AN ADVANCED TOOL FOR APPLIED INTEGRATED SAFETY MANAGEMENT

T. Todd Potts WESKEM, LLC 105 Mitchell Road, Suite 100, Oak Ridge, TN 37830

> James M. Hylko¹ WESKEM, LLC 297 Kentucky Avenue, Kevil, KY 42053 ¹Author for correspondence

Terence A. Douglas Alliant Corporation P.O. Box 31645, Knoxville, TN 37930

ABSTRACT

WESKEM, LLC's Environmental, Safety and Health (ES&H) Department had previously assessed that a lack of consistency, poor communication and using antiquated communication tools could result in varying operating practices, as well as a failure to capture and disseminate appropriate Integrated Safety Management (ISM) information. To address these issues, the ES&H Department established an Activity Hazard Review (AHR)/Activity Hazard Analysis (AHA) process for systematically identifying, assessing, and controlling hazards associated with project work activities during work planning and execution. Depending on the scope of a project, information from field walkdowns and table-top meetings are collected on an AHR form. The AHA then documents the potential failure and consequence scenarios for a particular hazard. Also, the AHA recommends whether the type of mitigation appears appropriate or whether additional controls should be implemented. Since the application is web based, the information is captured into a single system and organized according to the >200 work activities already recorded in the database. Using the streamlined AHA method improved cycle time from over four hours to an average of one hour, allowing more time to analyze unique hazards and develop appropriate controls. Also, the enhanced configuration control created a readily available AHA library to research and utilize along with standardizing hazard analysis and control selection across four separate work sites located in Kentucky and Tennessee. The AHR/AHA system provides an applied example of how the ISM concept evolved into a standardized field-deployed tool yielding considerable efficiency gains in project planning and resource utilization. Employee safety is preserved through detailed planning that now requires only a portion of the time previously necessary. The available resources can then be applied to implementing appropriate engineering, administrative and personal protective equipment controls in the field.

INTRODUCTION

The fundamental objective of the Department of Energy's Integrated Safety Management (ISM) Program (1) is to systematically integrate safety into a project by defining work scope, identifying and analyzing work hazards, developing and implementing hazard controls, performing work within those controls, and collecting employee feedback. Typically, the elements of the ISM Program are contained in a site-specific environmental, safety & health (ES&H) plan specifying regulatory and contractual requirements. Because of the contractual nature of a site-specific ES&H plan, it can have limited application when encountering unique or changing field conditions. Identifying and categorizing hazards likely to be encountered and compiling ES&H practices from previous projects would significantly streamline worker protection information and prevent duplication. Also, a project-planning tool such as an interactive database accessible at multiple locations offers inherent flexibility to implement ISM in a streamlined and consistent manner.

The Situation

WESKEM, LLC is a field-response waste management company formed in February 2000 and is comprised of over 300 salary, bargaining-unit and sub-tier subcontractor employees operating at four different locations in Paducah, Kentucky, and Oak Ridge, Tennessee. Activities consist of the collection, database inventory, characterization, sorting, treatment, segregation, packaging, interim storage and transportation of hazardous, radioactive and mixed wastes including asbestos and polychlorinated biphenyls (PCBs). Because of the hazardous nature associated with these activities and distance between these four locations, the ES&H Department wanted to verify that hazard analyses and controls were being effectively communicated to field operation workers and, in return, input from field operations was being effectively communicated to work planners. The ES&H Department assessed that a lack of consistency, the potential for poor communication, and the use of antiquated communication tools could result in varying operating practices, as well as a failure to capture and disseminate appropriate ISM information between these sites.

To address these issues, the ES&H Department established an Activity Hazard Review (AHR)/Activity Hazard Analysis (AHA) process for systematically identifying, assessing, and controlling hazards associated with project work activities during work planning and execution. This process was intended to ensure that WESKEM, LLC employees (e.g., supervisors, operators, subcontractors, etc.) involved with performing work also participated and provided active feedback into these processes.

Activity Hazard Review (AHR) Form

Work groups consisting of WESKEM, LLC employees are directly involved with identifying and categorizing operational hazards associated with the scope of work. Depending on the scope of a project, information from field walkdowns and table-top meetings are collected on an AHR form. The form is used to identify and categorize the types of hazards likely to be encountered during work activities.

