Evidence of Quantum Critical Behavior of One-Dimensional Soft Bosons

S. Rossotti¹, M. Teruzzi^{2,1}, D. E. Galli¹, D. Pini¹, and <u>G. Bertaina</u>^{1*}

¹ Università degli Studi di Milano, Italy
² International School for Advanced Studies (SISSA), Trieste, Italy

* gianluca.bertaina@unimi.it

Use of CINECA HPC facilities is acknowledged

Workshop on Understanding Quantum Phenomena with Path Integrals: From Chemical Systems to Quantum fluids and Solids, ICTP, Trieste, 3-7 July 2017

Motivation: soft core in dressed Rydberg gases

Rydberg state = Highly excited electronic state $(n\sim200)$ Couple ultracold atoms in ground-state to Rydberg state

A) Resonant light-atom coupling: hard-core freezed effective particles [Schauss et al., Nature (2012)]

B) Off-resonant: small quantum superposition of gs and Rydberg state, soft-core effective itinerant particles

Henkel et al, PRL 104 (2010)

Quasi-1D: tight harmonic optical potential Recent experiment Zeiher et al., arXiv:1705.08372 Finite lifetime ~ 1ms (lattice, still no overlap within soft-core)

Soft potentials and clustering

Classical soft systems: glassy behavior and polyamorphism [Mladek et al., PRL 96 (2006)] Quantum soft systems: 2D/3D supersolids (crystals of clusters with coherence) [Henkel et al. PRL 104 (2010), Saccani et al. PRL 108 (2012), Macrì et al. PRA 87 (2013), Ancilotto et al. PRA 88 (2013), Cinti et al. Nat. Comm. 5 (2014) ...] 1D Cluster Luttinger Liquids on a lattice [Mattioli et al., PRL 111 (2013)] 1D Classical cluster liquids [Prestipino et al, PRE 92 (2015)] 1D bulk quantum systems?

A simple mean-field picture in 1D

Kinetic energy (quantum effect at T=0) can induce a transition. Density fluctuations are a good witness

Dynamical Structure Factor

$$S(\vec{q},\omega) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} e^{i\omega t} \langle \hat{\rho}_{\vec{q}}(t) \hat{\rho}_{-\vec{q}}(0) \rangle$$

Linear response to weak density perturbations Spectral decomposition contains all many-body excited states, *weighted with coupling to density fluctuations*

→ Spectrum of Density fluctuations
 (Sound or more localized quasi-particles)
 One can read the dispersion relation of coherent modes

Beauvois et al. PRB 94 (2016)

$$\hat{\rho}_{\vec{q}}(t) = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} e^{-i\vec{q}\vec{r}_{j}(t)}$$

HOW TO MEASURE IT IN EXPERIMENTS?

QUANTUM LIQUIDS (Helium)

• Inelastic neutron scattering. Measure of partial differential cross section

$$\frac{d^2\sigma}{d\Omega\,dE} \propto S\left(\vec{q}\,,\omega\right)$$

ULTRACOLD GASES

• Bragg scattering. Photon absorption and stimulated emission into two lasers beams which fix q and ω .

1D: "Bosonization" of fermions (and bosons)

All low-energy modes are collective (Fermi liquid theory is not valid)
 → Luttinger liquids effective hydrodynamic theory [Haldane PRL 47 (1981)]
 Small q and ω: phonons both for bosons and *fermions*

Luttinger parameter ~ compressibility (Galilean invariant case) K_L determines properties of correlation functions Universality (independent of details of interaction and <u>statistics</u>!) $K_L = \sqrt{\frac{\hbar^2 \pi^2 \rho^3 \kappa_S}{m}} = \frac{v_F}{u} = \frac{\hbar \pi \rho}{mu}$ Ideal Fermi Gas $K_L = 1$

Ideal Fermions: kinematically forbidden region for particle-hole excitations (flat spectrum)Still, phonons at small q $\hbar \omega = \frac{\hbar}{2}$

In general: power-law decay above threshold (no true delta functions)

$$\hbar \omega_{\pm} = \left| \frac{\hbar^2 q^2}{2m} \pm \frac{\hbar^2 k_F q}{m} \right|$$

