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Motivation: soft core in dressed Rydberg gases

Quasi-1D: tight harmonic optical potential
Recent experiment Zeiher et al., arXiv:1705.08372
Finite lifetime ~ 1ms (lattice, still no overlap within soft-core)
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Rydberg state = Highly excited electronic state (n~200)
Couple ultracold atoms in ground-state to Rydberg state
  
A) Resonant light-atom coupling: hard-core freezed 
     effective particles [Schauss et al., Nature (2012)]

B) Off-resonant: small quantum superposition 
   of gs and Rydberg state, soft-core effective itinerant particles

RC blockade radius

Ground state atoms

Henkel et al, 
PRL 104 (2010)



Soft potentials and clustering
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Negative minimum 
of 1D Fourier transform:
Clustering effects

Classical soft systems: glassy behavior and polyamorphism [Mladek et al., PRL 96 (2006)]

Quantum soft systems: 2D/3D supersolids  (crystals of clusters with coherence) 

[Henkel et al. PRL 104 (2010), Saccani et al. PRL 108 (2012), Macrì et al. PRA 87 (2013), 
Ancilotto et al. PRA 88 (2013), Cinti et al. Nat. Comm. 5 (2014) … ]

1D Cluster Luttinger Liquids on a lattice [Mattioli et al.,  PRL 111 (2013)]

1D Classical cluster liquids [Prestipino et al, PRE 92 (2015)]    1D bulk quantum systems?

Purely repulsive 
potential

Hard core at very 
short distances 
can be neglected

EC=
ℏ2

mRC
2

V (r )=
U

1+r6

bC=2 π/qC=1.46 RC

Units of blockade radius

qC=4.3/RC



A simple mean-field picture in 1D
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Effective harmonic interaction:
Stability

Fix high density 

Let particle    to be free. What is 
the potential it experiences if:

1) All other particles are in a lattice 
  of spacing b = bc/2 ?
   

2) All other particles are in a lattice 
   of spacing b=bc 

  (two particles per site) ?
  

ρ=2 /bC≈1.36

Effective double well: Instability

Kinetic energy (quantum effect at T=0) can induce a transition. 
Density fluctuations are a good witness

<------> bc

<------> bc



Dynamical Structure Factor

Linear response to weak density perturbations
Spectral decomposition contains all many-body 
excited states, weighted with coupling to 
density fluctuations 

 → Spectrum of Density fluctuations 
    (Sound or more localized quasi-particles)
    One can read the dispersion relation of         
    coherent modes 

Beauvois et al.
 PRB 94 (2016)

HOW TO MEASURE IT IN 
EXPERIMENTS?

QUANTUM LIQUIDS (Helium)
● Inelastic neutron scattering. Measure of 

partial differential cross section

ULTRACOLD GASES
● Bragg scattering. Photon absorption and 

stimulated emission into two lasers beams 
which fix q and ω. 

d2σ

dΩ dE
∝S (q⃗ ,ω)
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1D: “Bosonization” of fermions (and bosons)

2k F

All low-energy modes are collective (Fermi liquid theory is not valid) 
 → Luttinger liquids effective hydrodynamic theory [Haldane PRL 47 (1981)]

     Small q and ω: phonons both for bosons and fermions

Luttinger parameter ~ compressibility
(Galilean invariant case)
KL determines properties of correlation functions
Universality (independent of details of interaction
and statistics!)

Ideal Fermi Gas KL=1

K L=√ ℏ
2
π

2
ρ

3
κS

m
=
vF
u
=
ℏ πρ

mu

6

ℏ ω±=|ℏ
2q2

2m
±
ℏ

2 kF q

m |
Ideal Fermions: kinematically forbidden region for particle-hole excitations 
(flat spectrum)Still, phonons at small q

In general: power-law decay above threshold (no true delta functions)

S (q ,ω)



Properties of Luttinger liquids

Standard Luttinger liquids have density oscillations around lattice of spacing 1/ρ

 → If KL < 1/2, the static structure factor shows quasi-Bragg peaks:

 → not a crystal (linear scaling) unless KL=0 (namely, not a Luttinger liquid, but Mott
     insulator)

Coherence

Algebraic decay (like 2D superfluids at finite T). Slow decay if KL  >> 1/2

Drag force (dissipated power due to impurity with velocity v)  
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g(r ) ≃
r→∞

1−
2K L

(2πρ r)2
+∑l=1

A l

cos(2π lρ r )

r2K L l
2

S (q=2πρ)∝N1− 2K L

Low momenta Umklapp momenta

⟨Ψ
†
(r )Ψ (0)⟩ ≃

r →∞

1

r
2 KL

Fv ∝
v→0

v 2K L−1



Our model and methods
N bosons in pure 1D at zero temperature

We fully solve Schroedinger equation
in imaginary time

A) Path integral quantum Monte Carlo at T=0

Note: Hamiltonian description, we neglect dissipation
Close analogy to the Extended Bose-Hubbard model
Warning: strong interaction or high density would induce losses or quasi-1D 
zig-zag transition

B) Statistical analytic continuation of imaginary-time correlations
Warning: ill-posed problem, needs regularization or stochastic approach
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1

V (x )=
U

1+x6  

H=−
1
2
∑i

N ∂
2

∂ x2 +∑i< j
V (|x i−x j|)

F (q , τ )→S (q ,ω)



A) Path Integral Ground State method
“Exact” Path Integral Ground State (PIGS) quantum Monte Carlo method
 [Sarsa et al., J. Chem. Phys. (2000)]

Imaginary-time projection of initial trial wavefunction

For smooth potentials: Pair-Suzuki-Chin propagator
[Rossi et al., J. Chem. Phys. 131, (2009)]

We calculate energy

Pair distribution function

Static structure factor 

Central chain in the paths equilibrates to ground state: exact imaginary-time correlation 
functions are available
Intermediate scattering function in imaginary time

g(r )=⟨ρ̂(r )ρ̂(0)⟩

N atoms

N linear
polymers
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Mapping

F (q⃗ , τ)=⟨ρ̂q⃗ (τ) ρ̂−q⃗ (0)⟩

S (q)=1+ρ∫ dr e−i q r[ g(r)−1]



A) Details about trial wavefunction
Trial initial wavefunction 
of 2-body Jastrow type

f(r) is solution of 2-body problem with
effective interaction

and f(c3)=1 

(times a long range phonon contribution à la Reatto-Chester, Phys. Rev. 155 1967)

Parameters are optimized within Variational Monte Carlo with simulated annealing, 
minimizing energy plus the difference of g(r) with preliminary PIGS simulations
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ΨT=∏i< j
f (r ij)

V eff (r )=c1V (r)+c2∑l
V (r−l b)

Example at U=80



B) Numerical analytic continuation
No single exact solution of numerical inverse Laplace transform:
we use a stochastic method
Genetic Inversion via Falsification of Theories (GIFT) 

[Vitali et al, PRB 82 (2010), Bertaina et al, PRL 116 (2016), 

Bertaina et al, Adv. Phys. X 2 (2017)]

No explicit entropic prior (unlike MaxEnt)
Genetic dynamics: survival of the fittest in a population of spectral functions. 

Average over many solutions with X2 ~ 1 (like Sandvik's ASM)
Initial sampling of imaginary-time data to “explore” error-bars
Sum rules or other exact information can be enforced
Good capability to resolve low energy sharp or broad features

Other stochastic methods:
[Sandvik, PRB 57 (1998), Mishchenko et al. PRB 62 (2000), 
Reichman and Rabani  JCP 131 (2009),
Fuchs et al., PRE 81 (2010), Goulko et al. PRB 95 (2017)]

F (q⃗ , τ)=⟨ρ̂q⃗ (τ) ρ̂−q⃗ (0) ⟩=∫0

∞

dωe−ωτ S ( q⃗ ,ω)
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τ=d τ j

  