HAZARD IDENTIFICATION			
1. PHYSICAL HAZARDS			
KSN	KSN		
Cold Stress (Outside work temp < 30°F)	Pressurized Systems* (other than air)		
Heat Stress (Inside/Outside >85°F)	Vacuum System		
Noise (Is louder than conversational speech)	Compressed Air*		
Slip/Trip/Fall (wet, steep, poor			
nousekeeping)			
Enclosed Space (Roll-off bins, B25 boxes)	Mechanical/Moving Parts (operating equipment)		
Confined Space (Storage tank, underground tanks, limited entry)	Sharp Edges/Corners		
Oxygen Deficient (<19.5%)	Inclement Weather		
Oxygen Enriched (>23%)	Work On or Near Water		
Hydrogen	Moving Equipment/Vehicles		
Ergonomics (repetitive motion, vibration, unusual work position for long period of time)	Insufficient Lighting Other Other		
Manual Lifting			
Compressed Gases/ Cylinders (welding cylinders, propane tanks)			
2. SAFETY/CONSTRUCTION HAZARDS			
KSN	KSN		
	Hoisting/Rigging		
Drum Handling	Overhead Hazards		
Elevated Work (>4 feet above ground)	Welding/Cutting/Burning		
Hazardous Energy (electrical/hydraulic/ pneumatic/steam/etc.)			
Concealed/Underground Hazards			
Excavation/Trenching			

3. UTILITY HAZARDS		
KSN	KSN	
Electrical	Overhead Utility Lines	
Gas	Septic/Sewer	
Plumbing (Water supply)	Other Concealed/Underground Utilities	
4. CHEMICAL HAZARDS*		
KSN	KSN	
Asbestos	Corrosive (pH<2, pH>12)	
Lead		
Man-Made Fibers (fiberglass)	Mutagen	
Flammable (flash point <140°F)	Reproductive Toxin	
Combustible (flash point <200°F)	Pyrophoric (white phosphorus, lithium	
Mercury	Other	
Heavy Metals (Pb, Cd, Ni, etc.)		
Toxic (H_2S)		
Incompatible Chemicals	Route of Exposure	
PCBs		
Inorganics (chlorides, fluorides, etc.)	☐ Inhalation	
Volatile Organics (Benzene, Methylene Chloride, TCE)	Absorption	
Oxidizers (methyl ethyl ketone peroxide,		
5 IONIZING RADIOLOGICAL HAZARDS*	I	
K S N	Route of Exposure	
External Exposure		
Internal Exposure	Inhalation	
	Absorption	
Fissionable Material		
6. NON-IONIZING RADIOLOGICAL HAZARDS*		
K S N High Voltage	K S N	
	Ultraviolet (excluding sunlight)	
	Ultraviolet (from sunlight)	

7. BIOLOGICAL/VECTOR HAZARDS			
KSN	КЅℕ		
Bacterial/Fungi	Rodents (carriers of Haunta virus)		
Plants (Allergens, i.e., poison ivy, etc.)	Insects, Spiders, Snakes		
Medical Waste	Other Wildlife		
Parasites			
8. HAZARDOUS WASTE* (Does area contain label	ed waste)		
Waste Codes (if known. If not known, complete	identified characteristics below.)		
No Labeled Drums Present			
METALS K S N	VOLATILES K S N		
Arsenic (D004)	Benzene (D018)		
Barium (D005)	2-Butanone (MEK) (F005)		
Cadmium (D006)	1,4 Dichlorobenzene (D027)		
Chromium (D007)			
Lead (D008)	Tetrachloroethylene (D039 or F002)		
Mercury (D009)	Toluene (F005)		
Selenium (D010)	1,1,1-Trichloroethane (F002)		
Silver (D011)	Trichloroethylene (D040)		
Other	□□□ Xylene (F003)		
WASTE CHARACTERISTICS K S N	OTHER KSN		
Corrosive (D002)	Asbestos		
Exothermic Reaction	PCBs		
Ignitable (D001)	Soil Debris		
Reactive (D003)	Hydrocarbon Impacted Waste		
	□<100 ppm □Unknown		
	□>100 ppm		

