Quantum transport in graphene

L1 Disordered graphene (G)

graphene 101

QHE in G and quantum resistance standard weak localisation regimes in graphene

- L2 Ballistic electrons in graphene
- L3 Moiré superlattice effects in G/hBN heterostructures

 sp^2 hybridisation forms strong directed covalent bonds between carbons (at 120°) which determine the honeycomb lattice structure

Graphenes

Exfoliated from bulk graphite onto a substrate, or hanged suspended (highest quality G/hBN in L2, L3)

Grown using chemical vapor deposition

(CVD) on metals (Cu, Ni), or insulators: polycrystalline and strained

Graphene grown on the basal plane, Somm semi-insulating Si-face 684-SiC September, 2008 Advanced Sillion, Carbide Epitaxial Research Laboratory Naval Research Laboratory Naval Research Laboratory Naval Research Laboratory Haddhregion, DC 20275 USA

Epitaxial graphene sublimated on Si-terminated surface of SiC: wafer-scale single-crystalline carpet

Wallace, Phys. Rev. 71, 622 (1947) Slonczewski, Weiss, Phys. Rev. 109, 272 (1958)

Wallace, Phys. Rev. 71, 622 (1947) Slonczewski, Weiss, Phys. Rev. 109, 272 (1958)

 $H = v\vec{\sigma} \cdot \vec{p}$

 $\vec{p} = (p\cos\theta, p\sin\theta)$

Wave function. sublattice composition is linked to the axis determined by the electron momentum.

for conduction band electrons, $\vec{\sigma} \cdot \vec{n} = 1$

 $\vec{\sigma} \cdot \vec{n} = -1$ valence band ('holes')

Electronic states in graphene photographed using ARPES

Angle-resolved photo-emission spectroscopy (ARPES) of heavily doped graphene synthesized on silicon carbide A. Bostwick *et al* – Nature Physics 3, 36 (2007)

Electronic states in graphene photographed using ARPES

$$\mathcal{E} = vp$$

$$\vec{\mu} = v \begin{pmatrix} 0 & \pi^{+} \\ \pi & 0 \end{pmatrix} = v \vec{\sigma} \cdot \vec{p}$$

$$\vec{\mu} = (p \cos \vartheta, p \sin \vartheta)$$

$$\pi = p_{x} + ip_{y} = pe^{i\vartheta}$$

$$\pi^{+} = p_{x} - ip_{y} = pe^{-i\vartheta}$$
sublattice 'isospin' $\vec{\sigma}$ is
inked to the direction of
the electron momentum

$$\vec{\sigma} \cdot \vec{n} = -1, \mathcal{E} = -vp$$
valence band

$$\vec{p}$$

$$\psi_{\vec{p}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\pm e^{-i\vartheta}} \right)$$

$$\psi_{\vec{p}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\pm e^{-i\vartheta}} \right)$$

$$\vec{r} = -\frac{1}{\sqrt{2}} \psi_{\vec{p}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\pm e^{-i\vartheta}} \right)$$

$$H = v\vec{\sigma}\cdot\vec{p} + \hat{1}\cdot U(x)$$

Simple A-B symmetric potential (smooth at the scale of lattice constant cannot scatter Berry phase π electrons in exactly backward direction.

$$w_{\vec{p}\to-\vec{p}} = \left|\sum_{i} \psi_{i}\right|^{2} = \left|\sum_{(a,b)} [\psi_{a\to b} + \psi_{b\to a}]\right|^{2} = \left|\sum_{(a,b)} 0\right|^{2} = 0$$

$$\psi_{a \to b} = A e^{i\frac{\pi}{2}\sigma_z} \psi_{\vec{p}}$$

$$\psi_{a \to b} = e^{i\pi\sigma_z} \psi_{b \to a} = -\psi_{b \to a}$$

'Unstoppable' Berry phase π electrons

Graphene: gapless semiconductor

Geim and Novoselov, Nature Mat. 6, 183 (2007)

