Path Integral Monte Carlo Simulations of Warm Dense Matter

Burkhard Militzer University of California, Berkeley http://militzer.berkeley.edu

Outline

- **1. Path integral Monte Carlo simulation method**
- 2. Application of CH plastic ablator materials
- 3. Application to warm, dense silicon

Kevin Driver, Francois Soubiran, Shuai Zhang Lorin Benedict (LLNL) and Suxing Hu (LLE)

Supported by NSF-DOE partnership for plasma science. PRAC computer time on Bluewaters machine at Urbana-Champaign, IL. Two postdoc positions to be filled in Aug. 2018

Phase Diagram of Hydrogen

1) Path integral Monte Carlo for T>5000K

Path integral Monte Carlo for T>5000K Density functional molecular dynamics below

Born-Oppenheimer approx. MD with classical nuclei:

F = m a

Forces derived DFT with electrons in the instantaneous ground state.

Juno Mission Now in orbit around Jupiter

- Interior model to match gravity data
- Equation of state calculations for hydrogen-helium mixtures
- Thermodynamics of heavier elements (Z)

Mission Timeline:

- Launch August 2011
- Earth flyby gravity assist October 2013
- Jupiter arrived in July 2016
- End of mission much past October 2017

Nonte Carlo

Step 1 towards the path integral

Matrix squaring property of the density matrix

Matrix squaring in operator notation:

$$\hat{\rho} = e^{-\beta \hat{H}} = \left(e^{-(\beta/2)\hat{H}}\right) \left(e^{-(\beta/2)\hat{H}}\right), \quad \beta = \frac{1}{k_B T}$$

Matrix squaring in real-space notation:

$$\langle R \mid \hat{\rho} \mid R' \rangle = \int dR_1 \, \langle R \mid e^{-(\beta/2)\hat{H}} \mid R_1 \rangle \, \langle R_1 \mid e^{-(\beta/2)\hat{H}} \mid R' \rangle$$

Matrix squaring in matrix notation:

$$\begin{bmatrix} \dots & R' & \dots \\ R & \ddots & \vdots \\ \dots & \dots & \dots \end{bmatrix} = \begin{bmatrix} \dots & R_1 & \dots \\ R & \ddots & \vdots \\ \dots & \dots & \dots \end{bmatrix} * \begin{bmatrix} \dots & R' & \dots \\ R_1 & \ddots & \vdots \\ \dots & \dots & \dots \end{bmatrix}$$

Repeat the matrix squaring step

Matrix squaring in operator notation:

$$\hat{\rho} = e^{-\beta \hat{H}} = \left(e^{-(\beta/4)\hat{H}}\right)^4, \quad \beta = \frac{1}{k_B T}$$

Matrix squaring in real-space notation:

$$\langle R \mid \hat{\rho} \mid R' \rangle = \int dR_1 \int dR_2 \int dR_3 \langle R \mid e^{-(\beta/4)\hat{H}} \mid R_1 \rangle \langle R_1 \mid e^{-(\beta/4)\hat{H}} \mid R_2 \rangle \langle R_2 \mid e^{-(\beta/4)\hat{H}} \mid R_3 \rangle \langle R_3 \mid e^{-(\beta/4)\hat{H}} \mid R' \rangle$$

Path Integrals in Imaginary Time

Simplest form for the paths' action: primitive approx.

Density matrix:

$$\hat{\rho} = e^{-\beta \hat{H}} = \left(e^{-\tau \hat{H}}\right)^M, \ \beta = \frac{1}{k_B T}, \ \tau = \frac{\beta}{M}$$

$$\langle \hat{O} \rangle = \frac{\text{Tr}[\hat{O}\hat{\rho}]}{\text{Tr}[\hat{\rho}]}$$

M step path integral:

 $\left\langle R \mid \hat{\rho} \mid R' \right\rangle = \left\langle R \mid (e^{-\tau \hat{H}})^{M} \mid R' \right\rangle = \int dR_{1} \dots \int dR_{M-1} \left\langle R \mid e^{-\tau \hat{H}} \mid R_{1} \right\rangle \left\langle R_{1} \mid e^{-\tau \hat{H}} \mid R_{2} \right\rangle \dots \left\langle R_{M-1} \mid e^{-\tau \hat{H}} \mid R' \right\rangle$

