Workshop on Understanding Quantum Phenomena with Path Integrals: from Chemical Systems to Quantum Fluids and Solids 3-7 July 2017, ICTP, Trieste, Italy

Path-integral Monte Carlo Study of ⁴He Adsorption on Carbon Allotropes

Yongkyung Kwon and Jeonghwan Ahn

Department of Physics, Konkuk University

Outline

- I. Introduction
- **II.** Our Theoretical Approach
- III. ⁴He on Graphite
- IV. ⁴He on Graphynes
- V. Conclusion

I. Introduction

why⁴He on a substrate?

- a testbed to study quantum fluids in confined geometries
- effects of reduced dimensionality or finite size
- theoretical prediction of a supersolid phase in a Bose Hubbard model

(1) cold bosons in optical lattices

(2) ⁴He films on a substrate

⁴He on graphite

- strong He-substrate interaction → layer-by-layer growth (~ 7 layers) each layer: a quasi-2D system
- interplay between He-He and He-substrate interaction
 → rich structural phase diagram (fluids, commensurate and IC solids, etc.)
- observation of superfluidity for the 2nd layer (Crowell & Reppy, PRB 53, 2701 (1996))
 → speculated possible existence of supersolid phase

Experimental Phase Diagrams for ⁴He on graphite

- speculation of supersolid phase ?
- but the existence of a C-phase has been in controversy

Previous calculations for the 2^{nd 4}He layer

(1) Pierce and Manousakis, PRL 81, 156 (1998)

- -. over frozen incommensurate 1st layer
- -. stable 2nd-layer C_{4/7} structure

(2) Corboz et al., PRB 78, 245414 (2008)

- -. incorporation of zero-point motions of the 1st-layer 4He atoms
- -. no stable 2nd-layer commensurate structure

Recent heat capacity measurements for the 2nd ⁴He layer

(1) S. Nakamura et al., PRB 94, 180501(R) (2016)

(2) M. Morishita, JLTP 187, 453 (2017)

: no evidence for a 2nd-layer commensurate solid

Recent torsional oscillator experiment

Nyéki et al., Nature Physics 13, 455 (2017)

➔ an excitation spectrum in region II : density wave ordering + superfluid order

II. Our Theoretical Approach

a more accurate description of quantum dynamics of the 1st-layer ⁴He atoms

→ employ a ⁴He-graphite potential reflecting the corrugated surface.

• System Hamiltonian:

$$H = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \nabla_i^2 + \sum_{i < j} V_{He-He}(r_{ij}) + \sum_{i=1}^{N} V_{subs}(\vec{r}_i)$$

• He-substrate interaction:

$$V_{subs}(\vec{r}) = \sum_{k} U(\vec{r} - \vec{R}_{k}) + V_{1D}(z + 3.35)$$

topmost layer of graphite

• anisotropic He-C pair potentials: Carlos and Cole, Surf. Sci. 91, 339 (1980)

$$U(\vec{r}-\vec{R}_k) = 4\varepsilon \left\{ \left(\frac{\sigma}{|\vec{r}-\vec{R}_k|}\right)^{12} \left[1+\gamma_R \left(1-\frac{6}{5}\cos^2\theta\right)\right] - \left(\frac{\sigma}{|\vec{r}-\vec{R}_k|}\right)^{6} \left[1+\gamma_A \left(1-\frac{3}{2}\cos^2\theta\right)\right] \right\}$$

Path integral Monte Carlo (PIMC)

Thermal density matrix: $\rho(R, R'; \beta) = \langle R | e^{-\beta H} | R' \rangle$ $R = (\vec{r_1}, \vec{r_2}, \cdots, \vec{r_N})$

For an diagonal observable in the coordinate space,

$$\langle O \rangle = Z^{-1} \int dR \rho(R,R;\beta) O(R)$$

$$\int ... \int dR_1 dR_2 ... dR_{L-1} \rho(R, R_1; \tau) ... \rho(R_{L-1}, R; \tau) \quad \tau = \beta / L$$

pair-product form of exact two-body density matrices

Bose symmetry:
$$\rho_B(R, R; \beta) = \frac{1}{N!} \sum_P \rho(R, PR; \beta)$$

Multilevel Metropolis algorithm: sample permutations as well as discrete paths (For details, see D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995))

 $P = P_{12}$

III.⁴He on Graphite

Ahn et al., PRB 93, 064511 (2016)

"no stable 2nd-layer comm. structure on an 1st-layer incomm. solid"

New 1st-layer commensurate solid

2D density plot at 0.111 Å⁻²

Static structure factor for C7/12

"a C_{7/12} commensurate solid" simulated from an random initial conf.

 $\overline{\mathbf{v}}$

C_{7/12} is not affected by finite size effects

New 1st-layer commensurate solid

Both IC and $C_{7/12}$ phases coexist near the 1st-layer completion density.