WASTE CATEGORY	TRANSPORTATION (if moving waste)		
Bio-Hazard	On-Site (must comply with DOE/EPA		
Mixed	equivalency)		
Radiological	Over Public Roads (must comply with DOT/EPA laws)		
Sanitary Industrial			
9. ENVIRONMENTAL (Does FWR involve the follow	ving activities?)		
KSN	KSN		
Air Emissions (>10 tons/year of HAP)	Clearing or Excavation		
Liquid Discharge (above effluent limits)	Other		
Petroleum Storage (>600 gallons)			
HAZARD CONTROLS			
(To be completed by ES&H d	uring pre-planning meetings)		
	R P N		
Anti-C	Disposable Suit (Saranex [®])		
Aprons	Chemical Resistant Gear		
Company Work Clothing	Heat/Flame Resistant Clothing		
Disposable (Tyvek [®]) Suits	Other		
11. HAND PROTECTION			
R P N	R P N		
Chemical Gloves	Standard Work Gloves		
Leather Work Gloves	Heat/Flame Resistant Gloves		
Kevlar [®] (Cut Resistant) Gloves	Other		
Mesh Gloves			
12. EYE/FACE PROTECTION			
R P N	R P N		
Safety Glasses with Side Shields	Face Shield		
Impact Resistant Goggles	Welding Helmet		
Chemical Goggles	Other		
Shaded Lens for UV (Welding) or Laser			

13. RESPIRATORY PROTECTION			
R P N	R P N		
Half-Face Respirator	Supplied Air		
Full-Face Respirator/PAPR	Self-Contained (SCBA)		
Respirator Cartridge/Canister	Special Ventilation (NAM)		
R P N	R P N		
Safety-Toed Shoes or Boots	Liquid Impermeable Footwear or Covers		
Slip-Resistant Soles	Other		
Chemical Resistant Boots			
15. HEAD PROTECTION			
R P N	R P N		
Hard Hat	Hoods		
Welding Helmet	Tyvek [®] Other		
Other	Anti-C		
R P N	R P N		
Ear Plugs	Other		
Ear Muffs			
17. TEMPERATURE EXTREME PROTECTION			
R P N	R P N		
Cold Wear Gear	Drinking Water		
Special Instructions for Work/Rest	Other		
18. ELECTRICAL PROTECTION			
R P N	R P N		
Identification of Concealed/Underground	GFCI Protection		
	Equipment/System Grounding		
Energy Isolation (LOTO)			
Insulated (Rated) Rubber, Fiberglass, or			
LILI Line Clearance Minimums			

19. FIRE/EXPLOSION PROTECTION			
R P N	R P N		
Non-Sparking Tools	Fire Watch		
A-, B-, C- Rated Fire Extinguisher	Special Notification		
Grounding/Bonding for Dispensing	Other		
20. FALL/ARREST PROTECTION			
R P N	R P N		
Safety Harness (required for all arrest)	Tie-Off Point		
Safety Belt (Positioning/Restraint only)	Guard Rail		
Lanyard	Boundary Warning		
	Other		
21. SPECIAL RESCUE/RETRIEVAL EQUIPMENT			
R P N	R P N		
Personal Flotation Devices	Rescue Tripod		
Rescue Line/Harness	Other		
Life Rings with Rope			
22. MONITORING			
Industrial Hygiene Monitoring	Oxygen		
$\Box \Box \Box Toxic (H_2S)$	Combustible Gas		
Heat Stress Monitor	Radiological Exposure/Contamination		
Chemical Monitor (Colorimetric)	Thermoluminescent Device		
Noise	Other		
Volatile Organic Compounds			
Explosive (LEL)			
23. ENVIRONMENTAL MONITORING			
КЧИ	КЪИ		
Air Emission Monitoring	RCRA Storage Area Inspections		
Liquid Emission Monitoring (NPDES)	Other		
SPCC Monitoring			
Waste Drum Inspections			

