

Constructing High-Dimensional Neural Network Potentials (NNPs) to Describe the Solvation of Protonated Water Clusters by Superfluid Helium

Christoph Schran | Ruhr-Universität Bochum, Lehrstuhl für Theoretische Chemie | July 4, 2017

How to simulate solutes in superfluid helium?

Ab initio/bosonic path integral MD/MC method (Marx Group, 2014)

RUB

Slide 2

Superfluid ⁴He

- Bosonic PIMC
- Pair-density matrix approximation^[1]
- Aziz pair potential^[2]

Reactive Solutes

- Ab initio PIMD (DFT)
- PIGLET^[3] to account for low temperature (~1 K)

[1] Rev. Mod. Phys., 1995, 67, 279-355
[2] JCP, 1979, 70, 4330-4342
July 4, 2017

LaBerge-Tully^[4] "mixed MD/MC method":

sampling time

 \rightarrow He-solute coupling by pairwise additive interaction potentials

[3] Phys. Rev. Lett., 2012, 109, 100604
[4] Chem. Phys., 2000, 260, 183-191
Christoph Schran

Goal

Represent pair-wise additive interaction potential

Relate coordinates to interaction energy

 Instead of physical functional form use HD-NNP^[1] together with atom-centered symmetry functions^[2] to describe chemical environment

Obstacles

- Potential is evaluated many million times
- → Efficient evaluation required
- Potential needs to be highly accurate (He-He interaction: 0.1 kJ/mol)
- CCSD(T)/AVTZcp (essentially converged)

Christoph Schran

Neural Network Potentials

General structure

- Input (coordinates), hidden and output (energy) layers with nodes G, y, E
- Nodes connected by weights a to previous layer
- Bias node b connected to some nodes
- Activation function
 f = tanh(u)
- Highly flexible functional form
- Has analytical derivative

High-Dimensional Neural Networks

Concept^[1,2]

- Atomic networks for each element
- Separate sets of symmetry functions to represent chemical environment
- Output is atomic contribution to total interaction energy
- Can be fitted to reference calculations by local optimization of the weight parameters

PRL, 2007, 98, 146401
 Angew. Chemie Int. Ed., 2017,

10.1002/anie.201703114

Christoph Schran

Generation of Reference Structures

Vacuum simulations of solutes

- 25 ps AI-PIMD trajectories with RPBE-D3/TZV2P at 1.67K, 48 replicas + PIGLET
- \rightarrow Basis for He sampling positions

He-solute pair generation

- Euler-Maclaurin^[1] radial grids
- Lebedev^[2] angular grids

$$r_{\rm cut} = \begin{cases} 2.05 \text{ Å} < r_{\rm O-He} < 10.0 \text{ Å} \\ 1.25 \text{ Å} < r_{\rm H-He} < 10.0 \text{ Å} \end{cases}$$

Christoph Schran

RUR

Iterative Improvement

Identify missing structures

- 1) Use flexibility to your advantage:
- 2 NNPs with different setup
- Generate new He-solute pairs
- Identify structures with large ΔE
- 2) Include He solvation effect:
- Run simulations of flexible solutes in bulk helium
- Identify structures outside range of symmetry functions of training set

Final He-Solute NNPs

He-hydronium:

- 1) 12 refining stages (1000 new structures each)
- 2) 3545 structures from He-bulk
- = 15545 CCSD(T)/AVTZcp reference calculations

He-Zundel:

- 1) 21 refining stages (1000 new structures each)
- 2) 4101 structures from He-bulk
- = 25101 CCSD(T)/AVTZcp reference calculations

He-Hydronium Microsolvation

Validation of NNPs

- Evaluate potential on grid with CCSD(T) and NNP for selected frozen solute configurations^[1]
- Simulate helium around frozen configurations where interaction energy is used from nearest grid point
- Compare spatial distribution functions for different number of helium atoms (3,6,10,14)