Path integral and primitive action S:

$$\langle R \mid \hat{\rho} \mid R' \rangle = \oint_{R \to R'} dR_t e^{-S[R_t]}$$

$$S[R_t] = \sum_{i=1}^M \frac{(R_{i+1} - R_i)^2}{4\lambda\tau} + \frac{\tau}{2} \Big[V(R_i) + V(R_{i+1}) \Big]$$

Pair action: Militzer, Comp. Phys. Comm. (2016)

Bosonic and Fermionic Path Integrals

Bosonic density matrix: Sum over all symmetric eigenstates.

$$\rho_B(R, R', \beta) = \sum_i e^{-\beta E_i} \Psi_S^{[i]*}(R) \Psi_S^{[i]}(R')$$

Project out the symmetric states:

$$\rho_{B}(R,R',\beta) = \sum_{P} (+1)^{P} \rho_{D}(R,PR',\beta)$$

Fermionic density matrix: Sum over all antisymmetric eigenstates.

$$\rho_F(R,R',\beta) = \sum_i e^{-\beta E_i} \Psi_{AS}^{[i]*}(R) \Psi_{AS}^{[i]}(R')$$

Project out the antisymmetric states:

$$\rho_F(R,R',\beta) = \sum_P (-1)^P \rho_D(R,PR',\beta)$$

$$\left\langle R \mid \hat{\rho}_{F/B} \mid R' \right\rangle = \sum_{P} (\pm 1)^{P} \int dR_{1} \dots \int dR_{M-1} \left\langle R \mid e^{-\tau \hat{H}} \mid R_{1} \right\rangle \dots \left\langle R_{M-1} \mid e^{-\tau \hat{H}} \mid PR' \right\rangle$$

Restricted PIMC for fermions: How is the restriction applied?

Free-particle nodes:

Construct a <u>fermionic trial density matrix</u> in form of a Slater determinant of single-particle density matrices:

$$\rho_T(R,R',\beta) = \begin{vmatrix} \rho(r_1,r_1',\beta) & \cdots & \rho(r_1,r_N',\beta) \\ \vdots & \ddots & \vdots \\ \rho(r_N,r_1',\beta) & \cdots & \rho(r_N,r_N',\beta) \end{vmatrix}$$

Enforce the following nodal condition for all time slices along the paths:

$$\rho_T[R(t), R(0), t] > 0$$

This 3N-dimensional conditions eliminates all negative and some positive contribution to the path \rightarrow Solves the fermion sign problem approx.

$$\rho_0^{[1]}(r,r';\beta) = \sum_k e^{-\beta E_k} \, \Psi_k(r) \, \Psi_k^*(r')$$

Starting from Restricted PIMC Simulations of Hydrogen

PHYSICAL REVIEW LETTERS

VOLUME 73

17 OCTOBER 1994

NUMBER 16

Equation of State of the Hydrogen Plasma by Path Integral Monte Carlo Simulation

C. Pierleoni,^{1,2,*} D. M. Ceperley,³ B. Bernu,¹ and W. R. Magro³

VOLUME 76, NUMBER 8	PHYSICAL REVIEW LETTERS	19 February 1996
Molecular Dissociation in Hot, Dense Hydrogen		
W.R. Magro, ¹ D.M. Ceperley, ² C. Pierleoni, ³ and B. Bernu ⁴		

PIMC and DFT-MD Simulations of Hydrogen and Helium

Water and Carbon

First Path Integral Monte Carlo Simulations for Heavier Elements Fill this Gap in Temperature

Again Path Integral Monte Carlo bridges the Gap in T between DFT-MD and the Debye Model

Path Integral Monte Carlo bridges the Gap in Internal Energy vs Temperature for Water and Carbon Plasmas

Path Integral Monte Carlo and DFT-MD are in very good agreement

Study planetary interiors in the laboratory: shock wave experiments

Two-stage gas gun (Livermore) 0.2 Mbar

Nova laser (Livermore) 3.4 Mbar

Z capacitor bank (Sandia) 2 Mbar

National Ignition Facility 700 Mbar

Shock wave measurements determine the Equation of State on the Hugoniot curve

PIMC and **DFT-MD** Simulations of Nitrogen

Driver, Militzer, PRB 93, 064101 (2016)

PIMC and **DFT-MD** Simulations of Nitrogen: How well do pressures and energies agree?

Driver, Militzer, PRB 93, 064101 (2016)

Why do free-particle nodes work for PIMC simulations of first-row elements?

Core electrons are **fully ionized**. Free-particles nodes are ideal! 1s 10% occupation

2s -1s 100% occupation

25 -----

1s state doubly occupied. Others ionized. Free-particles nodes should still work.