Properties of Luttinger liquids

Standard Luttinger liquids have density oscillations around lattice of spacing $1/\rho$

→ If $K_L < 1/2$, the static structure factor shows quasi-Bragg peaks: $S(q=2\pi\rho) \propto N^{1-2K_L}$

→ not a crystal (linear scaling) unless K_L=0 (namely, not a Luttinger liquid, but Mott insulator)

Coherence $\langle \Psi^{\dagger}(r)\Psi(0)\rangle \simeq \frac{1}{r^{2K_{L}}}$

Algebraic decay (like 2D superfluids at finite T). Slow decay if $K_L >> 1/2$

Drag force (dissipated power due to impurity with velocity v) $F_v \propto v^{2K_L-1}$

Our model and methods

N bosons in pure 1D at zero temperature

$$H = -\frac{1}{2} \sum_{i}^{N} \frac{\partial^{2}}{\partial x^{2}} + \sum_{i < j} V(|x_{i} - x_{j}|)$$

We fully solve Schroedinger equation in imaginary time

A) Path integral quantum Monte Carlo at T=0

Note: Hamiltonian description, we neglect dissipation ¹ Close analogy to the Extended Bose-Hubbard model Warning: strong interaction or high density would induce losses or quasi-1D zig-zag transition

B) Statistical analytic continuation of imaginary-time correlations Warning: ill-posed problem, needs regularization or stochastic approach $F(q, \tau) \rightarrow S(q, \omega)$

A) Path Integral Ground State method

"Exact" Path Integral Ground State (PIGS) quantum Monte Carlo method [Sarsa et al., J. Chem. Phys. (2000)]

Imaginary-time projection of initial trial wavefunction

 $\Psi_{\tau} = e^{-\tau H} \Psi_{T}$

For smooth potentials: Pair-Suzuki-Chin propagator [Rossi et al., J. Chem. Phys. 131, (2009)]

We calculate energy

 $q(r) = \langle \hat{\rho}(r) \hat{\rho}(0) \rangle$ Pair distribution function

 $S(q) = 1 + \rho \int dr e^{-iqr} [g(r) - 1]$ Static structure factor

Central chain in the paths equilibrates to ground state: exact imaginary-time correlation functions are available $F(\vec{q}, au)=\langle\hat{
ho}_{ec{a}}(au)\hat{
ho}_{-ec{a}}(0)
angle$

Intermediate scattering function in imaginary time

A) Details about trial wavefunction

(times a long range phonon contribution à la Reatto-Chester, Phys. Rev. 155 1967)

Parameters are optimized within Variational Monte Carlo with simulated annealing, minimizing energy plus the difference of g(r) with preliminary PIGS simulations

$$\lambda = \lambda_E(\beta, \boldsymbol{\xi}) \cdot \lambda_g(\beta, \boldsymbol{\xi}) = \exp\left\{-\beta \left[E\left(\boldsymbol{\xi}\right) + \zeta \chi\left(\boldsymbol{\xi}\right)\right]\right\}$$

B) Numerical analytic continuation

No single exact solution of numerical inverse Laplace transform: we use a stochastic method

Genetic Inversion via Falsification of Theories (GIFT) $F(\vec{q},\tau) = \langle \hat{\rho}_{\vec{q}}(\tau) \hat{\rho}_{-\vec{q}}(0) \rangle = \int_{0}^{\infty} d\omega e^{-\omega\tau} S(\vec{q},\omega)$ [Vitali et al, PRB 82 (2010), Bertaina et al, PRL 116 (2016), Bertaina et al, Adv. Phys. X 2 (2017)]

No explicit entropic prior (unlike MaxEnt) Genetic dynamics: survival of the fittest in a <u>population of spectral functions</u>.