ω

S(q,ω)
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B) Details about GIFT
Initial Population: large random collection of models s(ω) = sum of delta functions
Generation: replace the population (with elitism: the best s(ω) is cloned) with a new one using 
genetic processes:
Selection: couples of individuals are selected for reproduction depending on their fitness
Crossover: an amount of spectral weight is exchanged between the two selected s(ω), at the 
same ω

Mutation: shift spectral weight between two intervals

Simulated annealing : moves are accepted with a weight Exp[-X2/T], with T decreasing (this is 
only a way to avoid destructive moves, no detailed balance)

ω

s(ω)


ω ω

s(ω)

ω

ω

s(ω)

ω

s(ω)



Phase Diagram (T=0)

 

13

S. Rossotti, M. Teruzzi, D.E. Pini, D.E. Galli, G. Bertaina, in preparation

Density

Strength

The classical T=0 state would be a cluster crystal



   Dilute regime (ρ<0.01)
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At low density the scattering length 
only is relevant

We recover the Lieb Liniger, 
Tonks Girardeau 
and Hard-Rod models 

Standard Luttinger liquid theory 
is valid

[M. Teruzzi, D.E. Galli, and G. Bertaina, J. Low Temp. Phys. 187, 719 (2017)]

LL HRTG

a



   Dilute regime (ρ<0.01)
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Pair distribution function from weak interaction
U=10-5, to intermediate U=1.09, to strong U=103

S(q,ω) 
in LL and TG regimes

S(q,ω) in HR regime has renormalized 
threshold that agrees with

[Motta et al., PRA 94 (2016)]2k F=2πρ

EF=ℏ
2
(πρ)

2
/2m



   Homogeneous liquid (U~1.09)

Static structure factor   →
Bogoliubov treatment (lines) is good 
at intermediate densities.
The maximum of S(k) goes to qC Divergence→
Departure from homogeneous Luttinger liquid,
Which has maximum in 2kF = 2πρ
Article in preparation

 ← Pair distribution function: at 
high density maxima in zero and 
bC=2π/qC ~ 1.46 Rc

Independent of density!
(usually: peak at ~ 1/density)
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ρ

ρ



      Dynamical Structure Factor (U~1.09)

Dilute regime: Almost 
flat spectrum
System still behaves as 
Tonks-Girardeau
~ Ideal Fermi Gas

Higher density: spectrum 
starts to peak
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Comparison of

εB (q)=√ q
2

2 ( q
2

2
+2ρ~V (q)) Bogoliubov approx:

 Feynman approx:

(Bogoliubov) Roton softening at 
 Universal point at q0 : 

εFA (q)=
q2

2 S(q)

ρU=20.6
~V (q0)=0Roton at ~ qc



Commensurate cluster phase(s)
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ρ=N c /bc≈1.36

Here Bogoliubov theory predicts roton 
softening at U ~ 15
We observe a divergence of S(qc) at U~18
(notice that at this density qc=kF 

 → dimerization)

 

Focus on NC=2 particles per cluster

Notice that clusters show algebraic 
long-range order (1D: not a solid)

 → Cluster Luttinger Liquid

 U

U



    Cluster Luttinger liquids and KL

Standard Luttinger liquids: density oscillations around auxiliary lattice of spacing 1/ρ

Cluster Luttinger liquids [Mattioli et al.,  PRL 111 (2013)] oscillate around auxiliary 
lattice depending on Fourier transform of the potential

● We focus on commensurate Cluster Luttinger liquids (lattice spacing bc) and obtain:

● KL'=KL /NC
2 , while in standard LL: KL'=KL

● Estimate number of excess particles

● Sudden increase after U~18
● Also KL changes behavior (but dominant U-1/2 trend) 

19

g(r )≃1−
2K L

(2πρr )2
+∑l=1

A l

cos (2 πlρ r)

r 2K L l
2

g(r )≃1−
2K L

(2πρr )2
+∑l=1

A l

cos (2 πlρ r /N c )

r 2K Ll
2
/Nc

2

δ=√K L/K L '−1



    Spectra in cluster regime (Nc=2)