Experimental phase diagram

Greywall, PRB (1993)

On the 1st-layer C_{7/12} solid

additional ⁴He atoms: not squeezed into the 1st layer at T=0.5 K

- the C_{4/7} structure proposed by Elser (PRL 1989)
- This $C_{4/7}+C_{7/12}$ configuration could be metastable.

Vacancy formation in the C_{4/7} - ⁴He 2nd layer

- -. mobile vacancies are created while preserving the 4/7 order
- -. frequent hoppings to the neighboring lattice sites

⁴He on strained graphene

The 1^{st} layer on graphene under compressive strain could be completed at the $C_{7/12}$ density .

the 1st-layer 2D density

 $C_{7/12}$ structure on graphene under biaxial compressive strain ~ 3.6%

³He on graphite

Phase diagram of ³He layers

from H. Fukuyama, JPSJ 77, 111013 (2008)

the 2nd-layer C_{4/7} structure

- the melting peak
- the magnetization measurement
- mK heat-capacity peak
 - : gapless spin liquid of frustrated antiferromagnets

(Ishida et al., PRL 79, 3451 (1997))

Why is a ³He C_{4/7} structure stable?

neutron scattering data for ³He on graphite

- the completed ³He 1st layer: a C_{7/12} solid?
- If so, is this the reason why the 4/7 structure is stable in the 2^{nd 3}He layer?

Summary – ⁴He on graphite

- no stable 2nd-layer commensurate structure on top of a first-layer incommensurate solid even with the corrugated ⁴He-graphite potential.
- a new commensurate solid of C_{7/12} in the 1^{st 4}He layer at a high areal density of 0.111 Å ⁻².
- The 2nd-layer $C_{4/7}$ solid is found to be metastable on top of the 1st-layer $C_{7/12}$ solid.
- ⁴He on strained graphene could show a stable 2^{nd} -layer $C_{4/7}$ structure.

III.⁴He on Graphynes

Graphyne : a 2D network of *sp*- and *sp*²-bonded carbon atoms

α-graphyne

γ-graphyne

~ 8 times larger than the hexagon of graphene

high-capacity hydrogen storage materialsLi-ion battery anodes

⁴He on α-graphyne

Kwon et al., PRB 88, 201403(R) (2013)

$$H = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \nabla_i^2 + \sum_{i < j} V_{He-He}(r_{ij}) + \sum_{i=1}^{N} V_{subs}(\vec{r}_i)$$

He-substrate interaction:

$$V_{subs}(\vec{r}) = \sum_{k: \text{ carbon}} V_{He-C}(|\vec{r} - \vec{R}_k|)$$

LJ 6-12 inter-atomic pair potential Stan and Cole, Surf. Sci. **395**, 280 (1998)

⁴He on an AB-stacked bilayer α-graphyne

1D density distribution

2D density plots of the 1^{st 4}He layer

initial configuration

" frustrated antiferromagnet"

2D density plots at high densities

⁴He on γ-graphyne

Ahn et al., PRB 90, 075433 (2014)

⁴He on a single γ-graphyne sheet

1D density distribution

2D density plots of the 1^{st 4}He layer

σ=0.0491 Å⁻²

σ=0.0736 Å⁻²

Energy per ⁴He adatom

$C_{2/3}$: the lowest-energy state

 $C_{4/3}$: beyond this coverage, the promotion to the second layer starts.

2D density plots at high densities

σ=0.0982 Å⁻²

 $C_{4/3}$ commensurate solid

σ=0.115 Å⁻²

incommensurate solid at the completion of the 1st layer

commensurate-incommensurate transition

Summary - ⁴He on graphynes

α-graphyne

- large hexagon area \rightarrow in-plane ⁴He adsorption
- the 1st layer on the ⁴He-embedded graphyne surface
 - -. observe a transition from superfluid to Mott insulator between $\sigma\text{=}0.0471$ Å $^{-2}$ and 0.0706 Å $^{-2}$
 - -. Mott insulating state: frustrated antiferromagnet
 - -. commensurate triangular solid at σ =0.0941Å⁻²
 - : ferromagnetic ordering under particle-induced "pseudo-magnetic" field

γ-graphyne

- no penetration through a single graphyne sheet
- the ⁴He monolayer
 - -. various commensurate solid structures: $C_{2/3}$, $C_{3/3}$, $C_{4/3}$
 - -. the lowest-energy state : $C_{2/3}$ at an areal density of σ =0.0491 Å⁻²
 - -. the 1st layer completed to an incommensurate triangular solid at $\sigma \sim 0.115$ Å⁻²

Acknowledgement

- * Condensed Matter Theory Group at Konkuk
- Mr. Jeonghwan Ahn
- Mr. lue Gyun Hong
- Dr. Sungjin Park
- Dr. Tyler Volkoff

* supported by the National Research Foundation of Korea through its Basic Science Research Program and the BK21plus Program.