Quantum transport in graphene

L1 Disordered graphene (G)

graphene 101

QHE in G and quantum resistance standard

weak localisation regimes in graphene

- L2 Ballistic electrons in graphene
- L3 Moiré superlattice effects in G/hBN heterostructures

$$w(p - \frac{e}{c} A) \cdot \sigma$$
rgest gaps in L spectrum

with 4-fold degenerate
Landau level

ys. Rev. 104, 666 (1956)

Novoselov et al., Science 315, 1379 (2007).

$$H = v(\vec{p} - \frac{e}{c}\vec{A}) \cdot \vec{\sigma}$$

the lai the L

McClure - Phy

$$\Delta_{\nu=2} = \sqrt{2} \, \frac{\nu}{\lambda_B}$$

$$2500$$

 2000
 1500
 1000
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500
 500

$$v = \pm 2$$

good for the quantum Hall effect in graphene
with $R_{xy}=h/2e^2$

Epitaxial G/SiC (Si face)

Lauffer, Emtsev, Graupner, Seyller **(Erlangen)**, Ley PRB 77, 155426 (2008) Dead layer with a large unit cell carries defects (missing C, Si substitutions of C, interstitial Si) in a large variety of positions, therefore, provides a broad band of surface donor/acceptor states which transfer charge to

graphene

←laver 2

←laver 0

Si

⊶ graphene → ← laver 1

(6√3×6√3)R30°

-----graphene-----

(6\3×6\3)R30°

Gaskill et al, **(HRL Malibu)** ECS Trans. 19, 117 (2009)

'Quantum capacitance' and charge transfer in G/SiC

Kopylov, Tzalenchuk, Kubatkin, Fal'ko - Appl. Phys. Lett. 97, 112109 (2010)

B (T)

$$\gamma [A - 4\pi e^2 d(n + n_g) - \varepsilon_F(n)] + \rho l = n + n_g$$
$$\widetilde{A} = \varepsilon_F(n) + U + 4\pi e^2 d(n + n_g).$$

$$\varepsilon_F = \hbar v \sqrt{\pi n}$$

Due to the filling factor pinning, the largest QHE breakdown current is not at a nominal B(v=2), but appears at a higher field.

Janssen, Tzalenchuk, Yakimova, Kubatkin, Lara-Avila, Kopylov, Fal'ko - PRB 83, 233402 (2011)

Graphene-based resistance standard

Tzalenchuk, Lara-Avila, Kalaboukhov, Paolillo, Syväjärvi, Yakimova, Kazakova, Janssen, Fal'ko, Kubatkin Nature Nanotechnology 5, 186 (2010)

500 μA at 14 T and 300 mK

87 pp trillion (ppt)

Janssen, Tzalenchuk, Lara-Avila, Kubatkin, Fal'ko Rep. Prog. Phys. 76, 104501 (2013)

Resistance metrology

XIX-XX centuries

Wire resistor: a unique artefact which drifts in time

XXI century

25 812.807 557 Ω 🔓 😽 🗸 Υ- Υ-

Quantum Hall effect: universal and accurate

• 87 pp trillion (ppt)

- Hall current is carried by electrons in the edge states extended along the edges and equipotential near metallic contacts, terminated at the current injection points
- Hot spots at the current injection contacts limit applicable current and therefore practical accuracy of quantisation

Edge states in graphene

$$= \begin{cases} v\boldsymbol{\sigma} \cdot (-i\hbar\nabla + e\mathbf{A})\Psi = E\Psi; \\ [1 - (\boldsymbol{m} \cdot \boldsymbol{\tau}) \otimes (\boldsymbol{n} \cdot \boldsymbol{\sigma})]\Psi|_{y=0} = 0; \\ \boldsymbol{n} = \hat{\mathbf{n}}_z \, \cos\phi + [\hat{\mathbf{n}}_z \times \mathbf{n}_{\perp}] \, \sin\phi. \end{cases}$$

QHE regime

$$P_{K\to -K} = \frac{(\tan \theta)^2}{(\cos \phi)^2 + (\tan \theta)^2} |\boldsymbol{m} \times \hat{\mathbf{n}}_z|^2.$$