Average over many solutions with $X^2 \sim 1$ (like Sandvik's ASM) Initial sampling of imaginary-time data to "explore" error-bars Sum rules or other exact information can be enforced Good capability to resolve low energy sharp or broad features

Other stochastic methods: [Sandvik, PRB 57 (1998), Mishchenko et al. PRB 62 (2000), Reichman and Rabani JCP 131 (2009), Fuchs et al., PRE 81 (2010), Goulko et al. PRB 95 (2017)]

 $\tau = d \tau j$

 $S(q,\omega)$

ω

11

B) Details about GIFT

Initial Population: large random collection of models $s(\omega) = sum$ of delta functions Generation: replace the population (with elitism: the best $s(\omega)$ is cloned) with a new one using genetic processes:

Selection: couples of individuals are selected for reproduction depending on their fitness Crossover: an amount of spectral weight is exchanged between the two selected $s(\omega)$, at the same ω

Phase Diagram (T=0)

S. Rossotti, M. Teruzzi, D.E. Pini, D.E. Galli, G. Bertaina, in preparation

Dilute regime (p<0.01)

At low density the scattering length only is relevant

We recover the Lieb Liniger, Tonks Girardeau and Hard-Rod models

Standard Luttinger liquid theory is valid

[M. Teruzzi, D.E. Galli, and G. Bertaina, J. Low Temp. Phys. 187, 719 (2017)]

Dilute regime ($\rho < 0.01$)

CLUSTER LUTTINGER LIQUID

HARD-ROD REGIME

1.33

Pair distribution function from weak interaction $U=10^{-5}$, to intermediate U=1.09, to strong $U=10^{3}$

 $2k_F = 2\pi\rho$ $E_{F} = \hbar^{2} (\pi \rho)^{2} / 2m$

q (units of $2k_{\rm F}$)

Homogeneous liquid (U~1.09)

Dynamical Structure Factor (U~1.09)

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Dilute regime: Almost flat spectrum System still behaves as Tonks-Girardeau ~ Ideal Fermi Gas

Higher density: spectrum starts to peak

- $\varepsilon_B(q) = \sqrt{\frac{q^2}{2}} \left(\frac{q^2}{2} + 2\rho \widetilde{V}(q) \right)$
- $\varepsilon_{FA}(q) = \frac{q^2}{2 S(q)}$

(Bogoliubov) Roton softening at $\rho U = 20.6$ • Universal point at q_0 : $\widetilde{V}(q_0)=0$

Commensurate cluster phase(s)

Focus on N_c=2 particles per cluster

$$\rho = N_c / b_c \approx 1.36$$

Notice that clusters show algebraic long-range order (1D: not a solid) → Cluster Luttinger Liquid

Here Bogoliubov theory predicts roton softening at U ~ 15 We observe a divergence of $S(q_c)$ at U~18 (notice that at this density $q_c = k_F$ \rightarrow dimerization)

Cluster Luttinger liquids and K_L

Standard Luttinger liquids: density oscillations around auxiliary lattice of spacing $1/\rho$

$$g(r) \simeq 1 - \frac{2K_L}{(2\pi\rho r)^2} + \sum_{l=1} A_l \frac{\cos(2\pi l\rho r)}{r^{2K_L l^2}}$$

Cluster Luttinger liquids [Mattioli et al., PRL 111 (2013)] oscillate around auxiliary lattice depending on Fourier transform of the potential

• We focus on commensurate Cluster Luttinger liquids (lattice spacing b_c) and obtain:

$$g(r) \simeq 1 - \frac{2K_L}{(2\pi\rho r)^2} + \sum_{l=1} A_l \frac{\cos(2\pi l\rho r/N)}{r^{2K_L l^2/N_c^2}}$$

- $K_L' = K_L / N_C^2$, while in standard LL: $K_L' = K_L$
- Estimate number of excess particles

$$\delta = \sqrt{K_L / K_L'} - 1$$

- Sudden increase after U~18
- Also K_L changes behavior (but dominant U^{-1/2} trend)

Double harmonic chain spectrum (see also [Nehaus,Likos J. Phys.: Condens. Matter(2011)]) well describes acoustic mode (notice 1D harmonic chain is not a crystal) $12 \begin{bmatrix} (b) & \rho &= 1.4 \\ 0 & \rho &= 1.4 \end{bmatrix} = 100 \begin{bmatrix} -0 & \rho &= 1.4 \\ 0 & \rho &= 1.4 \end{bmatrix}$

$$\begin{split} H_{cl} &= \sum_{n\sigma} \frac{p_{n\sigma}^2}{2m} + \frac{\gamma}{2} \sum_{n,\sigma,\mu} (x_{n\sigma} - x_{n+1\mu})^2 \\ \epsilon_{HCA}(q) &= 2\sqrt{N_c} \epsilon_h \sin(qb_c/2) \\ \epsilon_{HCO}(q) &= \sqrt{2N_c} \epsilon_h \quad \textit{(dispersionless)} \\ \epsilon_h(b) &= \sqrt{-(4\pi^2/b^3) \sum_j^\infty j^2 \tilde{V}(2\pi j/b)} \end{split}$$