24. PERMITS			
R P N	R P N		
Confined Space Entry	Radiation Work Permit		
Excavation/Penetration	Welding/Burning/Hotwork		
Lockout/Tagout	Other		
Fall Protection			
25. SPECIAL PLANS OR PROCEDURES OR GUIDE	ELINES (other than existing Weskem SOPs)		
R P N	R P N		
Carcinogen Control	Hearing Conservation Control		
Asbestos Work Authorization	Respiratory Protection		
Chemical Hygiene Plan	Heat Stress		
Exposure Control (for handling bloodborne pathogens, medical waste)	Hoisting and Rigging Lift		
	Other		
26. OTHER MISCELLANEOUS			
RPN	R P N		
Shoring/Sloping Protection for Excavations	Barricades/Access Control		
27. WALKDOWN CONDUCTED			
28. COMMENTS			

If a hazard applies, a check is marked in the "K"nown box. If a hazard is suspected or may be present, a check is marked in the "S"uspect box. If a hazard does not apply, a check is marked in the "N"ot present box. This planning process elevates the scope of work to a task-specific hazard review. The work group members and those implementing the work then sign the AHR form.

Activity Hazard Analysis (AHA) Database

The AHA database documents the potential failure and consequence scenarios for a particular hazard. Also, the AHA information recommends whether the type of mitigation (e.g., engineering, administrative or personal protective equipment [PPE]) appears appropriate or whether additional controls should be implemented. The previous AHA method that was initially developed at the start of operations in February 2000 consisted of a cumbersome, ten-column format that was completed by hand or by cutting and pasting information from previously developed AHAs. The process was very time consuming, requiring an average of four hours per AHA, and was lacking essential programmatic components such as configuration control and an AHA library to compile information, feedback and lessons learned from previous projects. This approach was inefficient since information could not be utilized across all four locations, but could result in developing inconsistent hazard analyses for similar projects.

The Streamlined AHA Method

Information technology tools were then used as leverage in planning and information management needs between the four locations. A network database application called the Activity Hazard Analysis System (AHAS) was developed to perform an AHA. The AHA information is accessible through the main menu shown in Figure 1.

Figure 1. AHA Main Menu

Depending on the job scope, information consisting of job location and description, other subcontractors, tools and equipment, PPE, special instructions, work activities, potential hazards, and required actions, controls or methods of compliance are identified and edited on the AHA edit screen shown in Figure 2. Since the application is web based, the information is captured into a single system and organized according to the \geq 200 work activities already recorded in the database.

Figure 2. AHA Edit Screen

The AHA information is then compiled and printed in a three-column format, shown in Figure 3, and is included as part of the work package. Space is provided to collect post-job comments and employee feedback in the field that can then be added to the AHA database electronically. If field changes are made and approved by the ES&H Representative, the AHA is annotated and employees are updated accordingly.

P WESKEM AHA System - [Final AHA]			_ 8 ×
III Eile Window Help			Type a question for help 🛛 🗕 🗙
ADDUSIBRX		Fit - Close	
E Final AHA			×
_			
VEX H, LL R	Activity Hazard Ass	esment	FINAL
1 rojett Sumber:	Cana AHA - Paducab AHA Bumber Can	AHA-Padamb Rev: 0 RWIEs:	As applicable
Subcont retto r.	WESKEM LLC Lower Tier Subcontractor(c)	Sechul Jacoba P. S. WSKTAW	
		SAIC	
		SEC	
		Summu	
1 kms or Longsion:	PODP Topility of Anna WESKEM PODP	Iccus Done: 5/3/2002	
Description of Work:	Connel we's conversion and with WEIK SM	VZQD Request Required? No	
	comise of constricted operations and support activities		
Took and Equ ipment	Forkhû Sell bet he en ed test skerber hered	112E Channai gaggia (m. rayura) Caldurates and secondari)	
	OFC1 processo	Company (much datalog	
	Иса, зиста аваана	Fact shidd and anions (as required)	
	lesulexed cests	Lange a minimum weiz beide (a is	ապաստան)
	Non-sparting unds	Safery glases w/side shelds (as regured)
	Spill Su, ei spilleensuels The exclusion actor de les sa	Tyres Sun (as required)	
<u>U6 rk Accivity</u> Special Accivity	<u>Louential Housed Required Activ</u> Special Iosuucuos All prisoso div	rs, Concroks, or Maschodc of Compliance n∆rag watera det scope af des AHA causs read and fully un	den success of all
-	, stat 10 moizes s	FA and how rup to union under a work	
	Special Iosuucuona Personetiwa S nadioneti andia condinautifari	ng wabala dae seege af das AHA exusta aver exu rear uesa ag Ielea exceríar all exuvrues ra which daeγ perucryore. Refe urideoec	a na nauast 1 gazna ar an as
	Tousson ໄດຍກວະນອກອ່າງກະເລດອະດອດ ຂອງພະເປດແທນ ໂດຍສາໄທເທນອິໂດສໄປເງິດອີໂດສາດອິດ ເຊິ່ມສາງາງການ pracedures ປະເທດອິດສະ	na ar ga awalad a facilir, an fay a warwar w. Maufy building na far azuy - Manara ab al be barafed an ag az facafa an fay gal aa ab al be grawalad uu be wark, ga ak age	מאסים משל ובוים ולמובא ש
General Fridd Acumun Mabilitasian, Desebili Fridd Support	Մաստահայտով թորորով շատ լաջ ահել։ Միշ տարթյալ թ ոստուտով տասկայան էրորորով ստել Հայաստան առաջ	ասի առաջությունը, որը օր Ոսբջիսջ առաջության է առեւզիսով ասի	aubon at d
	Vebiele accidea. Follow all poss	abaaq juaara aaq aba ana isana naana gashara ji ahaqa	c) and
All A Sumber & Peve	n: CarcAFA - Paducada Rev û	Dans: 542	5003
I reparer (Ihone Bo :	aucopous, Devid (270) 441-9320	loge 1 of 13	
Ready			
😹 Start 🛛 🗭 🈂 🗊 🗍 🛅 AHA-DE	ase : Database (🗵 Final AHA		