B=0

$$E(p) = \xi \hbar v p \sin \phi$$

$$\Psi_{\xi} = \begin{bmatrix} \xi \\ \left(\tan \frac{\phi}{2} \right)^{\xi} \end{bmatrix} e^{-\xi p y \cos \phi + i p x}$$

Akhmerov & Beenakker, PRB 77, 085423 (2008) Slizovskiy & Fal'ko, arXiv:1705.02866

Current injection hot spot, chiral heat transport, and edge states cooling by phonons in G in vdW structures

Electrostatics of edge states in G/SiC

Slizovskiy & Fal'ko, 2017

Photochemical gating Low-field QHE in G/SiC

Commercial application of QHE: push-button QRS calibration tool

Oxford Instruments cryo-free system NPL Cryogenic Current Comparator optimal QRS device design (NGI)

Quantum transport in graphene

L1 Disordered graphene (G)

graphene 101

QHE in G and quantum resistance standard

weak localisation regimes in graphene

- L2 Ballistic electrons in graphene
- L3 Moiré superlattice effects in G/hBN heterostructures

Interference correction to conductivity: Weak Localisation.

$$w \sim |A_{c} + A_{c}|^{2} = |A_{c}|^{2} + |A_{c}|^{2} + |A_{c}|^{2} + [A_{c}^{*}A_{c} + A_{c}A_{c}^{*}]$$

WL = enhanced backscattering for non-chiral electrons in time-reversal-symmetric systems

de-coherence suppresses interference contribution

$$\sigma = \sigma_{cl} - \frac{e^2}{2\pi h} \ln\left(\min[\tau_{\varphi}, \tau_B]/\tau\right)$$

time reversal symmetry breaking suppresses interference correction, leading to negative magnetoresistance Interference correction to conductivity: Weak Localisation.

$$w \sim |A_{\Box} + A_{\Box}|^2 = |A_{\Box}|^2 + |A_{\Box}|^2 + [A_{\Box}^*A_{\Box} + A_{\Box}A_{\Box}^*]$$

WL = enhanced backscattering for non-chiral electrons in time-reversal-symmetric systems

$$\sigma = \sigma_{cl} + \frac{e^2}{2\pi h} \ln(\min[\tau_{\varphi}, \tau_B]/\tau) \begin{bmatrix} w \\ fo \end{bmatrix}$$

WAL = suppressed backscattering for Berry phase π electrons in MLG

chiral electrons $\psi_{out} = e^{-i\phi(\Sigma_z/2)}\psi_{in}$

$$A_{\Box} \sim e^{i\frac{\pi}{2}\Sigma_{z}} \psi_{\vec{p}}$$

$$A_{\Box} A_{\Box}^{*} = e^{-i2\pi(\Sigma_{z}/2)} |A_{\Box}|^{2} = -|A_{\Box}|^{2} < 0$$

Strained graphene

$$\hat{H} = v\vec{p}\cdot\vec{\Sigma} + \zeta\vec{\alpha}_{def}\cdot\vec{\Sigma} \equiv v[\vec{p} + \frac{\zeta}{v}\vec{\alpha}_{def}]\cdot\vec{\Sigma}$$

shift of the Dirac point in the momentum space, like some vector potential: opposite in K/K' valleys.

$$B_{eff} = \frac{\zeta}{v} \left[\nabla \times \vec{\alpha}_{def}(\vec{r}) \right]_z$$

Iordanskii, Koshelev, JETP Lett 41, 574 (1985) Ando - J. Phys. Soc. Jpn. 75, 124701 (2006) Morpurgo, Guinea - PRL 97, 196804 (2006)

> pseudo-magnetic-field, as if time inversion is lifted for electrons in each valley ($\zeta = \pm 1$ for K/K' valleys)

Strain-induced '100Tesla' pseudo-magnetic fields in nanobubbles

... but strain has the opposite effect on electrons in K and K' valleys, so that the true time-reversal symmetry is preserved, and the inter-valley scattering restores the V

scattering restores the WL behaviour typical for electrons in time-inversion symmetric systems.

