Atomic Force Microscopy of virus capsids uncovers the interplay between mechanics, structure and function

Pedro José de Pablo

Departamento de Física de la Materia Condensada Universidad Autónoma de Madrid

Topics today

- 1. Introduction
- 2. Mechanics of human adenovirus: capsid and core
- 3. Genome release: watching a virus undress
- 4. Mechanical role of cementing proteins: tuning particles stability with symmetrical morphogenesis
- 5. Summing up

Viruses

T. S. BAKER,^{1*} N. H. OLSON,¹ AND S. D. FULLER^{2,3} CROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Dec. 1999, p. 862–922

ik, P. J. de Pablic et al.

Single molecule techniques provide complementary information to structural biology

THE REVIEWS JOURNAL OF THE BIOCHEMICAL SOCIETY

VOLUME 45 . ISSUE 2 . APRIL 2017

biochemsoctrans.org

PRESS

Atomic Force Microscopy Binnig, Quate, Gerber, PRL 1986

Physiological conditions Functional protein shells

Mechanics *Manipulation Real time experiments*

Atomic Force microscopy *in liquids*

Cantilever/virus size

Atomic Force Microscopy scanning probe

AFM imaging of viruses

De Pablo et al, APL 1998 Ortega-Esteban *et al.* Ultramicroscopy 2012

High resolution AFM of adenovirus

Single indentation assay

Single indentation assay

before

after

Self-recovery of vault particles

Llauró et al Biophysical Journal 2014

Topics today

- 1. Introduction
- 2. Mechanics of human adenovirus: capsid and core
- 3. Genome release: watching a virus undress
- 4. Mechanical role of cementing proteins: tunning particles stability with symmetrical morphogenesis
- 5. Summing up

Human adenovirus

Capsid 240 hexons, 12 pentons, proteins IIIa, VI, VIII, IX

Fiber flexible, specific host recognition

Core 35kbp dsDNA, proteins TP, VII, μ

50% DNA + 50% histone-like proteins

Maturation changes the core

In Mhatatuae noim fience teicotuis us

- Does DNA modulate the mechanical properties of adenovirus particles?
- Interplay between physical properties and virus function?

disassembly

DNA diffusion

Adsorption geometries

Mechanical evolution

Interpretation

 $k_{virus} = k_{shell} + k_{DNA}$

 k_{DNA} (mature) > k_{DNA} (immature)

Crack-open the shell

Crack-opening the shell

mature

inmature

Mechanics of cores

DNA condensate

Adding counterions to DNA induce toroidal condensates (3+)

M. J. Stevens (2001)

Gronbech-Jensen et al. PRL 1997

Core mechanics

Pressure estimation

Irrespective of the physical origin

Vella et al. The Indentation of Pressurized Elastic Shells: From Polymeric Capsules to Yeast Cells. **2011,** *Journal of The Royal Society Interface*.

$$k_{1} = \frac{\pi}{2} k_{0} \frac{(\tau^{2} - 1)^{\frac{1}{2}}}{\operatorname{arctanh} \left[(1 - \tau^{-2})^{\frac{1}{2}} \right]}$$
$$\tau = \frac{pR_{1}}{2}$$

 k_0

Unbranched polymer

$$F \approx k_{\rm B} T (R_{\rm g}/R)^{1/\nu} \qquad P = - \frac{\partial F}{\partial V} \Big|_{T}$$

p=3±1 MPa

persistence length b/2

DNA-DNA repulsion pressurizes the shell after maturation

Biological implications

Pentons are the weakest capsomers

W. Klug et al, PRL 10/2012; 109(16):168104. Ortega-Esteban Sci. Rep. 2013, 3, 14434

Ortega-Esteban et al ACS Nano 2015

We propose that pressure helps to pop-off pentons at the early endosoome

Biological implications

diffusion of DNA?

Fatigue

Multiple indentation assay below the breaking force (fatigue)

Ortega-Esteban et al. Ultramicroscopy 2012

SCIENTIFIC REPORTS | 3 : 1434 | DOI: 10.1038/srep01434

Uncoating dynamics

Mature

Immature

Core exposure

Can we visualize genome uncoating?

Core exposure

Mature

Immature

0.0 nm

Can we visualize the genome uncoating?

Topics today

- 1. Introduction
- 2. Mechanics of human adenovirus: capsid and core
- 3. Genome release: watching a virus undress
- 4. Mechanical role of cementing proteins: tuning particles stability with symmetrical morphogenesis
- 5. Summing up

Fluorescence

YOYO-1

AFM – fluorescence combination

AFM induced unpacking of adenovirus

AFM induced unpacking of adenovirus

AFM forced unpacking of Adenovirus

simultaneous single particle fluorescence with AFM

observe DNA release with YOYO-1

Controlled capsid disassembly

Immature

- Mature core spreads more the genome

- Immature emits less photons

Topics today

- 1. Introduction
- 2. Mechanics of human adenovirus: capsid and core
- 3. Genome release: watching a virus undress
- 4. Mechanical role of cementing proteins: tuning particles stability with symmetrical morphogenesis
- 5. Summing up

Cementing/decorative proteins

An alternative strategy to strengthen virus capsids during maturation

Lambda phage

- > 60 nm in diamter
- ➢ 420 gpE + 415 gpD.
 - 72 capsomers
- DNA ~ 48.5 kbp ~ 14.5 μm.

C.G Lander

Single indentation assay

decorated

Nature Communications 5, 4520 (2014)

Mechanical fatigue

undecorated

Decorated particles are mechanically more robust that undecorated

Can we use cementing proteins to recover weaken protein shells?

Tuning viral capsid nanoparticle stability with simmetrycal morphogenesis

P22 particles

EX-Dec

WB-Dec

Collapse of p22 particles after adsorption

on the surface

Collapse of p22 particles after adsorption

on the surface

Collapse of p22 particles after adsorption

on the surface

Which structure is more stable?

0.5% SDS

Llauró et al. ACS Nano 2016

Which structure is more stable?

Llauró et al. ACS Nano 2016

How much work is used to crack the particles?

Cementing proteins improve capsid performance

Summary

Core mechanics indicates adenovirus pressurization that helps for disassembly and genome delivery

Genome condensation influences on diffusion

Cementing proteins recovers weak particles

Natalia González Francisco J. Moreno-Madrid Manuel Jiménez

Former members Marina López Mercedes Hernando Carolina Carrasco Alvaro Ortega Aida Llauró

Collaborators **Arvind Raman** Carlos E. Catalano Carmen San Martín **Daniel Luque Dave Evans David Reguera Iwan Schaap** José Ruiz Castón Mark van Raaij Mauricio García Mateu **Nuria Verdaguer** Rudi Podgornik Salvatore Cannistraro **Trevor Douglas Urs Greber**

diale.

Funding

MINISTERIO DE ECONOMIA Y COMPETITIVIDAD

ondensed Matter Physics Cente

Fundación **BBVA**