2s + <60% occupation 1s + 100% occupation 1s 100% occupied, 2s less than 60% occupied Free-particles nodes in PIMC are accurate for T > 250,000 K for carbon and water plasmas.

100% occupation 2s 100% occupied. Free-particles nodes do no Occupation longer work but KS-DFT works!

PIMC and **DFT-MD** Simulations of Nitrogen: Comparison with Experiments and Theory

Driver, Militzer, PRB 93, 064101 (2016)

PIMC and **DFT-MD** Simulations of Nitrogen: Poor Agreement with Experiments by Mochalov (2010)

Driver, Militzer, PRB 93, 064101 (2016)

Inertial confinement fusion experiments with plastic coated spheres of liquid H₂

(Graphics: Bachmann et al. LLNL)

PIMC and DFT-MD simulations performed for C₂H, CH, C₂H₃, CH₃ and CH₄.

CH Shock Hugoniot Curves: Comparison of Theory and Experiments

CH Shock Hugoniot Curves: Comparison of Theory and Experiments

Linear Mixing Approximation works well

Why do the C and CH Hugoniot curves differ from those for N, O and Ne?

Path Integral Monte Carlo with localized nodal surfaces and application to silicon plasmas

How the nodes are enforced:

$$\rho_F(\mathbf{R}, \mathbf{R}'; \beta) = \frac{1}{N!} \sum_{\mathcal{P}} (-1)^{\mathcal{P}} \int \mathbf{d}\mathbf{R}_t \ e^{-S[\mathbf{R}_t]} \mathbf{R}_{\mathcal{P}} \mathbf{R}', \rho_T > 0$$

Nodes are a Slater determinant:

$$\rho_T(\mathbf{R}, \mathbf{R}'; \beta) = \left| \left| \rho^{[1]}(r_i, r'_j; \beta) \right| \right|_{ij}$$

Before we used only free-particle orbitals (plane waves):

$$\rho_0^{[1]}(r,r';\beta) = \sum_k e^{-\beta E_k} \, \Psi_k(r) \, \Psi_k^*(r')$$

New idea: Add Hartree-Fock orbitals

$$\rho^{[1]}(r,r',\beta) = \sum_{I=1}^{N} \sum_{s=0}^{n} e^{-\beta E_s} \Psi_s(r-R_I) \Psi_s^*(r'-R_I)$$

Militzer, Driver, Phys. Rev. Lett. (2015)

New Type of PIMC Move needed: Multi-Particle Moves

- Since the nodes depend on the nuclei, need to move ions and nearby electrons at once.
- Which electrons are nearby? Use localization function:

$$L_{Ij} = \int_0^\beta dt \, |\Psi_{1s}(r_j(t) - R_I)|^2$$

- Build a table of ion-electron moves with up to 4 electrons.
- Sample from it like the permutation table.
- This led to efficient PIMC simulations.

Militzer, Driver, Phys. Rev. Lett. (2015)

Energy and Pressure Comparison of Path Integral Monte Carlo and Kohn-Sham DFT

Silicon: Energy and Pressure Comparison of Path Integral Monte Carlo and Kohn-Sham DFT

 10^{7}

Temperature (K)

-0.10

10⁶

Energy of isolated silicon atom: Path **Integral Monte Carlo** and Orbital-Free DFT

Hu, Militzer, Collins, Driver, Kress, Phys. Rev. B 94 (2016) 094109

g(r) Comparison of Path Integral Monte Carlo and Kohn-Sham DFT

Militzer, Driver, Phys. Rev. Lett. (2015)

Energy and Pressure Comparison of Path Integral Monte Carlo & Orbital-Free DFT

Hu, Militzer, Collins, Driver, Kress, Phys. Rev. B 94 (2016) 094109

Silicon Hugoniot Curve: Experiments and Semi-analytical EOS models

Silicon Hugoniot Curve: Path Integral Monte Carlo, Orbital-Free DFT

Silicon Hugoniot Curve: Average-Atom models

Conclusions

- For elements from hydrogen to through silicon, the energy, pressure, and g(r) functions computed with PIMC and KS-DFT agree well at 2×10⁶ K.
- Internal energy agrees to better than 5 Ha/atom. Pressure to 2%.
- So far, we could not detect any problem with the zerotemperature exchange-correlation functionals.
- We will provide more EOS data to improve orbit-free methods.
- Second row elements: More comparison between simulations and experiments
- Extending PIMC to third row elements in particular iron.