Intervalley time au_{iv}

$$\sigma = \sigma_{cl} - \frac{e^2}{2\pi h} \ln(\min[\tau_{\varphi}, \tau_B] / \tau_{iv})$$

McCann, Kechedzhi, Fal'ko, Suzuura, Ando, Altshuler, PRL 97, 146805 (2006)

is an indication for that random strain fluctuations are the dominant source of disorder data for graphene on SiO₂, SrTiO₃, hBN

 $\mathcal{T}_* \sim \mathcal{T}$

Couto, Costanzo, Engels, Ki, Watanabe, Taniguchi, Stampfer, Guinea, Morpurgo - PRX 4, 041019 (2014)

(2014)

WL in epitaxial graphene on SiC

Lara-Avila, Kubatkin, Kashuba, Folk, Luscher, Yakimova, Janssen, Tzalenchuk, Fal'ko. PRL 115, 106602 (2015)

Influence of spin-flip scattering and scatter's spin dynamics on WL

this does not cause decoherence, but scattering amplitude/phase depend on the mutual orientation of defect's and arriving electron's spins

Influence of scatterer's spin dynamics on WL

Influence of scatterer's spin dynamics on WL

Lara-Avila, Kubatkin, Kashuba, Folk, Luscher, Yakimova, Janssen, Tzalenchuk, Fal'ko - PRL 115, 106602 (2015)

For $g_i \neq g_e$ difference of scattering conditions between clockwise and anticlockwise trajectories leads to a faster decoherence for

Si substitutions of C in the dead carbon layer on SiC (Si has stronger SO coupling than carbon)

Kashuba, Glazman, Fal'ko - PRB 93, 045206 (2016)

SO coupling and WAL/WL crossover in graphene

McCann, Fal'ko - PRL 108, 166606 (2012)

WAL due to proximity-induced SO coupling in graphene on transition metal dichalcogenides

McCann, Fal'ko - PRL 108, 166606 (2012);

Wang, Ki, Khoo, Mauro, Berger, Levitov, Morpurgo - PRX 6, 041020 (2016)

QHE in G and quantum resistance standard
 weak localisation regimes in disordered graphene

Ed McCann (Lancaster) Sergey Kopylov (kopylov.com Ito Sergey Slizovskiy (NGI) Oleksiy Kashuba (Wurzburg) Leonid Glazman (Yale) Boris Altshuler (Columbia)

EPSRC

Alexander Tzalenchuk (NPL) JT Janssen (NPL) Sergey Kubatkin (Chalmers) Joshua Folk (Vancouver) Rositsa Yakimova (Linkoping) Ziad Melhem (Oxford Instruments)

GRAPHENE FLA

Quantum transport in graphene

L1 Disordered graphene (G)

graphene 101

QHE in G and quantum resistance standard weak localisation regimes in graphene

- L2 Ballistic electrons in graphene
- L3 Moiré superlattice effects in G/hBN heterostructures

Bilayer inclusions in a monolayer matrix formed on the step edges

T. Yager et al., Nano Lett. 13, 4217–4223 (2013)

Chua, Connolly, Lartsev, Yager, Lara-Avila, Kubatkin, Kopylov, Fal'ko, Yakimova, Pearce, Janssen, Tzalenchuk, Smith - Nano Letters, 14, 3369 (2014)

Bilayer inclusions act as metallic shunts

Chua, Connolly, Lartsev, Yager, Lara-Avila, Kubatkin, Kopylov, Fal'ko, Yakimova, Pearce, Janssen, Tzalenchuk, Smith - Nano Letters, 14, 3369 (2014)

Chua, Connolly, Lartsev, Yager, Lara-Avila, Kubatkin, Kopylov, Fal'ko, Yakimova, Pearce, Janssen, Tzalenchuk, Smith - Nano Letters, 14, 3369 (2014)

Magnetic Field (T)