Bound state of a ³He atom at ⁴He crystal-superfluid interfaces

Massimo Boninsegni

Department of Physics, University of Alberta

The occurrence of a bound state of a single ³He atom at the interface of superfluid and solid ⁴He, is studied by means of large-scale Quantum Monte Carlo simulations. Both the case of a solid-superfluid interface of ⁴He, as well as solid layers of ⁴He adsorbed on lithium and glass substrates are considered. A bound state of the ³He atom is observed, but its physical character differs significantly, depending on the substrate. In the case of a solid-superfluid ⁴He interface, the ³He atom resides in the proximity of the interface, but clearly in the superfluid region; on the other hand, in the presence of substrates more attractive than solid ⁴He, the ³He atom penetrates the intermediate region between the two phases, consisting of superfluid planes. Results for the binding energies are obtained for all cases from the long time decay of the Matsubara Green function.