Orientational Phase Transitions and the Assembly of Viral Capsids

i) Lorman-Rochal theory and the Landau theory of orientational ordering in liquid crystals and glasses.
ii) Extensions of Lorman-Rochal theory.

Orientational ordering in liquid crystals and glasses

- Nematic liquid crystals.

Order Parameter

First-order phase transition

- Biaxial Nematics (Freiser, 1970)

Two order parameters: S and T

$$
\begin{array}{cc}
S=T=0 & \text { isotropic } \\
& \downarrow \\
S \neq 0, T=0 & \text { uniaxial nematic } \\
& \downarrow \\
S \neq 0, T \neq 0 & \text { biaxial nematic }
\end{array}
$$

Order parameters

$$
\begin{aligned}
& S=\left\langle P_{2}^{0}(\cos \theta)\right\rangle \\
& T=\left\langle P_{2}^{2}(\cos \theta) \exp (i \varphi)\right\rangle=\left\langle P_{2}^{-2}(\cos \theta) \exp (-i \varphi)\right\rangle
\end{aligned}
$$

$$
P_{2}^{2}(x)=3\left(1-x^{2}\right) \quad \text { Associated Legendre polynomials ?? }
$$

- General case: measure the density $\rho(\Omega)$ of molecules with orientation Ω.
- "'Spherical Fourier decomposition".

$$
\rho(\Omega)=\sum_{L=0}^{\infty} \sum_{M=-L}^{+L} Q_{L, M} Y_{L, M}(\Omega)
$$

- Spherical Harmonics

$$
Y_{L, M}(\theta, \varphi) \propto P_{L}^{M}(\cos \theta) \exp (i M \varphi)
$$

- Expansion coefficients $Q_{L, M}$ Orientational order parameter set

Infinite hierarchy of Orientational Transitions

- Biaxial nematics: $\mathrm{L}=2, \mathrm{M}=0, \pm 2$
- Cholesterics, blue phases: $L=2, M=0, \pm 1, \pm 2$
- "Cubatic" liquid crystal: L=4

Hornreich \& Shtrikman (1980, 1981).
Nelson \& Toner (1981)

- Icosahedral Glasses/Quasicrystals: L=6
- $\rho(\Omega)$: surface density modulation of cluster of atoms in liquids near melting. (no positional order)

- What is the best choice for the symmetry of the clusters?
- Rules of Landau Theory

Rule \# 1: Free energy = Sum of the scalar invariants of the order parameters $Q_{L, m}$ (under group SO(3) of rotations).
Rule \# 2: Use one "irreducible representation". Pick one single L. (but which L?)
Rule \# 3: Minimize free energy with respect to $Q_{L, M}$.

$$
\begin{aligned}
& \text { "Wigner 3-j symbol" }
\end{aligned}
$$

$$
\begin{aligned}
& \text { quadratic invariant } \\
& \text { cubic invariant } \\
& \text { quartic invariant }
\end{aligned}
$$

- r,w,u: Phenomenogical parameters.
- Simpler: expand free energy in powers of orientational density $\rho(\Omega)$

$$
\begin{aligned}
& \qquad(\{\rho(\vec{r})\})=\int_{\text {Surface }} d S\left\{r \rho(\vec{r})^{2}+w \rho(\vec{r})^{3}+u \rho(\vec{r})^{4}+\ldots\right\} \\
& \text { Insert } \quad \rho(\Omega)=\sum_{M=-L}^{+L} Q_{L, M} Y_{L, M}(\Omega)
\end{aligned}
$$

- Free energy minimum for $\mathrm{L}=6$ has icosahedral symmetry

$$
\rho(\Omega)=Q_{6}\left(Y_{0,0}+\sqrt{\frac{7}{11}} Y_{6,5}-\sqrt{\frac{7}{11}} Y_{6,-5}\right)
$$

- L = 6 "icosahedral spherical harmonic"

$$
F_{6}=r Q_{6}{ }^{2}+w Q_{6}{ }^{3}+u Q_{6}{ }^{4}
$$

- $\mathrm{Q}_{6}=$ Order parameter "amplitude"

First-order transition (cubic term non-zero)

- Icosahedral state is thermodynamically stable against fluctuations.