Figure 3. Example AHA Printout

The initial network-based AHAS was developed over a six-month period using Microsoft® Access 2000 and Visual Basic for Applications. In Spring 2001, all four geographical locations were operating off one central server. Microsoft® Access 2000 was utilized because of employee familiarity and having already been installed on all client/server systems. In addition, follow-up customization and programming, shown in Figure 4, could be performed very easily compared to other systems.

Figure 4. AHA Administrative Functions

AHAS Requirements

The AHAS features consist of user-level security (e.g., usernames and passwords are required for accessing the system), a comprehensive menu-driven interface, customized menus and toolbars, error trapping, and data validation. It is optimized for five simultaneous users, but can support up to 255 users. Operating the AHAS requires a Pentium III 600 MHz processor client machine with 64 MB RAM and Win9X, Win2000, or WinXP, Microsoft® Access 2000, and a Pentium III 600 MHz processor network server with Win2000 or WinXP and 128 MB RAM. The AHAS network requirements consist of a 10 BaseT Local Area Network (LAN) with optimal performance achieved using a 100 BaseT LAN. In addition, Win2000, WinXP terminal server, or a compatible client terminal can be used for connecting to the system and accessing the AHAs remotely (e.g., T1 Line). A typical operation is completed in <5 seconds under optimal conditions using a terminal server. A terminal server is a server-based application that allows users to run applications at the server level, thus taking the burden off the employee's personal computer (PC). The terminal server only transmits screen shots that are very small in comparison with the data that is normally transmitted from the server to a standard PC.

CONCLUSION

This experience in developing the AHR/AHA system provides an applied example of how the ISM concept evolved into a standardized field-deployed tool yielding considerable efficiency gains in project planning and resource utilization. Use of the streamlined AHA method improved cycle time to an average of one hour allowing more time to analyze unique hazards and develop appropriate controls. Also, the enhanced configuration control created a readily available AHA library to research and utilize along with standardizing hazard analysis and control selection across four separate locations.

Since group interaction throughout the AHR/AHA process is the centerpiece for communicating hazards and controls, employees understand the hazards and agree to comply with the controls before deploying to the field. The employees are expected to improve on the identification and control of hazards whenever possible. Therefore, employee safety is preserved through detailed planning that now requires only a portion of the time previously necessary. Additional resources can then be applied to implementing appropriate engineering, administrative and PPE controls in the field, which is where the identified and potential hazards affect the employees directly.

REFERENCES

1. Assistant Secretary for Environment, Safety and Health, <u>Safety Management System</u> <u>Policy, DOE P 450.4</u>, U.S. Department of Energy, Washington, DC. October 15, 1996.