Higher frequencies: multiphonons or optical mode with anharmonic contributions [see also Saccani et al PRL 2012]

We have a liquid phase at small U, but also a liquid (cluster) phase at large U Interesting behavior of the two modes at the transition... *Article in preparation*

Spectra in transition region ($N_c=2$)

 Secondary mode present also in liquid regime!
 Seems to avoid crossing Bogoliubov mode.

2) Gap of secondary mode
at q_c goes to zero at
transition U~18, but is
finite in both phases.

3) At the transition the secondary mode and the Luttinger-HC mode are linear at q_c with the same velocity (within uncertainty)

S. Rossotti, M. Teruzzi, D.E. Pini, D.E. Galli, G. Bertaina, in preparation

Evidence of quantum criticality

We extract the gap of the secondary excitation at q_c (uncertainty comes from slow convergence close to transition and from analytic continuation)

- Gap is linear close to transition
- Two gapless modes with same velocity at U~18 Conformal Field Theory can tell us something
- Dalmonte et al, PRB 92 (2015) Transition on a lattice Central charge c ~ 3/2 = 1 + 1/2 (Free boson class + free fermion class) From entanglement entropy
 We extract it from size effects in energy ε(N)=ε_∞-cE_F/(6 K_LN²) (most difficult point U=18: presence of small energy

excitation)

Article in preparation

Quantum Ising model (N = 2)

Emergent transverse Ising model describing the secondary excitation (dual to 2D classical Ising, by mapping imaginary time to space dimension) $H_{TI} = -J\sum_{i}\sigma_{i}^{z}\sigma_{i+1}^{z} - h\sum_{i}\sigma_{i}^{x}$ Alignment ↔ Quantum Delocalization Let us call the eigenstates of σ^{z} : |L> and |R> (*hint: cluster left, cluster right*) If h = 0: classical ferromagnet (T=0): all |L> or all |R> Transverse field gives lowest energy to symmetrized state $|+>=(|L>+|R>)/\sqrt{2}$ \rightarrow delocalization: tunneling in a double well paramagnet Exact spectrum is known, via a Jordan-Wigner transformation and Bogoliubov diagonalization $\Delta = |\mathbf{J} \cdot \mathbf{h}| \qquad \varepsilon_{TI}(q) = \sqrt{\Delta^2 + 4Jh(\sin qa/2)^2}$ ferromagnet Critical $2\pi/b$ - Lattice spacing is b in our spectra: spins \leftrightarrow pairs of particles

- Difficult to microscopically determine

J~ \sqrt{U} optical modes, h~ $\sqrt{U}e^{-\alpha\sqrt{(U)}}$ double-well tunneling (role of anharmonicity)

Quantum Ising model (N = 2)

Effective double well potential in space of 3 particle distances, keeping center-of-mass and all other particles fixed

QUANTUM PHASE TRANSITION

Note: both are Luttinger liquids; close to transition Ising adds up A non local order parameter is probably needed (no lattice is present)

Concluding Messages

- PIGS+GIFT methods useful to infer novel spectra, and theoretical interpretation with known models is complementary
- Clustering in a simple system of soft bosons, from rotons to harmonic chain spectrum
- Evidence of quantum critical behavior: peaks in $S(q_c)$; change in behavior of K_L ; sudden increase of discrepancy δ ; secondary mode becoming gapless; central charge increasing
- Interpretation in terms of quantum Ising transition. Relevance for recent studies on c = 3/2 CFT

Interesting questions

- Higher N_c : what transitions?
- Consider non-commensurate density in the cluster phases
- Inhomogeneous systems to study boundary effects
- Microscopic study of Ising sector and definition of appropriate correlators
- Further investigation of what happens to optical modes across superfluid/supersolid transition in higher dimensions
- Use of quantum information measures to study the transition