Landau theory of crystallization and the capsid structures of small icosahedral viruses
V. L. Lorman ${ }^{1}$ and S. B. Rochal ${ }^{1,2}$
${ }^{1}$ Laboratoire de Physique Theorique et Astroparticules, CNRS, Universite Montpellier 2, Place Eugene Bataillon, 34095 Montpellier, France
${ }^{2}$ Physical Department, South Federal University, 5 Zorge Street, 344090 Rostov-on-Don, Russia

Capsid Canine Parvovirus

$$
\rho_{15}(\Omega) \propto \sum_{M=-15}^{+15} Q_{15, M} Y_{15, M}(\Omega)
$$

$\mathrm{L}=15$ Icosahedral spherical harmonic

For certain L there is a unique linear combination $Y_{h}(L)$ of the $Y_{L, M}$ that transforms as a scalar or as a pseudo-scalar under the icosahedral symmetry group.

- Even L L = 6, 10, 12, 16,

scalar density
even under inversion $r \rightarrow-r$
pseudo-scalar density odd under inversion
- Chiral pairs (isomers)

Rochal \& Lorman: capsid density cannot be presented by the even L scalars
amino-acids

- Capsid densities are not even under inversion: only odd L spherical harmonics.
- Smallest viral capsids should correspond to $Y_{h}(L=15): T=1$ viruses.

$$
\text { Parvovirus (T=1) : } \quad \rho(\Omega)=Q_{15} Y_{h}(15)
$$

Landau free energy (L=15): $\quad F_{15}=r_{15} Q_{15}^{2}+u Q_{15}^{4}$

Cubic term zero for any odd L!
"Spontaneous chiral symmetry breaking transition".

Questions

1) Second-order transition?

Collective assembly pathway

Cowpea Chlorotic Mottle Virus (CCMV)

R. Cadena-Nava, M. Comas-Garcia,
R. Garmann, A. Rao C. M. Knobler, and W. M. Gelbart
J. Virol. 86, 3318 (2012).
R. Garmann, M. Comas-Garcia, A. Gopal,
C. M. Knobler, and W. M. Gelbart
J. Mol. Biol. 426, 1050 (2013)

- Fluorescence thermal shift assay CCMV: first-order transition

Guillaume Tresset, Jingzhi Chen, Maelenn Chevreuil, Naïma Nhiri, Eric Jacquet, and Yves Lansac Phys. Rev. Applied 7, 014005, 2017
2) Spontaneous chiral symmetry breaking transition at $r_{15}=0$. Uniform state is already chiral.
3) Thermodynamic stability against fluctuations: expand free energy around $Y_{h}(15)$ solution

$$
\rho(\Omega)=\text { const } .+\rho_{15} Y_{h}(15)+\sum_{M=-15}^{+15} \delta Q_{15, M} Y_{15, M}(\Omega)
$$

fluctuation

Fluctuation free energy: $\quad \delta F_{15}=\frac{1}{2} \sum_{M=-15}^{15} \sum_{M^{\prime}=-15}^{15} C_{M, M}, \delta Q_{15, M} \delta Q_{15, M^{\prime}}$

- $\mathrm{C}_{\mathrm{M}, \mathrm{M}^{\prime}}: 31 \times 31$ stability matrix should have positive eigenvalues.

21 positive eigenvalues
3 zero eigenvalues (rotations)
7 negative eigenvalues !

saddle-point

- Lowest free energy state in the $L=15$ sector:

- Symmetry group D_{5} :

One five-fold symmetry axis. Five "odd" two-fold axes.

- All odd icosahedral spherical harmonic states are unstable.
- Only $L=6,10,12$, and 18 icosahedral states are stable. ($L=16$ is unstable, Matthews).

Should we perhaps take another look at the even L states?

Picornavirus:
assembles from 12 identical
chiral pentagons composed of 15 proteins: capsomers

- Interpret $\rho(\Omega)$ as the density of capsomer centers. Add chiral capsomers.

CCMV:

assembles from 32 chiral capsomers
12 pentamers +20 hexamers.

- But no signature of chirality in the density of capsomer centers??

Extensions of Lorman-Rochal

- Step 1: Landau-Brazovskii theory
- smectic-nematic transition
- chiral liquid crystals (cholesterics)
- weak solidification (block co-polymers).

$$
F_{L B}=\int d S\left\{\left.\left(\nabla^{2}+k_{0}^{2}\right) \rho(\vec{r})\right|^{2}+r \rho(\vec{r})^{2}+w \rho(\vec{r})^{3}+u \rho(\vec{r})^{4}\right\}
$$

- Wavenumber $\mathrm{k}_{0}=2 \pi / a$. Dominant molecular length-scale: $\mathrm{a}=$ protein size.
- First term minimized by density waves $\rho(\vec{r}) \propto \exp i\left(k_{0} \hat{n} \cdot \vec{r}\right)$

$$
\left(\nabla^{2}+k_{0}^{2}\right) \exp i\left(k_{0} \hat{n} \cdot \vec{r}\right)=0
$$

$$
\mathrm{n}=\text { unit vector }
$$

- Look for combinations of density waves

$$
\rho(\vec{r})=\rho_{0} \sum_{j=1}^{3} \cos \left(k_{0} \hat{n}_{j} \cdot \vec{r}\right)
$$

Pezzutti et al.

