
structured than from DFT-vdW-DF1. DFT accuracy seems to depend on the 
specific structure. 



Conclusions
• Hydrogen remains a very interesting system with many open questions in its 
high pressure regime

• the structure of crystalline molecular phases (from II to VI) in the insulating 
molecular crystal
• the mechanism of metallization at low temperature and its interplay with 
molecular dissociation and melting (recent claim of metallization at 500GPa and 
80K)

• Hydrogen has confirmed itself as the ideal system for method development: 
• how to deal with quantum nuclei in DFT? 
• QMC benchmark of DFT functionals
• what about hydrogen in more complex systems (water)?

• CEIMC is a method to perform ab-initio simulation with QMC accuracy
• It is suitable to investigate systems (heavier elements?) around the MIT
• It is unique in its ability to treat quantum protons without a major 
computational bottleneck
• It is the obvious method to study hydrogen at intermediate temperature 
(T>100K) 
• How to treat nuclear statistics efficiently ?
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