July 4, 2017

Hydronium Cation in Bulk Helium

Details

- 98 helium atoms around frozen hydronium configuration in truncated octahedron
- NNP and CCSD(T) grid for He-solute interaction
- → Almost perfect agreement in RDFs
- → Well structured solvation shells
- → Almost no migration between shells

Zundel Cation in Bulk Helium

Details

- 88 helium atoms around frozen Zundel configuration in truncated octahedron
- NNP and CCSD(T) grid for He-solute interaction
- Almost perfect agreement in RDFs
- → Broader peaks compared to He-hydronimum
- → Smaller interaction due to charge delocalization

Christoph Schran

Summary & Future Directions

Summary

- Systematic and automated procedure to develop pair-wise additive He-solute interaction potentials
- Convincing agreement with CCSD(T)/AVTZcp
- NN properties allow to substantially reduce number of reference calculations

Outlook

- Study stepwise microsolvation up to bulk helium for flexible solutes
- Extend to other solutes in different quantum solvents (e.g. p-H₂)
- Apply HD-NNPs for other simulation techniques (QM/MM)

RUR

Acknowledgment

People and resources

- Dominik Marx and Jörg Behler
- Felix Uhl and Harald Forbert
- TheoChem chair in Bochum especially Marx Group and Behler Group
- Computational resources from SuperMUC, HPC-RESOLV, BOVILAB@RUB, HPC@ZEMOS

Funding

Feed Forward Neural Networks

Multi-layer perceptron

Calculation of node value y

- Multiply all input values x_i from previous layer by weight a_i
- Sum up products
- Add bias weight b
- Apply activation function f

Activation function introduces flexibility Otherwise: Linear dependence on previous layer

$$f(u) = \tanh(u)$$

Symmetry Functions

Fingerprint of chemical environment

$$\begin{aligned} \overline{\text{Transformation of coordinates}^{[1]}} \\ f_c(R_{ij}) &= \begin{cases} \frac{1}{2}\cos\left(\frac{\pi R_{ij}}{R_c}\right) + \frac{1}{2} & R_{ij} \leq R_{ij} \\ 0 & \text{else} \end{cases} \\ G_i^2 &= \sum_j e^{-\eta(R_{ij} - R_s)^2} \cdot f_c(R_{ij}) \\ G_i^4 &= 2^{1-\zeta} \sum_{j,k \neq i} (1 + \lambda \cos \theta_{ijk})^\zeta \\ &\cdot e^{-\eta(R_{ij}^2 + R_{ik}^2 + R_{jk}^2)} \\ &\cdot f_c(R_{ij}) \cdot f_c(R_{ik}) \cdot f_c(R_{jk}) \end{aligned}$$

f_c 2 6 8 $\mid G^2_{R_s = 1 R_s = 2}$ $R_{\rm s} = 3$ Ri 2 G_{ang}^4 $\lambda = -1$ 2 1 $\lambda = 1$ Hiii 180 360

[1] JCP, 2011, **134**, 074106

July 4, 2017

Ruhr-Universität Bochum

High-Dimensional Neural Networks How to fit?

Minimize loss (locally)

$$E_{\text{tot}}^{\text{NN}} = \sum_{i=1}^{\text{ele}} \sum_{j=1}^{\text{natom}_i} E_{\text{NN}_i}^j$$
$$L = \frac{1}{N} \sum_{n=1}^{N} \left(E_{(i,\text{tot})}^{\text{ref}} - E_{(i,\text{tot})}^{\text{NN}} \right)^2$$

- L is function of weights w
- Minimize L by changing w
- e.g. steepest decent:

$$w_{\sf new} = w_{\sf old} - \gamma \frac{\partial}{\partial w} L(w)$$

Basis Set Convergence Tests for Reference Calculations

Christoph Schran

Basis Set Convergence Tests for Reference Calculations

Box Convergence Tests for Bulk Helium

July 4, 2017

Christoph Schran

r / Å

r / Å