- First-order transition: cubic term in Landau energy non-zero
- Block co-polymers (L. Leibler): competition between hexagonal phases, lamellar phases and other symmetries.

Landau-Brazovskii on a spherical surface.

- Insert $\rho(\Omega)=\sum_{L=1}^{\infty} \sum_{M=-L}^{+L} Q_{L, M} Y_{L, M}(\Omega)$ in Landau-Brazovskii free energy.

$$
F_{L B}=\sum_{L} r_{L} \sum_{M=-L}^{+\alpha}\left|Q_{L, M}\right|^{2}+w \sum_{\substack{\left.L_{1} L_{2} L_{3} M_{1} M_{2} M_{3}\right\} \\ M_{1}+M_{2}+M_{3}=0}}\binom{L_{1} L_{2} L_{3}}{M_{1} M_{2} M_{3}} Q_{L_{1}, M_{1}} Q_{L_{2}, M_{2}} Q_{L_{3}, M_{3}}+u\left\{Q^{4}\right\}
$$

- Sum over all L.

r_{L} has minimum when $\mathrm{k}_{0} \mathrm{R} \approx \mathrm{L}$

Step 2: Include chirality directly in free energy

Chiral liquid crystals: add lowest-order chiral pseudoscalar to the Landau free energy of the achiral liquid crystal.

P-G De Gennes
scalars

$$
\begin{aligned}
F= & \int_{S^{2}}\left[\left(\frac{1}{2}\left(\left(\Delta+k_{o}^{2}\right) \rho\right)^{2}+\frac{r}{2} \rho^{2}+\frac{u}{3} \rho^{3}+\frac{v}{4} \rho^{4}+\ldots .\right)\right. \\
& \left.+\chi\left(\nabla \rho \cdot(\nabla \nabla \rho)^{2} \cdot(\mathbf{n} \times \nabla \rho)\right)\right] d S
\end{aligned}
$$

- lowest non-zero pseudo-scalar
- variant of "Helfrich-Prost"
- Sanjay Dharmavaram
- Now let's try again
- Stable minima for $L=6,10,12$, and 16.

- Thermal fluctuations around the isotropic and $Y_{h}(\mathrm{~L})$ states are chiral.
- No spontanous chiral symmetry breaking at $r_{L}=0$.
\rightarrow Conclusion: $L=6,10,12$, and 16 icosahedral spherical harmonics are possible representations for collective capsid assembly. \leftarrow
- But odd Licosahedral spherical harmonics states remain unstable!

- Could there be a stable icosahedral order parameter composed of two one-dimensional "irreducible representations" of SO(3) near $\mathrm{k}_{0} \mathrm{R}=16$?
- $\mathrm{L}=15+16$ space has $31+33=64$ dimensions

Dharmavaram, S., Xie, F., Klug, W., Rudnick, J., \& Bruinsma, R. (2017). Orientational phase transitions and the assembly of viral capsids. Physical Review E, 95(6), 062402.

Examples

Parvovirus
Maxima: single capsid proteins

Polyomavirus
72 maxima: capsid protein pentamers

Numerical simulations: 72 particles on a spherical surface

- Icosahedral state: very fragile. Competes with other states that have $\mathrm{D}_{3}, \mathrm{D}_{5}, \mathrm{~T}$ symmetry.
S. Paquay, H. Kusumaatmaja, D. Wales, R. Zandi, and P. van der Schoot, Energetically favoured defects in dense packings of particles on spherical surfaces http://arxiv.org/abs/1602.07945

Conclusion

Lorman-Rochal theory (+ some extensions) is a powerful mathematical tool for the study of capsid assembly.

- Two modes of viral assembly :

Assembly of mixed L, intrinsically chiral shells via (quasi) continuous transitions.
Assembly of pure L, effectively achiral shells via strongly first-order transitions.

- Viral assembly: laboratory for testing and (maybe) violating Landau theory!
- Substantial experimental problems!

with thanks to:

Bill Gelbart
Rees Garmann
Chuck Knobler

