

Quantum Information Science with Atomic Trapped Ions

An Introduction

Christof Wunderlich

PRELUDE

INTRODUCTION

TRAPPING AND QUBITS

INTERACTING IONS

PRELUDE

5-Qubit Trapped Ion Quantum Computer Example

Th. Monz et al., Science **351**, 1068 (2016)

Optical Spin-Spin Interaction Entanglement Propagation after Global Quench

P. Richerme et al., Nature **511** (2014).

■ Total time of QFT≈ time for one CNOT gate

Science Advances 2 (2016)

INTRODUCTION

	Structure of Matter?	
	Atom: Indivisible	Plenist view
450 – 300 bC	Leukipp, Demokrit	Platon, Aristoteles
	450 – 300 bC	Structure of M Atom: Indivisible 450 – 300 bC Leukipp, Demokrit

	Atom: Indivisible	Plenist view
≈ 450 – 300 bC	Leukipp, Demokrit	Platon, Aristoteles
≈ 1600 - 1900	Gassendi, Jungius, Newton, Bernoulli, Richter, Dalton,	Descartes, Leibniz, Mach, Planck,

	Atom: Indivisible	Plenist view
≈ 450 - 300 bC	Leukipp, Demokrit	Platon, Aristoteles
≈ 1650 - 1900	Gassendi, Jungius, Newton, Bernoulli, Richter, Dalton,	Descartes, Leibniz, Mach, Planck,

	Atom: Indivisible	Plenist view
≈ 450 bC	Leukipp, Demokrit	Platon, Aristoteles
≈ 1650 - ≈1900	Gassendi, Jungius, Newton, Bernoulli, Richter, Dalton,	Descartes, Leibniz, Mach, Planck,
≈ 1910	, Rutherford, Bohr,	Mach,

	Atom: Indivisible	Plenist view
≈ 450 bC	Leukipp, Demokrit	Platon, Aristoteles
≈ 1650 - ≈1900	Gassendi, Jungius, Newton, Bernoulli, Richter, Dalton,	Descartes, Leibniz, Mach, Planck,
≈ 1910	, Rutherford, Bohr,	Mach: "Who has seen these atoms?"

	Atom: Indivisible	Plenist view
≈ 450 bC	Leukipp, Demokrit	Platon, Aristoteles
≈ 1650 - ≈1900	Gassendi, Jungius, Newton, Bernoulli, Richter, Dalton,	Descartes, Leibniz, Mach, Planck,
≈ 1910	, Rutherford, Bohr,	Mach: "Who has seen these atoms?" ("Ham`S scho eins g`sehn?")

A single atom

E. Schrödinger:

- ... we never experiment with just one electron or atom ...
- ... we are not *experimenting* with single particles, any more than we can raise Ichthyosauria in the zoo.
- Br. J. Philos. Sci. III, August 1952.

W. Neuhauser et al.: Single Barium-Ion

1 Z. APR. 1979

Q-Q Shifen mit Phylomul tiplier + Phylos. 10 min. Belich hugsteit 1.2.3 Tonen 1.2.3 Tonen Eichung Photo ~ 1mm = 10-11mm

W. Neuhauser, M. Hohenstatt, P. E. Toschek, H.G. Dehmelt, Phys. Rev. A **22**, 1137 (1980).

H. Dehmelt Nobel Prize 1989

Trapped Atoms

VOLUME 41, NUMBER 4

PHYSICAL REVIEW LETTERS

24 JULY 1978

Optical-Sideband Cooling of Visible Atom Cloud Confined in Parabolic Well

W. Neuhauser, M. Hohenstatt, and P. Toschek Institut für Angewandte Physik I der Universität Heidelberg, D-69 Heidelberg, West Germany

and

H. Dehmelt Department of Physics, University of Washington, Seattle, Washington 98195 (Received 25 April 1978)

An assemblage of < 50 Ba⁺ ions, contained in a parabolic well, has been visually observed and cooled by means of near-resonant laser irradiation.

Deutsches Museum Bonn

Trapped Atoms

VOLUME 40, NUMBER 25

PHYSICAL REVIEW LETTERS

19 JUNE 1978

D. Wineland Nobel Prize 2012 Radiation-Pressure Cooling of Bound Resonant Absorbers

D. J. Wineland, R. E. Drullinger, and F. L. Walls Time and Frequency Division, National Bureau of Standards, Boulder, Colorado 80303 (Received 26 April 1978)

We report the first observation of radiation-pressure cooling on a system of resonant absorbers which are elastically bound to a laboratory fixed apparatus. Mg II ions confined in a Penning electromagnetic trap are cooled to <40 K by irradiating them with the 8- μ W output of a frequency doubled, single-mode dye laser tuned to the low-frequency side of the Doppler profile on the ${}^{2}S_{1/2} \leftrightarrow {}^{2}P_{3/2}$ $(M_{J} = +\frac{1}{2} \leftrightarrow M_{J} = +\frac{3}{2}$ or $M_{J} = -\frac{1}{2} \leftrightarrow M_{J} = -\frac{3}{2})$ transitions. Cooling to approximately 10⁻³ K should be possible.