Double harmonic chain spectrum (see also [Nehaus,Likos J. Phys.: Condens. Matter(2011)]) 
well describes acoustic mode
(notice 1D harmonic chain is not a crystal)

                              (dispersionless)

Higher frequencies: 
multiphonons or optical mode 
with anharmonic contributions [see also Saccani et al PRL 2012]

We have a liquid phase at small U, but also a liquid (cluster) phase at large U
Interesting behavior of the two modes at the transition...
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εHCA (q)=2√N cεh sin(qbc /2)

εHCO (q )=√2N c εh

Article in preparation



       Spectra in transition region (Nc=2)
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1) Secondary mode present 
also in liquid regime!
Seems to avoid crossing 
Bogoliubov mode.

2) Gap of secondary mode 
at qc goes to zero at 
transition U~18, but is 
finite in both phases.

3) At the transition the 
secondary mode and the 
Luttinger-HC mode are 
linear at qc with the same 
velocity (within 
uncertainty)

S. Rossotti, M. Teruzzi, D.E. Pini, D.E. Galli, G. Bertaina, in preparation



U=17

     Evidence of quantum criticality
22

We extract the gap of the secondary excitation at qc

(uncertainty comes from slow convergence 
close to transition and from analytic continuation)

- Gap is linear close to transition

- Two gapless modes with same velocity at U~18
 Conformal Field Theory can tell us something

- Dalmonte et al, PRB 92 (2015) Transition on a lattice
  Central charge    c ~ 3/2 = 1 + 1/2
  (Free boson class + free fermion class)
  From entanglement entropy 
- We extract it from size effects in energy

  (most difficult point U=18: presence of small energy 
  excitation)

           

Article in preparation

ε(N )=ε∞−cEF /(6 KLN
2)



Critical

paramagnet

ferromagnet

Quantum Ising model (Nc=2)
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Emergent transverse Ising model describing the secondary excitation 
(dual to 2D classical Ising, by mapping imaginary time to space dimension) 

Let us call the eigenstates of σz : |L> and |R>               (hint: cluster left, cluster right)
If h = 0: classical ferromagnet (T=0): all |L> or all |R>
Transverse field gives lowest energy to symmetrized state |+>=(|L> + |R>)/

 → delocalization: tunneling in a double well

Exact spectrum is known, via a Jordan-Wigner 
transformation and Bogoliubov diagonalization  

Δ=|J-h|

- Lattice spacing is bc in our spectra: spins  pairs of particles↔
- Difficult to microscopically determine 
J~      optical modes, h~                   double-well tunneling (role of anharmonicity)
   
           

Alignment        Quantum Delocalization ↔

√2

√U √U e−α √(U )



Quantum Ising model (Nc=2)
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QUANTUM                                     Liquid  … Cluster liquid 
PHASE TRANSITION        Paramagnet  ...   Ferromagnet
                                                     +  +  +  +   ...            ↓ ↓ ↓ ↓
Note: both are Luttinger liquids; close to transition Ising adds up
A non local order parameter is probably needed (no lattice is present)

Effective double well potential in space of 
3 particle distances, keeping center-of-mass 
and all other particles fixed

L

R



Concluding Messages

✔ PIGS+GIFT methods useful to infer novel spectra, and 
theoretical interpretation with known models is complementary

✔ Clustering in a simple system of soft bosons, from rotons to 
harmonic chain spectrum

✔ Evidence of quantum critical behavior: peaks in S(qc) ; change in 
behavior of KL; sudden increase of discrepancy δ ; secondary 
mode becoming gapless; central charge increasing

✔ Interpretation in terms of quantum Ising transition. Relevance 
for recent studies on c = 3/2 CFT



Interesting questions

✔ Higher NC: what transitions?
✔ Consider non-commensurate density in the cluster phases
✔ Inhomogeneous systems to study boundary effects
✔ Microscopic study of Ising sector and definition of appropriate 

correlators
✔ Further investigation of what happens to optical modes across 

superfluid/supersolid transition in higher dimensions
✔ Use of quantum information measures to study the transition