Trapping

Individual Trapped Ions

Time and Frequency: Example

 \Rightarrow first-order Doppler shift $\rightarrow 0$

- Trapping + laser cooling
- High vacuum at low temperature
- \Rightarrow time dilation \rightarrow 0
- \Rightarrow environmental perturbations (collisions, black body shifts, ...) $\rightarrow 0$

David Wineland Nobel Prize 2012

TABLE I. Systematic effects that shift the clock from its ideal unperturbed frequency. Shifts and uncertainties given are in fractional frequency units $(\Delta \nu / \nu)$. See text for discussion

Effect	Shift (10 ⁻¹⁸)	Uncertainty (10 ⁻¹⁸)
Excess micromotion	_0	6
Secular motion	-16.3	5
Blackbody radiation shift	-9	3
Cooling laser Stark shift	-3.6	1.5
Quad. Zeeman shift	-1079.9	0.7
Linear Doppler shift	0	0.3
Clock laser Stark shift	0	0.2
Background-gas collisions	0	0.5
AOM freq. error	0	0.2
Total	-1117.8	8.6

C W Chou et al PRI **104** (2010)

Trapped Atoms

x,y-plane

W. Paul Nobel Prize 1989

First ion trap 1955 W. Paul, Rev. Mod. Phys **6**, 531 (1990).

Individual Trapped Ions

- Localized: \approx 10 nm
- Laser cooled: μ K mK
- Individual quantum objects prepared deterministically
- Deterministic interaction
- Long Storage Time
- •••••• Variable Size

Individual Trapped Ions Some Research Fields

- Clocks, O(10⁻¹⁸)
- Change in time of natural constants?
- Anti-H spectroscopy
- Molecular spectroscopy
- Chemical reactions
- Quantum Information Science
- •

Individual Trapped Ions Some Research Fields

- Clocks, O(10⁻¹⁸)
- Change in time of natural constants?
- Anti-H spectroscopy
- Molecular spectroscopy
- Chemical reactions
- Quantum Information Science
- ••

Individual Trapped Ions Quantum Information Science

- Fundamental Questions of Quantum Physics
 - Measurement Process
 - Quantum / Classical
 - Entanglement
- Universal Quantum Computation
- Quantum Simulation
- Precision Measurements

TRAPPING AND QUBITS

Trapping ions **Cooling and Detection**

Yb⁺ ion crystal

Fast (\approx 20MHz) dipole transition:

- Detect resonance fluorescence

Doppler Cooling

resonant excitation for $\delta \cong \vec{k} \cdot \vec{v}$

Doppler Cooling

resonant excitation for $\delta \cong \vec{k} \cdot \vec{v}$ change of velocity $\Delta \vec{v} \cong \hbar \vec{k} / m$

Doppler Cooling

Doppler Cooling $\Gamma \gg v$

Example: Micro-structured 3-d trap

Appl. Phys. B **107** (2012); also S. A. Schulz et al., NJP **10**, 045007 (2008).

Trapped Ions for QIS Qubits

Yb⁺ ion crystal

Dipole transition:

- Detect resonance fluorescence
- Cooling.

Long-lived internal states serve as qubits (spin-1/2).

State selective detection: *Projective* measurement of *individual* qubits.

State selective detection

- Background Light
 - Threshold: s

State selective detection

- Poissonian Distribution
- Background Light
 - Threshold: s

State selective detection

• Wrong Assignments

Trapped Ions for QIS Single Qubit Gates

Single Qubit Gate

Single-Qubit Operations

• Single-shot readout fidelity > 99.9 %

Examples: A. H. Myerson et al., PRL 100, 200502 (2008); R. Noek et al. Optics Lett. 38, 4735 (2013)

• Single-qubit fidelity > 99.99 %

Examples: K. R. Brown et al., PRA 84, 030303 (2011); T. P. Harty et al., PRL 113, 220501 (2014)

• Coherence Time > 1 s

Examples: C. Langer, et al., PRL 95, 060502 (2005), Timoney et al., Nature 476, 185 (2011)

INTERACTING IONS

Direct Spin-Spin Interaction?

J. Phys. B **42,** 154009 (2009)

QO

Conditional Dynamics using Laser Light

Electromagnetic radiation for
Coupling internal and external degrees of freedom:

need
$$\eta \equiv \frac{\hbar k}{2p_0}$$

 \Rightarrow optical wavelengths

J. I. Cirac, P. Zoller, PRL **74**, 4091 (1995). Schmidt-Kaler *et al.*, Nature **422**, 408 (2003) A. Sørensen, and K. Mølmer, PRA **62**, 022311 (2000) Leibfried *et al.*, Nature **422**, 412 (2003).

Conditional Quantum Dynamics

Conditional Quantum Dynamics

Conditional Quantum Dynamics

- First obseravtion of a single atom in 1979 (after a couple of thousands years of discussion)
- Diverse Research with trapped ions incl. QIS
- Principle of Paul trap
- Physical principles of
 - Doppler cooling
 - State selecvtive detection
 - Single qubit operations
 - Conditional quantum dynamics

SUMMARY PART I